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Abstract: We analyze the canonical quantum dynamics of the isotropic Universe with a metric
approach by adopting a self-interacting scalar field as relational time. When the potential term
is absent, we are able to associate the expanding and collapsing dynamics of the Universe with
the positive- and negative-frequency modes that emerge in the Wheeler–DeWitt equation. On
the other side, when the potential term is present, a non-zero transition amplitude from positive-
to negative-frequency states arises, as in standard relativistic scattering theory below the particle
creation threshold. In particular, we are able to compute the transition probability for an expanding
Universe that emerges from a collapsing regime both in the standard quantization procedure and
in the polymer formulation. The probability distribution results similar in the two cases, and its
maximum takes place when the mean values of the momentum essentially coincide in the in-going
and out-going wave packets, as it would take place in a semiclassical Big Bounce dynamics.

Keywords: quantum cosmology; isotropic Universe; quantum Big Bounce; polymer quantum mechanics

1. Introduction

The most relevant and long-standing question of relativistic cosmology is surely the
presence of an initial singularity in the dynamics of the isotropic Universe as a general
feature of the Einstein equations under cosmological hypotheses [1,2]. Thought as a short-
coming of the underlying theory, the initial singularity has been the subject of a wide
number of attempts devoted to its removal and originally focused on modifications of
the Einstein–Hilbert action, able to alter the Friedmann dynamics of the Universe [3–5].
Since the canonical quantization of gravity was initially formulated [2,6], the dominant
proposal has been the possibility that quantum effects in the Planck age could prevent the
zero-volume limit characterizing the singularity. In this respect, understanding that in loop
quantum gravity (LQG) [2,7–10], the volume operator has a discrete spectrum [11] and then
showing the emergence of the Big Bounce semiclassical dynamics in so-called loop quan-
tum cosmology (LQC) theory [12–19] were the most relevant successes. Polymer quantum
cosmology (PQC) is also related to this scenario [20,21], due to its several morphological
features in common with the quasi-classical limit of LQC. However, all these approaches
are based on a semiclassical representation of the Universe dynamics, in which the Big
Bounce is the consequence of a regularization of the standard Friedmann evolution of the
Universe near the Planck era. In this regard, in [22], it is underlined that a quasi-classical
representation of the primordial phase is not always allowed, since the Universe is in a
fully quantum state. So, the concept of a transition amplitude from collapsing to expanding
Bianchi I Universes in the Wheeler–DeWitt (WDW) formulation is introduced, where the
isotropic Misner variable plays the role of time. The associated transition probability results
well defined and with a Gaussian-like distribution.
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In this work, we follow the same spirit of [22], limiting our attention to the Friedmann–
Lemaître–Robertson–Walker (FLRW) Universe but generalizing the quantum formulation
towards the implementation of a real matter field as relational time, here, a self-interacting
scalar field [23]. Firstly, we construct a parallelism between the WDW equation and
a Klein—Gordon (KG) one by identifying the expanding Universe and the collapsing
Universe as positive- and negative-frequency solutions, respectively. Then, following the
relativistic scattering procedure (below the particle creation threshold) [24], we calculate
the transition amplitude from negative- to positive-frequency states, which results in a
“Quantum Big Bounce” picture. The probability associated to this transition is maximum
when the momentum mean value of the in-going Universe wave packet is nearly that of
the out-going one. Finally, we consider the same model in polymer quantum mechanics
(PQM), which is not able to remove the singularity in the associated WDW equation when
written in Misner variables (see [25,26], where the singular behavior of the Bianchi I model,
and thus of the Bianchi IX model, is outlined). However, the polymer paradigm singles
out a spreading feature that prevents a semiclassical description, making the concept of
a Quantum Big Bounce more robust. In consideration of the study developed in [27], the
surprising result is that the profile of the probability density is essentially unchanged in the
polymer formulation with respect to the standard quantum scheme. Basically, the present
analysis suggests that a Quantum Big Bounce is allowed at a probabilistic level in the
WDW formalism for the isotropic Universe, thanks to a proper interpretation of the WDW
solutions as negative- and positive-frequency states defined in terms of matter relational
time. We remark that the possibility to have a transition from a collapsing Universe to
an expanding Universe is due to the breaking of the frequency separation because of the
presence of potential energy density in the dynamics of the matter clock and that the
position of the peak in the probability density reflects the same symmetrical reconnection
of the singular branches typical of a semiclassical bouncing picture [2].

2. Quantum FLRW Dynamics

The isotropic Universe is described by the FLRW model, and its classical dynamics is
affected by past and future singularities, i.e., the Big Bang and the Big Crunch, respectively.
The Hamiltonian of the system in the presence of a free scalar field φ is

H = NH = N
[
−2

3
πG
c3V

p2
α +

c
2V

p2
φ

]
= 0 , (1)

where N is the lapse function, α = ln a is the isotropic Misner variable, G is the Einstein
constant, c is the speed of light in vacuum and V is the fiducial volume. In order to preserve
the covariant structure of the theory, we use the so-called Dirac procedure and quantize
the theory before having explicitly solved the constraints, now promoted to quantum
operators. So, by implementing the super-Hamiltonian constraint as a quantum operator
Ĥ that annihilates the Universe wave function, Ψ(α, φ), we obtain the WDW equation

ĤΨ(α, φ) =
2
3

πGh̄2

c3V
∂2Ψ(α, φ)

∂α2 − ch̄2

2V
∂2Ψ(α, φ)

∂φ2 = 0 , (2)

where we use the coordinate representation and the normal ordering convention (h̄ = h/2π
is the Planck constant). We note that Equation (2) is formally analogous to a two-dimensional
massless KG equation for a relativistic particle. Thanks to this analogy, we can identify φ as
a relational-time variable and α as the spatial degree of freedom. Hence, according to the
superposition principle, the most general solution is a linear combination of plane waves,
i.e., a wave packet:

ψ(α, φ) =
∫ +∞

−∞
[A+(k)ϕ+(α, φ) + A−(k)ϕ−(α, φ)] dk , (3)

ϕ±(α, φ) = ei(kα∓ωkφ) , (4)
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where k is the wave number, ωk = v|k| is the dispersion relation (i.e., the frequency), A±(k)
are arbitrary functions and v =

√
4πGh̄2/3c4.

Actually, when dealing with highly localized wave packets, it is possible to relate
the classical values of the momenta (i.e., pα and pφ) and the corresponding quantum
eigenvalues (i.e., k and ωk, respectively), in agreement with the Ehrenfest theorem. In this
respect, we note that by deriving the Hamilton equations

φ̇ =
∂H
∂pφ

Ne−3αcpφ

V
, ṗφ = −∂H

∂φ
= 0 , (5a)

α̇ = −Ne−3α4πGpα

3c3V
, ṗα = 3H = 0 (5b)

from (1) and by combining the equations for α̇ and φ̇, we obtain the relation

dα

dφ
= −4πG

3c4
pα

pφ
(6)

which has a covariant character, i.e., it is valid for any temporal gauge. From (6), we obtain
that the distinction between the classical branches depends on the relative sign between the
constants of motion pα and pφ: the Universe collapses if the sign is concordant; otherwise,
it expands. In particular, once the sign of pα is fixed, the expanding or collapsing feature
depends on the sign of pφ. Therefore, if we consider sufficiently localized (i.e., semiclassical)
wave packets far from the fully quantum region of the initial singularity, we can only select
the states with k > 0 from the full Hilbert space and infer that the positive-frequency
solutions of the type

ψ+(α, φ) =
∫ +∞

0
A+(k)ei(kα−ωkφ) dk (7)

describe an expanding Universe, whereas the negative-frequency ones of the type

ψ−(α, φ) =
∫ +∞

0
A−(k)ei(kα+ωkφ) dk (8)

describe a collapsing one. Thus, we can associate positive energy states (i.e., “particles
states”) with the expanding branch and negative energy ones (i.e., “antiparticles states”)
with the collapsing phase. We remark that considering negative values of pα leads to the
opposite identification. Actually, retaining both signs of pα would provide redundant
information. So, in (7) and (8), we choose the portion of the spectrum of operator p̂α

associated to k > 0, and we impose A±(k) = e−
(k−k)2

2σ2 /
√

2πσ2, in which k̄ and σ are fixed
by the initial condition on the wave function at a given φ = φ0.

We remark that frequency separation can only be performed in the absence of a self-
interacting potential of the scalar field (here, a time-dependent term) and that the choice of
the semi-axis of k on which to perform the integration is conventional. We also stress that
the pure classical dynamics in function of time φ would require a fixed sign for pφ; then,
the two branches would depend on the Cauchy condition on the sign of pα. Actually, in
this picture, we use a “time after quantization” approach thanks to the analogy with the
KG equation. Hence, in this fully quantum scenario, we have a pure relational dynamics
in which states can propagate forward and backward in time as in relativistic quantum
particle interactions. Furthermore, approaching the classical limit, the emergent state is that
of an expanding Universe with fixed (here, negative) pφ; therefore, the consistency of the
classical dynamics is preserved. In addition, from (5a), we can justify the viability of φ as a
relational-time variable a posteriori. In fact, pφ is a constant of motion; so, φ is a monotonic
function of synchronous time. In this respect, the advantage of using matter relational time
is that the monotonicity requirement would also be fulfilled in a bouncing picture.
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Klein–Gordon-like Formulation for Homogeneous Cosmology

In the original works of DeWitt [6,28,29], the different signature of the three-metric
determinant (actually, its power to 1/4) with respect to the other five configurational
variables was first stressed. In other words, the Supermetric has a Lorentzian signature
point by point in space, and the three-metric determinant plays the role of the time-like
degree of freedom. As a result of this feature, the Wheeler–DeWitt equation seems to have
the morphology of a Klein–Gordon-like equation in the presence of a potential term, due to
the spatial curvature [30]. Thus, we can introduce a scalar product for the wavefunctional
of the Universe, which corresponds to the natural extension of the Klein–Gordon one, and
approach an interpretation of the Wheeler–DeWitt equation as being associated to a Hilbert
space, having features in common with relativistic quantum field theory [31]. In [32,33],
the idea of a Wheler–DeWitt equation as a Klein–Gordon-like setting is implemented
into the Minisuperspace of Bianchi homogeneous Universes [2]. In fact, the homogeneity
constraint reduces the problem to a finite number of degrees of freedom, i.e., the three
Misner variables [34,35]. In particular, isotropic variable α plays the role of time, while the
two anisotropies correspond to the space coordinates. This study allowed us to clarify that
a scalar product can be defined when the potential term vanishes in one time direction. In
the recent investigation pursued in [22], this approach was generalized in the spirit of a
scattering scenario, resulting in a non-zero amplitude for the transition between a collapsing
solution and an expanding solution. It is important to stress that both in [22,32,33], the
Wheeler–DeWitt equation is interpreted as a Klein–Gordon formalism below the threshold
of particle creation. Actually, we are not considering the third quantization scenario, where
creation and annihilation operators are introduced; see, for instance [36]. In fact, while the
possibility of creating Universes with different quantum numbers appears to be essentially a
mathematical procedure whose physical meaning is unclear, the parallelism with a simpler
scattering procedure turns out to be a much more solid prescription. In constructing such a
parallelism, the driving idea consists of two main points: (i) when the potential is absent,
the free states with positive frequencies can be interpreted as expanding Universe states,
while those ones with negative frequencies, as collapsing configurations; (ii) the presence of
the potential term (to be thought as relevant only in the Planck era) introduces an avoidably
superposition of expanding and collapsing Universe states, whose transition amplitude
can be calculated using the standard equipment of relativistic quantum scattering.

In the present study, we deal with a Wheeler–DeWitt equation associated to an
isotropic Universe in the presence of a self-interacting scalar field φ, i.e.,

∂2
αψ− ∂2

φψ + VPl(α, φ)ψ = 0 , (9)

where ψ = ψ(α, φ) and VPl is a Planck scale potential. This equation is clearly isomorphic to
a 1+ 1 Klein–Gordon equation in which we choose to identify the clock with the scalar field,
in agreement with the relational-time approach [3,23,31]. Furthermore, this choice would
be viable even throughout a Big Bounce configuration, while logarithmic scale factor α
would not be monotonic time in that scenario. It is immediate to check that (9) is associated
to the Klein–Gordon-like probability density:

Pψ = i(ψ∗∂αψ− ψ∂αψ∗) . (10)

Clearly, as in relativistic quantum mechanics, the probability density above becomes
positive-defined only when a frequency separation procedure can be performed. However,
as pointed out in [33], when the potential term is vanishing in one time direction (and not
spatially diverging), it is possible to asymptotically recover positive energy states and define
a norm to construct a proper Hilbert space. In particular, the model we take in consideration
meets this requirement. A key point of our theoretical proposal is the identification of
the frequency separation with the expanding and collapsing branches of the Universe as
non-overlapped solutions. We finally remark that it is probability density (10) that induces
the scalar product adopted to project the final state onto the initial one, as discussed in [24].
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In particular, the explicit expression of the transition amplitude is then derived by using
the propagator formalism (for more details, see Section 4).

3. Quantum FLRW Dynamics with a Self-Interacting Scalar Field

In this section, we introduce a potential term U(φ) at a quantum level. We note that the
WDW approach is not able to regularize the dynamics of the present model. However, the
proposed approach has the purpose to demonstrate the presence of the Big Bounce in the
WDW formulation by treating it as quantum scattering. Hence, we consider the quantum
potential U(φ) = λ

2 e−nφ, where λ > 0 and n ∈ R (for cosmological implementations of
such a potential, see [37–39]). So, the WDW equation turns out to be[

∂2

∂α2 −
1
v2

∂2

∂φ2 + Ce6α−nφ

]
ψ(α, φ) = 0 , (11)

where C = 3λ(Vc)2/4h̄2πG (v can be taken out from the equation by redefining φ̄ = vφ
and n̄ = n/v and then renaming the new variables as the old ones). As above, (11) can be
interpreted as a KG equation where the potential term depends on both the spatial and
time variables. To solve the equation, we use the transformation{

α−
√

2φ = −η√
2α− φ = ξ

(12)

which has the properties of a proper Lorentz transformation in the Minisuperspace (note
that n is set equal to 6

√
2 in order to satisfy the orthochronous criterion). Thus, the kinetic

term remains diagonal, and the WDW equation in the new variables becomes[
∂2

∂ξ2 −
∂2

∂η2 + Ce−6η

]
Ψ(ξ, η) = 0 . (13)

For a detailed discussion on the issue of selecting the unitarily equivalent physical
solutions at a quantum level in constrained systems, see [40]. We notice that (13) is iso-
morphic to the equation analyzed in [33], in which the possibility of recovering a proper
Hilbert space in Wheeler–DeWitt theory in those cases in which “asymptotically positive
energy solutions” can be recovered is widely discussed.

It is worth noting that the change in variables in (12) mixes the spatial and time
coordinates, making their immediate interpretation difficult. Recalling the hypothesis that
the introduced potential is time-dependent, η can be interpreted as the time variable, and ξ,
as the spatial one. It is worth stressing that such a potential term is only relevant near the
singularity and thus guarantees the existence of the free expanding branch of the Universe
dynamics. Actually, besides the cosmological justification mentioned above, this potential
allows for the choice of purely positive-frequency solutions. Moreover, in this approach, it
plays the role of a quantum scattering source; therefore, it has to be considered significantly
different from zero only in the Planck era.

By analyzing the Hamilton equations for the new variables, we obtain dξ
dη = − pξ

pη
, so the

classical relation between the new spatial and time coordinates is the same as (6). This is due
to the fact that proper Lorentz transformations do not invert the arrow of time. Therefore,
in the new variables, it remains valid that the positive-frequency solutions can be associated
to an expanding Universe, and the negative-frequency ones, to a collapsing Universe.

Now, we propose the solution

Ψk(ξ, η) = Φk(η)ψk(ξ) (14)
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to (13), where ψk(ξ) = eikξ and

Φk(η) = Φk
+(η) + Φk

−(η)

= 6
−ik

3 BI
(
− ik/3, e−3η

√
C/3

)
Γ
(
1− ik/3

)
+ 6

ik
3 BI

(
ik/3, e−3η

√
C/3

)
Γ
(
1 + ik/3

)
, (15)

in which BI are the modified Bessel functions of the first kind and Γ is the Euler gamma
function. As before, we write the general solution Ψ(ξ, η) using Gaussian packets as

Ψ(ξ, η) =
1√

2πσ2

∫ +∞

−∞
e−

(k−k̄)2

2σ2 Φk(η)eikξ dk . (16)

Differently from the previous case, here, the potential term has mixed the branches,
making it impossible to distinguish them in terms of frequencies. Moreover, it is no longer
possible to find an explicit expression for the eigenvalue of operator p̂η in terms of the
eigenvalue of p̂ξ , since separation constant k appears to be a complex index of the Bessel
functions. We finally note that the Bessel functions tend to the free solutions in the limit
η → +∞ , i.e.,

lim
η→+∞

Φk
+(η) = eikη and lim

η→+∞
Φk
−(η) = e−ikη . (17)

In other words, when the time-dependent potential becomes negligible, Ψk(ξ, η) is
that of the free case; therefore, we recover the picture described in the previous section. In
particular, in (15), the two different asymptotic behaviors (i.e., expanding and collapsing)
are equally weighed.

4. Quantum Big Bounce

Here, we propose a probabilistic approach to the Big Bounce within WDW theory.
At the basis of the formalism used below, there is the analogy with relativistic quantum
scattering theory. In the same spirit, we assume that the Bounce is a quantum interaction
between single particle states, i.e., they can be described by a wave function. In this
framework, we associate a probability to the transition of the Universe from a collapsing
state to an expanding one, in analogy with the fundamental interaction processes between
particles below the particle creation threshold [24]. In the presence of a potential, the
general solution of the modified KG equation

(�x + m2 + U(x))Ψ(x, t) = 0 (18)

can be found in terms of the propagator for the free scalar field and calculated with arbitrary
precision as

Ψ(x, t) = Φ(x, t) +
∫

∆F(x− y)U(y)Ψ(y, t) d4y , (19)

where Φ(x, t) is the solution of the homogeneous problem and ∆F(x− y) is the propagator,
which has the property of making the positive-frequency solutions evolve forwards in time,
and the negative-frequency ones, backwards. In this formalism, the scattering amplitude
between two states is simply the Klein–Gordon projection of the interacting solution onto
the initial free one, by using expression (19) for the former (for the complete derivation,
see [24]). In this case, it can be demonstrated that the probability associated to the transition
amplitude can be written as

|Sk̄′ ,k̄|
2 =

∣∣∣∣− i
∫∫ +∞

−∞
ψ∗+(ξ, η)U(η)Ψ(ξ, η) dη dξ

∣∣∣∣2 , (20)
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where Ψ(ξ, η) coincides with the solution resulting from the interaction of a collapsing
Universe with potential U(η) = Ce−6η (see (16)) and ψ∗+(ξ, η) is an emerging free wave
associated only to positive frequencies:

ψ∗+(ξ, η) =
1√

2πσ′2

∫ +∞

0

e−
(k′−k′)2

2σ′2
√

2wk′
ei(k′ξ −w′kη) dk′ , (21)

i.e., the branch of the expanding Universe. We remark that the probability amplitude in (20)
refers to a transition from a negative (collapsing) frequency state to a positive (expanding)
frequency state by definition. Actually, the scattering amplitude between two “particles”
or “antiparticles” would have contained a Dirac delta term added to the integral in (20)
(see [24]). After both analytical and numerical integrations, transition probability |S(k̄, k̄′)|2
results to be only dependent on values (k̄, k̄′) associated to the in-going (collapsing) and
out-going (expanding) wave packets, respectively. So, once the value of k̄ is fixed, the result
is a function of k̄′, as shown in Figure 1.

Figure 1. Plot of |S(k̄, k̄′)|2 as a function of k̄′. Starting from the left, the transition probability is
calculated for k̄ = −4, 0, 4, respectively. In all the three cases, σ = σ′ = 1, C = 1, and an integration
step equal to 0.05 is used.

We notice that the transition probability between a collapsing Universe and an ex-
panding Universe is well defined. In particular, its peak position indicates that the wave
packet with k̄′ ≈ k̄ maximizes the probability of the Bounce. It is worth noting that the
phase shift observed in Figure 1 between k̄′ and k̄ is due to a mathematical feature of the
Bessel functions, and it has no physical meaning. Finally, we stress that the KG probability
density becomes positive-defined only when frequency separation is performed (i.e., when
the potential term is negligible). Surprisingly, this feature holds also when we overlap
frequency modes of the same sign by using Gaussian weights (for a detailed discussion
of this question, see [22]). However, when a time-dependent potential is turned on, the
frequency separation is forbidden, and the KG norm is not globally conserved anymore, so
its interpretation as a probability completely loses its meaning. Actually, the approach we
adopt here goes beyond the troublesome probabilistic interpretation of the KG wave func-
tion by resorting to the relativistic quantum formalism of scattering processes described
above. Here, the probability associated to the Quantum Big Bounce is simply the square
modulus of the transition amplitude constructed by projecting the in-going state onto
the out-going one, according to the KG scalar product. Hence, the positive nature of the
Quantum Big Bounce probability density as defined in (20) is automatically guaranteed. In
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this respect, the present construction is a natural implementation of the relativistic quantum
theory procedures into the Minisuperspace of the considered cosmological model.

5. Quantum Big Bounce in the Polymer Paradigm

In the last part of the work, we study the system by implementing the PQM formal-
ism [21]. The ultimate goal is to make a comparison with the transition amplitude obtained
in the previous formalism and analyze if there are significant variations in the two cases.
What follows will briefly recall the basic features of PQM.

5.1. The Polymer Representation of Quantum Mechanics

PQM is an alternative representation of quantum mechanics introduced by Corichi
in [21] that results non-equivalent to the standard Schrödinger one. In particular, it is
based on the assumption that the configurational variables are discrete, and for this rea-
son, its main applications regard the investigation of cut-off physics effects in quantum
cosmology theories.

Let us consider abstract kets |µ〉 labeled by real parameter µ ∈ R, so that a generic
state in Hilbert spaceHpoly can be defined with a finite linear combination of them, i.e.,

|ψ〉 =
N

∑
i=1

ai|µi〉 , (22)

where µi ∈ R, i = 1, . . . , N ∈ N. Also, let us fix the inner product

〈µ|ν〉 = δµν (23)

in order to guarantee the orthonormality between the basis kets. It can be demonstrated
that such Hilbert spaceHpoly is non-separable. Two fundamental operators onHpoly can
be defined as follows: symmetric operator ε̂, which labels the kets, and unitary operator
ŝ(λ), with λ ∈ R, which shifts them. Their action is

ε̂|µ〉 := µ|µ〉 (24)

and
ŝ(λ)|µ〉 := |µ + λ〉 (25)

respectively. In particular, since kets |µ〉 are orthogonal, the eigenvalues of the label
operator constitute a discrete set, and the shift operator results to be discontinuous in λ.

In order to provide an explicit representation of these two operators, let us consider
a one-dimensional system (q, p), in which configurational coordinate q has a discrete
character. It is easy to see that in p-polarization, operator q̂ acts as a differential operator as

q̂ · ψµ(p) = −i
∂

∂p
ψµ(p) = µψµ(p) (26)

and corresponds to label operator ε̂. We remark that the eigenvalues of q̂ can be considered
a discrete set, since they label kets that are all orthonormal. On the other hand, the shift
operator acts as

ŝ(λ) · ψµ(p) = e
iλp
} e

iµp
} = e

i(µ+λ)p
} = ψµ+λ(p) (27)

and is discontinuous, since the final state is always orthonormal to the initial one, no matter
how small λ is. This feature results in the consequence that p̂ cannot be defined rigorously,
since no Hermitian operator can generate a discontinuous operator by exponentiation.
Therefore, a proper definition for physical operators p̂ and q̂ is needed in order to deal with
a well-defined dynamics. Actually, in PQM, if one of the two is discrete, then the other one
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must be regularized. The standard procedure consists in the introduction of a lattice with
constant spacing µ

γµ = {q ∈ R : q = nµ, ∀ n ∈ Z} (28)

on which to restrict the action of operator e
iλ p̂
} , so that it is possible to use it to define an

approximate version of p̂ as

p̂µ|µn〉 :=
}

2iµ
[e

iµ p̂
} − e−

iµ p̂
} ]|µn〉

=
}

2iµ
(|µn+1〉 − |µn−1〉) , (29)

i.e., the discretization of the derivative. Actually, for µp� }, one obtains p v sin(µp)/µ =

}(e
iµp
} − e−

iµp
} )/2iµ. Accordingly, for p̂2, we obtain

p̂2
µ|µn〉 := p̂µ · p̂µ|µn〉

=
}2

4µ2 [−|µn−2〉+ 2|µn〉 − |µn+2〉]

=
}2

µ2 sin2(µp)|µn〉 . (30)

We remind that q̂ is well defined, so the regularized version of the Hamiltonian is

Ĥµ :=
1

2m
p̂2

µ + V̂(q) (31)

and represents a symmetric and well-defined operator onHγµ .

5.2. Transition Amplitude

Let us now compute the Quantum Bounce transition amplitude in the polymer formu-
lation. First of all, in accordance with the theoretical structure of PQM, it is necessary to
select which Minisuperspace variables are discrete and thus which ones should be regu-
larized. When PQM is applied in a cosmological context, functions of the scale factor are
usually chosen as discrete with the aim of trying to solve the singularity. Accordingly, in
this model, α is the discrete variable; so, operator p̂α is formally replaced with

p̂α →
h̄

µα
sin
(µα pα

h̄

)
(32)

in the momentum representation. From the semiclassical study of the Hamilton equations
in the absence of the potential term, we obtain that pα is still a constant of motion and that

α̇ = −4πGNe−3α h̄
3c3Vµα

sin
(

2µα pα

h̄

)
. (33)

Hence, it is clear that the same previous considerations regarding the possibility of
discerning the expanding and collapsing branches of the Universe remain valid, since
sin(2µα pα/}) is odd in its argument. As usual, the polymer version of Hamiltonian (1) is
obtained using (32) as a semiclassical approximation. Then, by promoting it to a quantum
operator, we obtain the polymer-modified WDW equation, which corresponds to (2),
in which (32) is rigorously implemented as a regularized version of operator p̂α in the
momentum representation. The expression of the Universe wave packet as a superposition
of functions weighed with Gaussian coefficients is analogous to the previous one (see (16)).

ψ±(α, φ) =
1√

2πσ2

∫ +∞

0
e−

(k−k̄)2

2σ2 ei( p̄αα∓kφ) dk , (34)
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where p̄α = arcsin(µαk)/µα. The main difference is represented by the dispersion relation
(i.e., the relation between the quantum eigenvalues of the momenta), which stops being
linear. It can be shown that this fact is responsible for the spreading of the wave packet
(see Figure 2). Therefore, the comparison between the semiclassical trajectory and the
evolution of the quantum wave packet loses its meaning, since the variance sooner or later
becomes of the same order as the expectation value, making it necessary to resort to a fully
quantum treatment. This behavior of the FLRW Universe wave packet in the polymer
representation further consolidates the study of the Big Bounce as quantum scattering. We
remark that PQM is not able to solve the singularity of the FLRW model in the Misner
variable (see [25,26], where this argument is used to demonstrate the presence of the initial
singularity in the Bianchi IX model); so, no semiclassical bouncing dynamics is present in
this model.
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Figure 2. Probability density j(α) = i(ψ∗+(α, φ̄)∂φψ+(α, φ̄) − ψ+(α, φ̄)∂φψ∗+(α, φ̄)) for the values
of time φ̄ = −100, 0, 100, respectively. As it can be seen, the variance in the probability density
becomes larger as time goes by, showing the spreading of the wave packet during evolution. Both the
integration step and µα are set equal to 0.1.

Since PQM does not commute with other coordinate transformations, we introduce
it after the Lorentz transformation in (12). Hence, we start by considering the polymer
version of the WDW equation in the (ξ, η) variables, i.e.,[

1
µ2

ξ

sin2(µξ pξ

)
− ∂2

∂η2 + Ce−6η

]
Ψ(pξ , η) = 0 , (35)

where substitution (32) is used. Then, the polymer transition probability can be computed
as in (20), in which

ψ∗+(ξ, η) =
1√

2πσ′2

∫ +∞

0

e−
(k′−k′)2

2σ′2
√

2wk′
ei( p̄′ξ ξ −w′kη) dk′ , (36)

U(η) = Ce−6η and

Ψ(ξ, η) =
1√

2πσ2

∫ +∞

−∞
e−

(k−k̄)2

2σ2 Φk(η)ei p̄ξ ξ dk . (37)

After analytically integrating over variables ξ and k′, we obtain

|Sµξ (k̄′, k̄)|2 = (38)∣∣∣∣− i
∫ +∞

0

Ce−
(k−k)2

2σ2 e−
(k−k′)2

2σ′2√
2wkσ2σ′2

√
1− µ2

ξk2 I(k) dk
∣∣∣∣2,

where

I(k) =
∫ +∞

−∞
eη(ik−6)Φk(η) dη . (39)

Then, polymer transition probability |Sµξ (k̄′, k̄)|2 has been computed by using both
analytical and numerical integrations. We notice that the polymer modification induced
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on (38) consists in the presence of global factor
√

1− µ2
ξ k2 and that in the limit µξ → 0,

the standard scattering amplitude is recovered. Therefore, as we can see from Figure 3,
the introduction of PQM does not significantly change neither the shape of transition
probability |Sµξ (k̄, k̄′)|2 nor the position of its peak (for a comparison with the previous
case, see Figure 1). In particular, as in the standard case analyzed in Section 4, the maximum
of the probability density occurs in correspondence of k̄′ ≈ k̄, where k̄′ is associated to the
expanding Universe wave packet emerging after the interaction, and k̄, to the collapsing
one. The absence of relevant effects is due to the fact that in (38), the exponential factors of

the Gaussian coefficients dominate over polymer global factor
√

1− µ2
ξ k2 in the integral.

Figure 3. Plot of |Sµξ (k̄′, k̄)|2 as a function of k̄′ in the polymer paradigm. Starting from the left,
the polymer transition probability is calculated for k̄ = −4, 0, 4, respectively. In all the three cases,
σ = σ′ = 1; C = 1, µξ = 0.1; and an integration step equal to 0.05 is used.

6. Discussion of the Results

Here, we develop some basic considerations that are useful to provide a physical
interpretation of the analysis above. We start by observing that the collapsing and ex-
panding branches are separated at a classical level and that no semiclassical dynamics is
present, both in the Einsteinian and in the polymer picture addressed here. The situation is
significantly different at a quantum level, where the expanding and collapsing branches
co-exist as positive- and negative-frequency solutions. The crucial point is that the two
frequency solutions, i.e., the collapsing and expanding branches, can no longer be separated
when a self-interaction potential term (to be considered relevant only in the Planck regime)
is introduced. As a result, the quantum nature of the singularity acquires a very different
morphology compared with the standard expectancy, according to which the trajectories are
localized near the two singular branches. Actually, in the polymer picture, a quasi-classical
localization of the dynamics is only possible for a finite time interval, and the solution
describing the two branches should be regarded as a non-localized state near the singularity,
even in the absence of a quantum potential term. Thus, here, we state that it is possible to
obtain an emerging classical expanding Universe for η → +∞ from the Planck quantum
state in which the frequency solutions are not separable. For the reasons explained above,
a quantum transition between a mixed Planck state and the expanding (but, in principle,
also collapsing) Universe emerges as a new scenario that can be interpreted as a Quantum
Big Bounce. We note that the precise morphology of a quantum scattering process would
require the quantum potential to be a time transient, i.e., only relevant in a finite interval of
φ. Nevertheless, we stress that dealing with the exact solution of the interaction regime
makes it possible to use the relativistic quantum treatment, even if such a potential term
is not perturbative in this region. We conclude by observing that the present study must
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be regarded as an improvement to the original proposal in [22], in which the Universe
volume is adopted as time. Here, the choice of relational time would intrinsically fulfill
the requirement of a monotonic behavior even when considering a semiclassical/quantum
bouncing dynamics.

7. Conclusions

In this work, we analyze the quantum dynamics of the isotropic Universe in the
presence of a self-interacting scalar field, which plays the role of relational time [23]. When
the scalar field is free of its potential, the WDW equation has the morphology of a two-
dimensional massless KG equation, and we are able to identify the positive- and negative-
frequency modes as the expanding and collapsing phases of the Universe, respectively.
Such an identification is found by comparing the classical dynamics with the behavior of
localized quantum wave packets. Then, when the potential term of the matter clock is
introduced, the frequency separation is broken; so, we apply the standard techniques of
relativistic quantum scattering below the particle creation threshold [24], in order to obtain
a transition probability from a collapsing Universe to an expanding Universe. It is worth
noting that we use an orthochronous Lorentz-like transformation in the Minisuperspace
when performing such a calculation, in order to make it possible to analytically solve the
WDW equation. In both cases, i.e., the standard WDW equation and the polymer-modified
scheme, the transition probability results similar in morphology. Furthermore, in the latter
scenario, the Universe wave packet unavoidably spreads towards the (still existing) initial
singularity, and the Big Bounce description in terms of a probabilistic phenomenon becomes
mandatory. Actually, in both cases, the idea of dealing with a Quantum Big Bounce is made
precise by observing that the maximum value of the transition probability is taken when
the expectation value of the in-going wave packet momentum is close to the corresponding
one in the out-going state, as it takes place before and after a semiclassical Big Bounce.
Since the existence of a self-interacting scalar field in the early Universe appears natural in
many fundamental approaches [2], the possibility of dealing with a Quantum Big Bounce
(in the sense defined here) can be considered a rather general feature of the canonical
quantum dynamics in the metric formalism, even in more general cosmological models
like the Bianchi Universes or the generic inhomogeneous cosmological solution [41,42].
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