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Abstract: We review the status of the Standard Model theory of neutron beta decay. Particular
emphasis is put on the recent developments in the electroweak radiative corrections. Given that some
existing approaches give slightly different results, we thoroughly review the origin of discrepancies,
and provide our recommended value for the radiative correction to the neutron and nuclear decay
rates. The use of dispersion relation, lattice Quantum Chromodynamics, and an effective field
theory framework allows for high-precision theory calculations at the level of 10−4, turning neutron
beta decay into a powerful tool to search for new physics, complementary to high-energy collider
experiments. We offer an outlook to the future improvements.
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1. Introduction

Compared to other hadrons that primarily decay via weak interaction, the neutron is very
long lived with the lifetime τn ≈ 15 min. The reason lies in the small phase space available
for the underlying decay n→ p + e− + ν̄e: the energy release Mn −Mp −me ≈ 0.782 MeV
is three orders of magnitude smaller than the nucleon mass. The neutron–proton mass
difference, Mn −Mp ≈ 1.293 MeV, is also smaller than the typical nuclear binding energy
per nucleon which amounts to ∼7−8 MeV, making the bound neutron stable. The exact
value of the neutron lifetime (together with other quantities) determines the rate of the
p− p fusion process that fuels the sun [1].

A precise measurement of the neutron beta decay provides us with an accurate probe
of semileptonic charged-current interactions across the first generation of Standard Model
(SM) fermions. The Lagrangian density responsible for the d→ u quark conversion reads

Leνud = −
√

2GFVud ēγµνL · ūγµ(1− γ5)d + h. c., (1)

with νL = 1
2 (1− γ5) ν the left-handed neutrino field, GF = 1.166 378 8(6)× 10−5 GeV−2 the

Fermi constant, and Vud the top-left corner element of the Cabibbo–Kobayashi–Maskawa
(CKM) quark mixing matrix [2,3]. With the Fermi constant known very precisely from
muon lifetime measurements, Vud is the fundamental parameter of the SM that is of primary
interest in the studies of the neutron decay.

At low energies, the quarks are bound into hadrons, and their electroweak interactions
in Equation (1) are embedded into the Lagrangian density at the nucleon level. Dropping
for the moment the small nucleon recoil, the latter reads

Leνpn = −
√

2GFVud ēγµνL · p̄γµ(gV + gAγ5)n + h. c. (2)

The conservation of the vector current ensures that gV = 1 (modulo tiny corrections that are
quadratic in md−mu), but the axial coupling is not protected against strong renormalization.
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The ratio of the two, λ ≡ gA/gV has to be known sufficiently, precisely to allow for an
extraction of |Vud| from neutron decay [4]:

|Vud|2n ∝
1

τn(1 + 3λ2)
. (3)

At present, the best precision is warranted if the measurement of the lifetime is supple-
mented by that of λ via one of the correlation coefficients introduced in Section 2.

We refer the reader to a recent review of the current experimental status of the neutron
β decay [5]. We summarize the existing extractions of Vud, neutron lifetime, and λ in
Figure 1.
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Figure 1. Experimental status of Vud, τn and λ as indicated in the legend and explained in the text.

PDG averages [4] are shown for τn (vertical green band, τav
n = 878.4(5) s,

averaged over measurements in Refs. [6–13]) and λ (wide light-blue diagonal band,
λav = −1.2754(13), averaged over measurements in Refs. [14–23]) as indicated on the plot.
Alongside, the single most precise measurements of τn with the bottle method [6] (orange
vertical band, τUCNτ

n = 877.75(34) s), that with the beam method [24] (yellow vertical band,
τBeam

n = 887.7(2.2) s), and λ [16] (dark blue diagonal band, λPERKEOIII = −1.27642(56)) are
shown. The beam-bottle discrepancy in τn is elucidated by the distance between the yellow,
and orange and green vertical bands. The Cabibbo angle anomaly (CAA) corresponds to
the non-overlaping of the horizontal cyan (0+ − 0+ nuclear decays) and grey (unitarity
constraint plus Vus from kaon decays [4]) bands. It is also seen that, given the measure-
ments of λ, the lifetime from bottle experiments is compatible with Vud from superallowed
nuclear decays and with unitarity, while that from beam experiments suggests a significant
discrepancy with both, as pointed out in [25]. Anticipating the upcoming improvement in
the experimental uncertainties (and assuming the bottle lifetime value), we observe that
neutron decay will start resolving CAA in the near future.

Apart from the purely experimental precision which has tremendously improved over
the recent years, the accuracy of Vud as obtained from neutron decay is limited by the theory
uncertainties, stemming from the strong interaction governed by Quantum Chromody-
namics (QCD) in its non-perturbative regime. These enter the proportionality coefficient in
Equation (3) and amount to ≈ 10−4 uncertainty to Vud, following a recent reevaluation of
the SM radiative corrections (RC) with improved precision. A comprehensive overview of
these developments is the main focus of this work.
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This review is organized as follows. We start with a discussion of the observables
in neutron decay in Section 2. We lay out the structure of the SM RC in Section 3 and
concentrate on the γW-box in Section 4. Its evaluations within the effective field theory, and
lattice QCD frameworks are addressed in Sections 6 and 5, respectively. The consequences
for the new physics searches are reviewed in Section 7, upon which we conclude with
Section 8.

2. Differential Decay Rate

We are interested in the neutron decay process: n → p + e + ν̄e, where the decay
kinematics can be found in Appendix A. At tree level, it probes the single-nucleon charge-
current matrix element which, beyond the leading terms in Equation (2), reads

Fµ ≡ 〈p(pp, sp)|Jµ
W(0)|n(pn, sn)〉 = ūsp(pp)

[
FW

1 γµ +
i

2M
FW

2 σµν(pp − pn)ν

+ GAγµγ5 −
GP
2M

γ5(pp − pn)
µ

]
usn(pn) . (4)

FW
1 , FW

2 , GA and GP are the vector, weak magnetism, axial and pseudoscalar form factors
which are functions of t = (pp − pn)2, and M ≡ (Mn + Mp)/2 is the average nucleon mass.

Given the small nucleon mass difference, recoil effects∼ 10−3 are small (but important
for precision [26]). In the non-recoil limit, only the vector and axial form factors are relevant.
In particular, we define g̊V ≡ FW

1 (0) and g̊A ≡ GA(0) as the neutron vector and axial
coupling constants (we follow the experimentalists’ convention and take g̊A < 0); here we
use the upper circle to denote the “unrenormalized” couplings, i.e., those coming from
purely strong dynamics. Conserved vector current (CVC) [27] entails g̊V = 1 in the isospin
limit. The deviation from unity requires strong isospin-symmetry breaking (ISB), and scales
quadratically with the small ISB parameter according to the Behrens–Sirlin–Ademollo–
Gatto (BSAG) theorem [28,29]. We refer the reader to Refs. [30–32] for numerical estimates,
and to Ref. [33] for a proposed strategy of computing this deviation in lattice QCD. In turn,
the axial current is not conserved, and g̊A significantly deviates from −1. Recent lattice
QCD calculations [34–39] led to percent-level determinations [40]: g̊A = −1.246(28) for
N f = 2 + 1 + 1 and −1.248(23) for N f = 2 + 1. The couplings multiplying the recoil
corrections are numerically large. The weak magnetism in the exact isospin limit is given
by the isovector nucleon magnetic moment, FW

2 (0) = µp − µn = 4.70589007(45). The
pseudoscalar coupling is enhanced, GP(0) = −(M/m̄q)g̊A = 349(9), with m̄q the average
light quark mass [41], but the quadratic dependence on the small recoil suppresses it
beyond the current precision level.

The differential decay rate of a polarized neutron to unpolarized final states takes the
following form [42–44]:(

dΓ
dEedΩedΩν

)
0
=

(GFVud)
2

(2π)5 F(Ee)|~pe|Ee(E0 − Ee)
2(1 + 3λ2)g2

V

(
1 +

αem

2π
δ(1)(Ee)

)
×
(

1 + (a + δar)
(

1 +
αem

2π
δ(2)(Ee)

)~pe · ~pν

EeEν
+ b

me

Ee
(5)

+σ̂ ·
[
(A + δAr)

(
1 +

αem

2π
δ(2)(Ee)

)~pe

Ee
+ (B + δBr)

~pν

Eν
+ D

~pe × ~pν

EeEν

])
.

Above, σ̂ is the unit neutron polarization vector and E0 = (M2
n − M2

p + m2
e )/(2Mn) is

the electron end-point energy. The quantities a, b, A, B, D are referred to as correlation
coefficients, and {δar, δAr, δBr} are the known recoil corrections (∼1/M) thereto, generated
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by the nucleon magnetic moment [45]. If neglecting RC and recoil corrections, the non-
vanishing coefficients read:

a0 =
1− λ2

0
1 + 3λ2

0
, A0 =

−2λ0 − 2λ2
0

1 + 3λ2
0

, B0 =
−2λ0 + 2λ2

0
1 + 3λ2

0
, (6)

where λ0 = g̊A/g̊V is the ratio of the bare axial and vector coupling constants. The expres-
sions above suggest that one could measure the axial coupling g̊A either through recoil
effects (a0) or the σ̂-dependence (A0, B0) in the differential decay rate.

To achieve 10−3 precision it is necessary to include electromagnetic and recoil ef-
fects. The electromagnetic corrections to neutron decay are of two kinds. The first are
Ee-dependent terms that distort the beta spectrum. The largest of such kind is the Fermi
function F(Ee), which describes the Coulomb interaction between the final-state proton and
electron [46]. The remaining Ee-dependent terms not included in the Fermi function are
collectively coined as “outer RC” and appear as the corrections δ(1,2)(Ee) in Equation (5).1

The relevant expressions can be found in, e.g., Ref. [47]. The further corrections that are
Ee-independent are known as “inner RC”, and they modify the coupling constants in the
tree-level charged weak matrix element as

g̊V → g̊V + δgV ≡ gV , g̊A → g̊A + δgA ≡ gA. (7)

They renormalize the total decay rate by an overall factor g2
V , and the correlation coefficients

a, A, B are modified by replacing λ0 in Equation (6) with the renormalized ratio λ ≡ gA/gV .
The coefficient b is often referred to as Fierz term and requires an effective scalar inter-

action. In the SM it is double-suppressed, b ∼ αme/Mp ∼ 10−6 and hence is a promising
avenue to look for non-standard scalar and tensor currents [48,49] (see Refs. [50,51] for
limits from neutron decay). The coefficient D is a time reversal-odd effect [42] that can
be generated in SM by the final-state interaction effects, such as the Coulomb phase [52].
While beyond-the-Standard-Model (BSM) CP-violating contributions to D are severely
constrained by the neutron electric dipole moment (EDM) experiments, CP-conserving
BSM effects in interference with the SM Coulomb phase may generate D ∼ 10−5 testable in
the upcoming experiments [53,54].

Upon integrating over the phase space, the full decay rate Γ = 1/τn can be used to
determine |Vud| if we rewrite Equation (3) in a more detailed manner [55],

|Vud|2n =
5024.7 s

τn(1 + 3λ2)(1 + ∆V
R )

. (8)

The numerator at the right hand side contains the effects of the Fermi constant GF measured
from muon decay and the statistical rate function f [56,57], as well as the outer RC. Be-
yond the neutron lifetime τn and the renormalized ratio λ (both experimentally measured),
the denominator contains the theoretical quantity ∆V

R representing the inner RC to the
vector coupling. This quantity will be discussed in detail below.

To summarize, neutron decay serves a valuable tool to test internal consistency of SM.
In the electroweak sector, precise measurements of the neutron lifetime and correlation
coefficients (i.e., the renormalized axial coupling gA) provide an accurate way of extracting
Vud which can be compared with that obtained from nuclear and pion decays. Combined
furthermore with other CKM matrix elements extracted from heavier quark flavors decays,
it allows for highly accurate tests of unitarity of the CKM matrix, a cornerstone of SM. In the
strong interaction sector, the bare axial coupling constant g̊A obtained from the measured
correlation coefficients can be confronted to the ever more precise lattice QCD calculations.
For both tests, precise knowledge of RC which should be removed from the measured
quantities for a meaningful comparison, is mandatory.
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3. Inner Radiative Corrections

The first systematic analysis of RC fully compatible with the SM electroweak theory
was established in 1978 by Sirlin [58]. It is not the purpose of this review to repeat Sir-
lin’s derivation from scratch, and interested readers are referred to more comprehensive
reviews [47,59]. Here we jump directly to the most important conclusion: Sirlin showed
that, among all the O(αem) RC to a generic semileptonic beta decay φi → φ f (which could
be either β+ or β−), the only two diagrams that depend on non-perturbative strong inter-
actions are those in Figure 2. The first diagram represents the RC to the charged current
matrix element (e.g., Equation (4) for the case of single nucleon), where γ< denoting the
photon propagator with a Pauli–Villars regulator M2

W/(M2
W − q2), and the second diagram

is the γW-box diagram.

Figure 2. One-loop Feynman diagrams of electroweak RC that probe non-perturbative strong interactions.

Using Ward identity, Sirlin further showed that the first diagram splits into two pieces:

δFµ = δFµ
2pt + δFµ

3pt , (9)

which we name as the “two-point function” and “three-point function” respectively.
The two-point function takes the following form for neutron:

δFλ
2pt =

e2

2

∫ d4q
(2π)4

∂

∂qλ

(
M2

W
M2

W − q2
1

q2 −m2
γ

)
Tµ

γWµ , (10)

where2

Tµν
γW ≡

∫
d4xeiq·x〈p|T[Jµ

em(x)Jν
W(0)]|n〉 (11)

is a “generalized Compton tensor” consists of the time-order product of the electromagnetic
and charged weak current. The definition of the “three-point function” is more complicated
and consists of two terms:

δFλ
3pt = − lim

δ p̄→δp
iδ p̄ν

∂

∂δ p̄λ
[T̄ν − Bν] + lim

δ p̄→δp
i

∂

∂δ p̄λ
[D− δ p̄ · B] , (12)

where δp ≡ pn − pp, and

T̄µ =
e2

2

∫ d4q
(2π)4

M2
W

M2
W − q2

1
q2 −m2

γ

∫
d4xeiδ p̄·xd4yeiq·y〈p|T{Jµ

W(x)Jν
em(y)Jem

ν (0)}|n〉

D =
ie2

2

∫ d4q
(2π)4

M2
W

M2
W − q2

1
q2 −m2

γ

∫
d4xeiδ p̄·xd4yeiq·y〈p|T{∂ · JW(x)Jν

em(y)Jem
ν (0)}|n〉

Bµ = −ūp

[
iδMp

/pn − δ/̄p −Mp
Tµ + Tµ iδMn

/pp + δ/̄p −Mn

]
un , (13)

with δMp,n the nucleon mass shift due to electromagnetic corrections, and Tµ the nucleon
vertex function. The B-terms in Equation (12) remove the poles in T̄ν and D at δ p̄→ δp.

An important observation is that δFµ
2pt partially cancels the part of the γW-box diagram

which stems from the symmetric Tµν
γW , leaving a residual piece that depends only on IR-

physics and can be evaluated analytically. This residual piece gives rise to the outer
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correction which was known well before the birth of SM [43,62,63]. The uncancelled piece
of the box diagram, coming from the antisymmetric part of Tµν

γW , contributes to the inner
correction to gV,A as [64]:

δgγW
V

g̊V
≡ �V

γW =
e2

2Mg̊V

∫ d4q
(2π)4

M2
W

M2
W + Q2

1
(Q2)2

ν2 + Q2

ν
T3

δgγW
A

g̊A
≡ �A

γW =
e2

Mg̊A

∫ d4q
(2π)4

M2
W

M2
W + Q2

1
(Q2)2

{
ν2 − 2Q2

3ν
S1 −

Q2

ν
S2

}
, (14)

where the invariant amplitudes T3, S1,2 are defined through Tµν
γW in the forward limit

(i.e., pn = pp = p):

Tµν
γW = −

iεµναβqα pβ

2p · q T3 +
iεµναβqα

p · q

[
SβS1 +

(
Sβ −

S · q
p · q pβ

)
S2

]
+ · · · , (15)

with Q2 = −q2, ν = p · q/M, and Sµ is the nucleon’s spin vector normalized as S2 = −M2.
Finally, let us address the properties of the three-point functions. The first term in

Equation (12) vanishes for δp→ 0 and can safely be neglected for neutron decay. The second
term is more complicated: it vanishes if ∂ · JW = 0, i.e., if the charged weak current is
conserved. For the vector component, this is just the CVC hypothesis which is an excellent
approximation given that (∂ · JW)V ∼ (md −mu) ∼ δp. One might naively think that the
same works for the axial current given the partially-conserved axial current (PCAC) relation
(∂ · JW)A ∼ m2

π ; but since in reality one has δp � mπ , a valid approximation is instead
to drop terms that scale as δp/mπ . When such approximation is made, the axial current
becomes explicitly non-conserved, and its contribution to δFµ

3pt is non-zero. Therefore, δFµ
3pt

may contribute to the outer correction δ(2) and the inner correction to gA, but not to gV .
To summarize, the renormalized vector and axial coupling can be expressed as:

g2
V = g̊2

V

{
1 + ∆V

R

}
= g̊2

V

{
1 + ∆U

R + 2�V
γW

}
g2

A = g̊2
A

{
1 + ∆A

R

}
= g̊2

A

{
1 + ∆U

R + 2�A
γW + ∆A

R,3pt

}
, (16)

which defines the quantity ∆V
R that appears in Equation (8). In the above,

∆U
R =

αem

2π

[
3 ln

Mz

Mp
+ ln

MZ
MW

+ ãg

]
+ δQED

HO = 0.01709(10) (17)

is a universal piece that consists of the analytically-calculable “weak” RC, the pQCD
correction (not coming from �γW) ãg ≈ −0.083 [47], the resummation of leading QED
logarithms (from all diagrams including �γW), and the most important O(α2

em) corrections
δQED

HO = 0.00109(10) [65], where we include a ±1× 10−4 uncertainty following Ref. [66].
With this, the renormalized axial-vector ratio λ is related to the bare ratio as:

λ2 = λ2
0

{
1 + 2�A

γW − 2�V
γW + ∆A

R,3pt

}
. (18)

It is worthwhile noting that, for a long time, the three-point function δFµ
3pt was mistakenly

regarded to be small, which caused the incorrect neglect of ∆A
R,3pt in the literature, including

our own works [47,64]. A recent analysis in the effective field theory (EFT) framework [45]
suggests that contributions to ∆A

R,3pt as large as 1–2% cannot be excluded. We review this
exciting new development in detail in Section 6.
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4. γW-Box Diagram in Dispersive Representation

In this section we discuss the single-nucleon γW-box diagram correction to gV and gA.
A long-standing problem in the area of precision physics, it has recently been reevaluated
in a new framework which allowed us to reduce its uncertainty. Historically, one evaluated
the box diagram integrals �V,A

γW directly using Equation (14). Since the invariant amplitudes
T3, g1,2 are not directly measurable in the experiment, a substantial amount of theory
modeling of the hadron dynamics at the non-perturbative scale Q2 ∼ 1 GeV2 is unavoidable.
With this, controlling the overall uncertainty at the level of 10−4 is challenging.

The use of dispersion relation (DR) provides a satisfactory solution to the problem
above [60,61,64,67]. In this formalism, one re-expresses the box diagram integrals in terms
of single-nucleon structure functions:

�V
γW =

αem

πg̊V

∫ ∞

0

dQ2

Q2
M2

W
M2

W + Q2

∫ 1

0
dxB

1 + 2r
(1 + r)2 F(0)

3

�A
γW = −2αem

πg̊A

∫ ∞

0

dQ2

Q2
M2

W
M2

W + Q2

∫ 1

0

dxB

(1 + r)2

{
5 + 4r

3
g(0)1 −

4M2x2
B

Q2 g(0)2

}
, (19)

where r =
√

1 + 4M2x2
B/Q2, with xB = Q2/(2p · q) the standard Bjorken variable. The struc-

ture functions are defined through:

Wµν
γW =

1
4π ∑

X
(2π)4δ(4)(p + q− pX)〈p|J

µ
em(0)|X〉〈X|Jν

W(0)|n〉

= −
iεµναβqα pβ

2p · q F3 +
iεµναβqα

p · q

[
Sβg1 +

(
Sβ −

S · q
p · q pβ

)
g2

]
+ · · · (20)

with S denoting the nucleon spin 4-vector, and the superscript (0) indicating the contri-
bution from the isosinglet component of the electromagnetic current. Figure 3 depicts the
main contributions to the nucleon structure functions across different kinematic regions
in Q2 and W2 ≡ (p + q)2. Moving from the left to the right at a constant Q2, the first
contribution one encounters is the elastic (Born) contribution. It appears as a simple pole
(a δ-function in the structure functions) at W2 = M2 at all values of Q2 and is separated
from inelastic contributions by a finite energy gap. Starting at W2 ≥ W2

π ≡ (M + mπ)2

(represented by the solid black vertical line), multi-hadron states become energetically
allowed, with the lightest such state being a nucleon and a pion. As the energy variable
W further increases, nucleon and ∆ resonances can be excited, in addition to the non-
resonant continuum. At even higher energies, high hadron multiplicity contributions
gradually take over, the transition at W2 ∼ 5 GeV2 represented by a broad blue vertical
band. These multi-hadron contributions are well described in the language of the t-channel
Regge exchanges.

2W

2Q

( )2πmM +2M

Bo
rn

Parton + pQCD

Nπ Res.
+B.G

Regge
+VMD

2GeV2~

2GeV5~

Figure 3. Main contributors to the single-nucleon structure functions at different regions in the
W2–Q2 plane. Figure adopted from Ref. [61].
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Moving from the bottom to the top of Figure 3, these contributions start to evolve.
The low-energy contributions follow elastic or transition form factors F(Q2) which gener-
ically suppress the respective contributions to the structure functions as F2(Q2) ∼ (1 +
Q2

Λ2 )
−4 at high Q2, with Λ a characteristic hadronic scale of the order of 1 GeV. A milder

suppression is observed at high energies where the vector dominance model (VDM) picture
predicts the behavior of the structure functions to roughly follow F2

VDM(Q2) ∼ (1 + Q2

Λ2 )
−2.

This behavior is in stark contrast with Bjorken scaling which experimental data exhibit at
high Q2 where F3(x, Q2) ≈ F3(x), as predicted by the parton model. Perturbative QCD
(pQCD) corrections reintroduce the Q2 dependence to the structure functions, becoming
increasingly important as one moves down in Q2. The two patterns, the non-perturbative
hadronic and the perturbative QCD ones, join smoothly around Q2 ≈ 2 GeV2.

The boundaries between the various mechanisms and patterns, described above and
indicated in Figure 3 by the blue bands, are very approximate. How exactly the transition
between various regions, in particular from the perturbative to the nonperturbative regime
occurs, is a long-standing open problem in QCD. In the problem at hand, the lack of
detailed understanding of this transition and the model-dependent description of the
inclusive structure functions in the region in between, is the primary source of the overall
uncertainty of ∆V

R . The DR formalism is handy at approaching this problem in a direct
way. If sufficiently precise and abundant data on structure functions exist, the integral
can be evaluated model-independently, with the uncertainty driven almost entirely by
the experiment. This is the case for �A

γW , whereas for �V
γW no direct experimental input

is available. Hence, for the latter an additional uncertainty stemming from relating the
low-Q2 inelastic contribution to data or other sources of input appears.

Historically, �V
γW was first to receive attention in the context of extracting Vud from

superallowed decays. �A
γW was of less interest because it affects the Gamow–Teller (GT)

strength that does not offer a clean access to Vud because of effects of strong interaction.
Here, we will proceed in a reverse chronological order, by first discussing the determination
of �A

γW , which is largely model-independent, and later move on to �V
γW which requires

more modeling.

4.1. Model-Independent Determination of �A
γ W

The procedure for a data-driven analysis of �A
γW was thoroughly explained in Ref. [64]

and here we briefly summarize the most important results. The starting point is the
following isospin relation:

g(0)1,2 =
1
2

{
gp

1,2 − gn
1,2

}
, (21)

which relates the charged weak spin structure functions to the isovector combination of the
corresponding electromagnetic structure functions. Since the latter can be obtained from
experiments, g(0)1,2 can be determined model-independently. One may write:

�A
γW =

αem

2π
[dB + d1 + d2] , (22)

where the terms at the RHS represent the elastic (Born) contribution, the inelastic contribu-
tion from g(0)1 and that from g(0)2 , respectively. The Born contribution to the spin-dependent
structure functions read:

g(0)1,B =
FV

1 GS
M + FS

1 GV
M

8
δ(1− xB) , g(0)2,B = −τ

FV
2 GS

M + FS
2 GV

M
8

δ(1− xB) , (23)

where GE = F1 − τF2, GM = F1 + F2 are the Sachs form factors, with τ = Q2/(4M2).
The isovector (V) and isoscalar (S) nucleon form factors are related to the proton and
neutron electromagnetic form factors as: AV = Ap − An, AS = Ap + An. The latter have



Universe 2023, 9, 422 9 of 26

been studied extensively [68–74], leading to a determination of the Born contribution with
a 0.8% precision, dB = 1.22(1).

Inelastic contribution at W2 ≥ W2
π should be evaluated separately for Q2 > Q2

0 and
Q2 < Q2

0, where Q2
0 is a momentum scale above which perturbative description applies.

A common choice is Q2
0 = 2 GeV2 which will later be justified by data. To proceed, one

needs to first understand what data we have; we start from the dominant contribution
which comes from g(0)1 . The EG1b experiment by the CLAS collaboration at Jefferson Lab
provided measurements of the first few Mellin moments of the structure function g1 for
proton and neutron at 0.05 GeV2 < Q2 < 5 GeV2 [75,76]:

ΓN
i (Q2) ≡

∫ xπ

0
dxBxi−1

B gN
1 (xB, Q2) , N = p, n, (24)

where xπ = Q2/(W2
π − M2 + Q2). On the other hand, the box diagram contribution

depends on the following integral:

Γ̄p−n
1 (Q2) ≡

∫ xπ

0
dxB f (xB, Q2)

{
gp

1 (xB, Q2)− gn
1 (xB, Q2)

}
, (25)

where f (xB, Q2) = 4(5 + 4r)/(9(1 + r)2). When Q2 → ∞, we have f (x, Q2) → 1, but at
small and moderate Q2 the target mass corrections are important. Fortunately, for each
discrete value of Q2 one could perform the following fit:

f (xB, Q2) ≈ a(Q2) + b(Q2)x2
B + c(Q2)x4

B , 0 < xB < xπ (26)

to determine the coefficients a(Q2), b(Q2) and c(Q2) (notice that this is NOT a simple
Taylor expansion of x2

B M2/Q2, as the latter emphasizes too much on xB ≈ 0 and performs
poorly at xB → xπ). With that, one is able to precisely reconstruct Γ̄p−n

1 (Q2) at Q2 < Q2
0

using the data of the first few Mellin moments Γp−n
i (i = 1, 3, 5). Meanwhile, for Q2 > Q2

0
we have Γ̄p−n

1 ≈ Γp−n
1 , and the latter is a sum of the leading and higher-twist contributions:

Γp−n
1 (Q2) =

|g̊A|
6

CBj(Q2) +
∞

∑
i=2

µ
p−n
2i

Q2i−2 , Q2 > Q2
0. (27)

The leading-twist coefficient CBj(Q2) satisfies the pQCD-corrected [77,78] polarized Bjorken
sum rule (BjSR) [79,80]:

CBj(Q2) = 1−
∞

∑
n=1

c̃n

(αs

π

)n
, (28)

while the higher-twist coefficients µ
p−n
2i (we only include i = 2) are generally model

dependent [81–83]. With the treatment above, one is able to construct Γ̄p−n
1 for all values of

Q2, see Figure 4. The good agreement between theory prediction and experimental data at
Q2

0 = 2 GeV2 justifies our choice for the matching point. This leads to d1 = 2.14(4)data(1)HT,
a very robust result with a mere 2% uncertainty.
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Figure 4. Γ̄p−n
1 reconstructed from data at small Q2 versus theory prediction at large Q2, with (red

band) and without (brown curve) higher-twist corrections. Figure adopted from Ref. [64].

The contribution of g2 is much smaller as a consequence of the Burkhardt-Cottingham
sum rule that requires the first moment of g2 (the sum of the elastic and inelastic con-
tributions) to vanish identically [84]. The remnant can be estimated with the use of the
Wandzura-Wilczek relation [85] for the leading twist, and baryon chiral effective field
theory [86] for the higher twist. The result reads d2 = 0.05(3). Combining all pieces we
arrive at

�A
γW = 3.96(6)× 10−3 , (29)

with the uncertainty well below 10−4. We can compare this result to that of Hayen [87]
which appeared earlier. We observe that the value of the HT parameter µ4 = −0.047(22)
GeV2 adopted from Ref. [82] and used in our work, is an order of magnitude larger than
what Hayen used. Its effect on the central value is largely compensated by the fact that
Ref. [87] neglected the d2 contribution, making our central value close to Hayen’s, albeit
with some tension, �A

γW = 4.11(9)× 10−3. The larger uncertainty in the estimate of Ref. [87]
stems from using a model to describe the low-Q2 region of the integrand, rather than the
direct experimental data, which we deem unnecessary.

4.2. Dispersive Determinations of �V
γ W

Next, we turn to the vector box diagram. We first write:

�V
γW =

3αem

4π

∫ ∞

0

dQ2

Q2
M2

W
M2

W + Q2
M(0)

3 (1, Q2) , (30)

where

M(0)
3 (1, Q2) ≡ 4

3g̊V

∫ 1

0
dxB

1 + 2r
(1 + r)2 F(0)

3 (xB, Q2) (31)

is the first Nachtmann moment of F(0)
3 [88,89]; at large Q2 it reduces to the simpler, first

Mellin moment, but at small Q2 it incorporates the effect of the finite target mass.
The treatment of the vector γW-box diagram is more complicated as it is not so

straightforward to identify the pertinent experimental data for the parity-odd structure
function F(0)

3 . In principle, one could make use of the following isospin relation:

F(0)
3 =

1
2

{
Fp

3,γZ − Fn
3,γZ

}
, (32)
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where FN
3,γZ (N = p, n) is the spin-independent, parity-odd structure function. It originates

from the interference between the electromagnetic and neutral weak current and is accessi-
ble, at least in principle, with inclusive parity-violating electron scattering experiments on
light nuclei. Such experiments are notoriously difficult and only very limited (in precision
and kinematical coverage) data on Fp,n

1,2,γZ at low Q2 exist [90,91], but not on Fp,n
3,γZ.

In absence of direct constraints from data, the decomposition into distinct physical
mechanisms illustrated in Figure 3 comes in handy. It provides a useful guidance to
separate the low-Q2 contribution into two classes:

• “Non-asymptotic” pieces (Born, low-energy continuum, resonances) that are different
for different channels of F3 and need to be calculated case-by-case;

• “Asymptotic” piece at high energy which is universal for different channels of F3
(up to Clebsch–Gordon factors). This piece can be extracted from experimental data
or other measurable structure functions. Within this latter class we also distinguish
the “subasymptotic” part which, while being largely universal, contains a significant
amount of model dependence.

In the post-2018 works that study �V
γW [60,61,67,87,92,93], the treatment of the non-

asymptotic pieces is similar. The Born contribution is fixed by the experimental data of
the nucleon axial and magnetic Sachs form factors [69–74,94]. The low-energy Nπ and
resonance contribution can be estimated using chiral perturbation theory and existing
parameterization of resonance matrix elements [95–97]. In particular, due to the isosinglet
nature of the involved electromagnetic current, the usually dominant contribution from the
∆-resonances is absent in F(0)

3 , which makes the entire resonance contribution small.
The main difference in the existing literature resides in the treatment of the subasymp-

totic high-energy but low-Q2 contribution. In the dispersive representation adopted in
Refs. [60,61,67,92], a natural language for the contributions from this kinematical range is
that of t-channel Regge exchanges supplemented by the (axial) vector dominance model
(VDM). For F(0)

3 , this contribution is depicted by the first diagram in Figure 5. The same
qualitative picture applies to the structure functions in other reactions, e.g., Fνp+ν̄p

3 in
inclusive νp/ν̄p scattering [98–101], described by the second diagram in Figure 5. Given
the near degeneracy of the ρ- and ω-trajectories, these two diagrams only differ by the
gauge boson-meson coupling and meson-nucleon coupling constants. The former follows
a simple scaling in the VDM picture [102], while the latter follows from the straightforward
isospin scaling in the Regge-exchange picture. This leads to an approximate scaling of the
first Nachtmann moments,

M(0)
3,R(1, Q2) ≈ 1

18
Mνp+ν̄p

3,R (1, Q2) . (33)

This allows one to constrain the problematic subasymptotic piece with the use of inclusive
data from neutrino/antineutrino scattering experiments. This strategy was adopted by
Refs. [60,61]. Ref. [67] performed a more careful analysis of the correspondence between
F(0)

3 and Fνp+ν̄p
3 as a function of xB and Q2, and supported the Regge-VDM Ansatz of

Equation (33).

Figure 5. Leading Regge contribution to F(0)
3,N , Fνp+ν̄p

3 and F(0)
3,π respectively.
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Another source of input that allows us to constrain the Regge contribution comes
from recent lattice QCD calculations of the pion γW-box diagram [103,104] which will be
described in Section 5. One fundamental property of Regge exchanges is the factorizability,
well-established both theoretically and experimentally. Factorizability states that, e.g., a
t-channel Regge ρ-exchange contribution to a generic ab→ cd scattering amplitude factor-
izes as

Tab→cd = Γac(t)Pρ(s, t)Γbd(t) , (34)

with vertex functions Γac being specific for a particular process, and the Regge propagator
Pρ(s, t) being universal for any process where the ρ quantum numbers can be exchanged.
This relates the ratio of the electroweak amplitudes entering the γW-box calculation to that
of purely hadronic amplitudes:

F(0)
3,π,R

F(0)
3,N,R

=
Tρ

ππ→ππ

Tρ
πN→πN

=
Tρ

πN→πN

Tρ
NN→NN

. (35)

These latter ratios are known from a partial wave analysis of high-energy ππ, πN and
NN elastic scattering [105]. Note that that analysis included the test of Regge factorization,
the second equality in Equation (35).

To obtain the Regge contribution to F(0)
3,π , depicted by the third diagram in Figure 5,

from the full lattice result, the non-asymptotic low-energy part, specific to the pion decay,
has to be removed. This latter contribution comprises 2π, 4π, . . . intermediate states in
the s-channel, and is dominated by a single ρ resonance. It turns out to be numerically
small [92], thus not introducing a large systematic uncertainty. With this approach one
could infer the subasymptotic Regge part of the neutron γW-box from the lattice calculation
of its pion counterpart.

Finally, the properly asymptotic piece follows from the parton model and pQCD and
is the same in all approaches, modulo small subleading corrections. It largely coincides
with that to �A

γW reviewed above in great detail.

4.3. Non-Dispersive Determination of �V
γ W

As a comparison, we also review an approach based on a non-dispersive formalism,
pioneered by Marciano and Sirlin in 2006 [66] and improved upon by the same authors and
Czarnecki [93]. The vector box diagram is expressed as

�V
γW =

αem

8π

∫ ∞

0
dQ2 M2

W
M2

W + Q2
F(Q2) , (36)

with the straightforward correspondence F(Q2) = (6/Q2)M(0)
3 (1, Q2). At asymptotically

large Q2, F(Q2) takes the form of a Mellin moment, and behaves as [66]

F(Q2)→ FpQCD(Q2) =
1

Q2

(
1−

αg1(Q
2)

π

)
. (37)

The terms in the round bracket represent the pQCD correction identical to that in the
isovector BjSR for the spin-dependent structure function g1 [79,80]:

∫ 1

0
dxB[g

p
1 (xB, Q2)− gn

1 (xB, Q2)] =
|g̊A|

6

(
1−

αg1(Q
2)

π

)
, large Q2 . (38)

This pQCD correction is known to order α4
s [78]; the same treatment was also adopted in

the DR-based work.
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The revised treatment of Ref. [93] extends the discussion based on BjSR to the non-
perturbative domain for which they proposed two parameterizations of F(Q2) at small Q2.
The first one is based on the AdS light-front holographic QCD (LFHQCD) [106,107] which
offers a good qualitative description of the experimental data on BjSR at low Q2 [81]. It
entails using Equation (38) below the perturbative region, but with

αg1(Q
2)

π
= exp(−Q2/Q2

AdS) , Q2 < Q2
AdS , (39)

where Q2
AdS = 1.10(10) GeV2 is the matching scale between the perturbative and non-

perturbative regimes in this prescription, determined by the continuity of F(Q2) at
Q2 = Q2

AdS. The second parameterization is a three-resonance form,

Fres(Q2) =
A

Q2 + m2
ρ
+

B
Q2 + m2

A
+

C
Q2 + m2

ρ′
, Q2 < Q2

AdS, (40)

similar to their previous work, Ref. [66], but here Q2
AdS is taken from the AdS prediction

above. The three coefficients A, B, C are fixed by the three conditions,

1. The integral
∫ ∞

Q2
AdS

dQ2M2
W F(Q2)/(M2

W + Q2) is equal for F = FpQCD and F = Fres.

2. The 1/Q4 term in Fres(Q2) is required to vanish at large Q2.
3. Fres(Q2

AdS) = FAdS(Q2
AdS).

Both parameterizations returned consistent results for �V
γW , which are larger than the 2006

determination but smaller than the DR determination.

4.4. Recommended Values for �V
γ W , ∆V

R , ∆R, Vud

A detailed comparison of the outcome of different approaches is given in Table 1 sepa-
rately for the Born, πN+resonance, Regge (the LFHQCD/three-resonances interpolator for
the non-DR approaches) and DIS. A similar table was presented in Ref. [108], but some of
its entries are different from ours, which we explain as follows:

• Both tables define the “DIS” entry as everything above Q2 = Q2
0 = 2 GeV2; but the

non-DR papers adopts Q2
AdS ≈ 1.10 GeV2 instead as the separation scale between the

“perturbative” and “non-perturbative” region of their integral. In order to translate
the latter, Ref. [108] subtracts from the DIS results in the non-DR papers an estimated
value of the “DIS contribution from 1 to 2 GeV2” given in Ref. [67]. In this review
we do not follow such a prescription, but compute instead the Q2 > 2 GeV2 integral
directly using the known analytic formula from pQCD.

• The authors of Ref. [108] followed Ref. [67] and include the effect of the running
αem in the box diagram; to do so they need to manually increase the DIS results in
Refs. [60,61,87,92,93] by about 4%; on the contrary, in this work we define �γW with a
constant αem and move the running effect into δQED

HO following Ref. [65]. Consequently,
our DIS result is lower than that in Ref. [67] by 4%.

• We display the uncertainty of the “Regge” part of the non-DR works, which was
omitted in Ref. [108].
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Table 1. Various contributions to �V
γW , in units of 10−3, in the existing literature. The first three

columns are DR-based works, the following two are non-DR-based. Regge or Interpolator contri-
bution is understood for the DR and non-DR approaches, respectively. The last column quotes our
recommended values. The table entries differ from Table 2 in Ref. [108], see the explanations in
Section 4.4.

[60,61] [92] [67] [93] [87] Our Value

Born 1.06(6) 1.06(6) 1.05(4) 0.99(10) 1.06(6) 1.06(6)

πN + Res. 0.05(1) 0.05(1) 0.04(1) - - 0.05(1)

Regge 0.51(8) 0.56(9) 0.52(7) 0.38(3) 0.53(7) 0.54(6)

DIS 2.17 2.16 2.20(3) 2.16 2.16 2.20(3)

The exact value of the neutron γW-box is central to extracting Vud from various beta
decay measurements, and its uncertainty is crucial for defining the CKM unitarity deficit.
Since one observes a certain spread in the individual numbers, it is worth devising a reliable
average value and its uncertainty. For this, we will consider each row separately and discuss
the reason for the differences in both central value and the respective uncertainty.

For the Born contribution, there is a great consistency between all central values apart
from that of Ref. [93] which is on a lower side. The reason for this is well-known: the
authors of [93] only integrate the elastic contribution up to a low Q2 = Q2

AdS ≈ 1.10 GeV2,
whereas all other references integrate to infinity. From the dispersive perspective, there is
no ambiguity: the elastic contribution is present at any value of Q2 as an isolated pole at
W2 = M2 separated from inelastic contributions by a finite energy gap. One must therefore
integrate over all values of Q2. We conclude that the low value for �V ,Born

γW from Ref. [93]
has to be dropped. Since all groups use the same form factor data, no averaging is needed,
and we quote the conservative

�
V ,Born
γW = 1.06(6)× 10−3. (41)

The low-energy πN and resonance contribution appears only in the DR-based approaches
(the non-DR works lump everything into a single “non-perturbative” contribution, which
we label as “Regge” in Table 1) that use the same ingredients. We take therefore

�
V ,πN+Res
γW = 0.05(1)× 10−3 , (42)

again, without the need to average.
The third row is where the bulk of the discrepancy between the non-dispersive and

dispersive evaluations resides. First, we address the non-DR based subasymptotic contribu-
tion. As explained in the previous subsection, it is based on the BjSR which operates with
the first Mellin moment, while the �V

γW integrand involves the Nachtmann moment in-
stead. The two become close only at large Q2, but at small Q2 they differ by the target-mass
corrections (TMC) that are not negligible. This correction was included in the AdS param-
eterization by Hayen [87], leading to a shift upward. Note that TMC are automatically
included in the DR-based approach.

Furthermore, a rigorous quantification of the uncertainty from the matching of the non-
perturbative LFHQCD model to pQCD is challenging. As seen in Figure 4, the higher-twist
contribution and the respective uncertainty is non-negligible already at 2 GeV2. In directly
applying the subasymptotic part derived from the BjSR to the first Mellin moment of F(0)

3 ,
Ref. [93] assumes no HT contribution, and no associated uncertainty. Ref. [87] includes the
HT correction to the asymptotic part, but largely underestimates its size and uncertainty
for BjSR, as already mentioned. Furthermore, Ref. [87] observed that the HT contribution
for M(0)

3 has a positive sign, opposite to that in BjSR. This observation is compatible with
the lattice-driven estimate of Ref. [92], albeit seems to underestimate its size. Given that
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matching of the subasymptotic part in non-DR approaches occurs at a low Q2 ∼ 1 GeV2, this
results in a systematic underestimation of the subleading contribution and its uncertainty.

We conclude that both non-DR estimates of the subasymptotic piece contain un-
controlled systematic uncertainties. Most importantly, the true uncertainty of the Regge
contribution of Ref. [93] in Table 1 has to be significantly asymmetric towards larger values.
Therefore, we deem that the non-DR estimates of the Regge contribution, while generally
lending qualitative support to the dispersive evaluations, should not be taken into account
in the average. Of the remaining DR-based results, those of Refs. [60,61,67] are based on
the same low-Q2 ν/ν̄ DIS data, whereas that of Ref. [92] is based on the input from lattice
QCD. Our average is thus obtained from the most precise data-driven result of Ref. [67]
and the lattice QCD-driven one of Ref. [92], and reads:

�
V ,Regge
γW = 0.54(6)× 10−3. (43)

Finally, we address the DIS contribution. The starting point of all calculations is the
4-loop BjSR expression in Equation (28), which is integrated from the matching point Q2

0 to
∞. Among them, only Ref. [67] carefully studied the high-Q2 contribution by making use
of the available parameterizations of parton distribution functions beyond their sum rules.
This approach leads to a more robust theory uncertainty, and we adopt their number:

�
V ,DIS
γW = 2.20(3)× 10−3. (44)

Adding the “universal” contribution ∆U
R in Equation (17), our final recommended values

are thus

�
V
γW = 3.85(9)× 10−3, ∆V

R = 0.02479(21), ∆R = 0.03985(21), (45)

where ∆R ≡ ∆V
R + (αem/2π)δ̄(1) is a customarily-defined quantity for the “full” RC to

neutron lifetime. Finally, employing these results, we obtain the following value of Vud
from neutron decay with the PDG-averaged and best-value {τn, λ}, respectively:

|Vud|PDG−av
n = 0.97433(28)τn(82)λ(10)RC , |Vud|best

n = 0.97404(20)τn(35)λ(10)RC . (46)

We note that both extractions are significantly higher than that from the superallowed
nuclear decays [4], |Vud|0+ = 0.97367(31)). These results can further be combined with Vus
from kaon decays to set constraints on the CKM unitarity violation in the top row (dropping
the small Vub contribution), ∆u = |Vud|2 + |V2

us| − 1. The current PDG average [4] reads
|Vus| = 0.2243(8), and we obtain

∆n, PDG-av
u = −0.00037(174) , ∆n, best

u = −0.00094(89) , (47)

showing no statistically significant deviation from unitarity. Given the 2.5σ deficit observed
if the nuclear beta decays are used, ∆nuclear

u = −0.00166(69), future improvement of the
experimental precision in neutron decay become even more important.

5. Lattice QCD

An important step forward in reducing the hadron structure uncertainties in neutron
beta decay is to rely on lattice QCD. To further improve upon existing work on the free
neutron RC, a direct lattice QCD computation is required. Unlike computations of bare
QCD coupling constants (e.g., g̊A), which have been going on for almost two decades [40],
the lattice study of RC in neutron decay is a relatively new subject, which we will briefly
review in this section.
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5.1. The γW-Box Diagram: Semileptonic Pion and Kaon Decays

To study the box diagram corrections �V,A
γW from first principles requires one to com-

pute the invariant amplitudes T3 and g1,2 from lattice QCD at low Q2. At high Q2, large
lattice artefacts make such calculations unreliable, but one can compute these amplitudes
with pQCD and combine lattice calculation at low Q2 with pQCD calculation at high Q2.

The first attempt was carried out by the RBC-UKQCD Collaboration in Ref. [103]. They
worked on a simpler case, namely the box diagram in the π− → π0 decay to demonstrate
the applicability of their method. At low Q2, the following Euclidean spacetime integral
was computed:

Mπ(Q2) = − 1
6
√

2

√
Q2

mπ

∫
d4xω(Q, x)εµνα0xαHVA

µν (x) , (48)

where ω(Q, x) is a known function, and

HVA
µν (x) = 〈π0(P)|T[Jem

µ (x)JW,A
ν (0)]|π−(P)〉 (49)

is a four-point correlation function consists of quark contraction diagrams depicted in
Figure 6. They found that the lattice result joins smoothly to the pQCD prediction at
Q2 ≈ 2 GeV2, lending support to the previous choice of the separation scale Q2

0. With this
prescription, they obtained a prediction of �V

γW,π at percent level. Following the suggestion
in Refs. [109,110], the same group performed a second calculation that corresponds to the
box diagram correction in the K̄0 → π+ decay in the flavor SU(3) limit [111], which helped
to fix a number of important LECs responsible for semileptonic decays of pions and kaons.

Figure 6. Quark contraction diagrams that correspond to HVA
µν (x). Figures are reproduced from

Ref. [103].

The LANL lattice group performed an independent calculation of the two quantities
above [112] and found good agreement with the RBC-UKQCD result, see Table 2. Both
groups are currently working on the �V

γW for neutron. It will be very instructive to compare
it, once available, to the hybrid lattice QCD - phenomenology result of Ref. [92].

Table 2. Comparison between the RBC-UKQCD [103,111] and LANL [112] result of the pion and
kaon box diagram calculations. The ∼ 1σ difference between the two calculations of �V

γW,K is mainly
due to the difference in the choice of the SU(3)-symmetric point.

RBC-UKQCD LANL

�V
γW,π 2.830(28)× 10−3 2.810(26)× 10−3

�V
γW,K 2.437(44)× 10−3 2.389(17)× 10−3

A similar calculation of �A
γW can also be performed. Given that the latter is very

precisely determined in the DR framework using experimental data of g1,2, it may serve as
an important cross-check of the lattice accuracy. It is also worth to notice that, apart from the
direction that entails computing quark contraction diagrams, alternative approaches have
been proposed to study the structure functions in the box diagrams. One such approach is
based on the Feynman–Hellmann theorem [113].
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5.2. Rc To the Nucleon Axial Coupling Constant

As shown in Ref. [45], which we will discuss in the next section, the γW-box diagram
is not the only non-trivial component in RC when it comes to the axial coupling constant
gA; a much larger effect comes from the form factor correction, i.e., the left diagram in
Figure 2. Therefore, a direct lattice calculation is desirable. The expression of δFµ in Sirlin’s
representation is not the most convenient starting point for this purpose, because the three-
point function δFµ

3pt is, in the language of lattice QCD, a “five-point function” (two external
states and three current insertions), which is extremely difficult to handle.

A more tractable alternative is to directly compute the single-nucleon matrix element
〈p|Jµ

W |n〉 in the presence of electromagnetic interactions. A way to proceed is to adopt
lattice QCD + Quantum Electrodynamics (QED) with massive photons [114], also referred
to as QEDM. Given that δFµ contains infrared-divergences, one requires also an analytical
expression of the terms that depend on the fictitious photon mass mγ. Finally, while δFµ

3pt is

complicated, the two-point function δFµ
2pt takes a much simpler form and may be directly

calculable on lattice using its definition in Equation (10). A separate lattice calculation of
the full δFµ (using QEDM) and δFµ

2pt (by computing the quark contraction diagrams) would
allow for a comparison of the outcomes to their respective low-energy theory expression.

6. Effective Field Theory Description of Radiative Corrections

In parallel with the aforementioned studies based on Sirlin’s representation of RC,
there are also attempts to study neutron RC in an effective field theory (EFT) language,
which we briefly overview in this section. Some advantages of this approach are that
calculations may proceed using standard Feynman rules, theory precision is systematically
improvable following well-defined power counting rules, and sources of uncertainties
clearly identified in terms of low-energy constants (LECs) in the theory. The first attempt of
this kind was based on a pionless effective Lagrangian expanded to O(1/M) [115,116]:

L = Leνγ + LNNγ + LeνNN , (50)

where an explicit form of respective terms can be found in Ref. [115]. One-loop calculations
with the Lagrangian above reproduces known expressions of Fermi function (to order
O(αem)), outer corrections, and recoil corrections to the differential decay rate.

A problem of the pionless EFT is that it has no predictive power on the inner correc-
tions, which are entirely encapsuled in the (already) renormalized coupling constants and
LECs that appears in the Lagrangian. A recent re-evaluation by Cirigliano et al. [45] made
use of the heavy baryon chiral perturbation theory (HBChPT), which includes pions as
dynamical degrees of freedom. A power counting rule p/Λχ ∼ mπ/Λχ ∼ e is adopted,
where Λχ ≈ 1 GeV is the chiral symmetry breaking scale. With this, a chiral order is
assigned to every term in the chiral Lagrangian:

Lπ = L(2)π + · · ·
LπN = L(1)πN + L(2)πN + L(3)πN + · · ·

Llept = L(1)lept + L
(2)
lept + · · · (51)

With this formalism, one could predict, in addition to the outer corrections and recoil
corrections, a part of the inner corrections that are associated to pion loops.

The most important result in Ref. [45] is the renormalization of the axial coupling gA,
which they expressed as:

gA = g̊A

[
1 +

∞

∑
n=2

∆(n)
A,χ +

αem

2π

∞

∑
n=0

∆(n)
A,em +

(
mu −md

Λχ

) ∞

∑
n=0

∆(n)
A,δm

]
, (52)
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where the three terms at the RHS correspond to the QCD correction away from the
chiral limit, the electromagnetic (EM) correction, and the strong ISB correction, respec-
tively, and they concentrated on the EM correction ∆(n)

A,em. They found that the leading-
order (i.e., O(e2)) correction to gA depends on unknown LECs to cancel the ultraviolet-
divergences in the loop diagrams, but the next-to-leading-order (i.e., O(e2 p)) correction
is fully predictable. The latter are given by the Feynman diagrams in Figure 7. Notice
that these diagrams correspond to the left diagram in Figure 2 and are independent of the
γW-box diagram that we discussed in Section 4. The outcome reads:

∆(1)
A,em = 4πmπZπ

[
c4 − c3 +

3
8M

+
9

16M
g̊2

A

]
, (53)

where Zπ is determined from the mπ+ − mπ0 mass splitting, and c3,4 are obtained from

pion-nucleon scattering. With existing fits of LECs they obtained ∆(1)
A,em = 10.0–15.9, namely

the inner RC to gA is of the order 10−2. This finding has no consequence in the extraction
of Vud from neutron beta decay because the experimental value of λ is fully renormalized,
but it has a huge impact if one is to compare the experimental gA and the bare g̊A, the latter
obtained from lattice QCD calculations, in order to constrain new physics.

Figure 7. Next-to-leading-order HBChPT diagrams that contribute to the neutron axial form factor.
Dots, diamonds and circled dots represent vertices derived from the O(p), O(e2) and O(p2) chiral
Lagrangian, respectively. Figure courtesy of V. Cirigliano.

It could be useful to connect the EFT result to Sirlin’s representation. As we discussed
above, ∆(1)

A,em which originates from diagrams in Figure 7, belong to the RC to the charged
weak current matrix element, i.e., δFµ = δFµ

2pt + δFµ
3pt in Equation (9). In fact, it must

come from the three-point function because it only involves short-distance electromagnetic
effects (characterized by the LEC Zπ) which are not present in the two-point function.
The largeness of ∆(1)

A,em proves our assertion at the end of Section 3. In fact, it will be a
useful exercise to compute just δFµ, instead of the full RC, using HBChPT, and split it
into two-point and three-point functions using their definitions in Equations (10), (12)
respectively. This will benefit the future lattice study of gA RC, which we describe in the
previous section.

Finally, during the preparation of this manuscript, a more complete top-down EFT
analysis of the SM RC appeared [117]. Two main results of the paper are: (1) It claimed
to have corrected a mistake in the calculation of δQED

HO , and (2) The “conventional” Fermi
function was replaced by a “non-relativistic” version independent of the proton charge
radius, which affects the statistical rate function f :

δ∆U
R ≈ +0.061% , δ f ≈ −0.035% . (54)

The two changes are of different signs and partially compensate, leading to a slight positive
shift of +0.026% of the neutron decay rate, which corresponds to a negative shift in Vud
from neutron decay, δVud ≈ −1.3× 10−4. It is important to cross-check these new results
and discuss their implications for more general charged-weak decay processes.

7. Searches for Physics Beyond the Standard Model: Beta Decays vs. LHC

With the experimental and theoretical precision reaching few parts in 104, neutron
decay is a promising avenue to look for deviations from the SM predictions due to the
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presence of new particles and/or interactions. Heavy new particles at the TeV scale
may become visible at the Large Hadron Collider (LHC), but no deviations have been
unambiguously detected in the currently accessible energy range. EFT framework offers a
unified approach for BSM searches at low energies and at colliders. At the momentum scale
µ ∼ v ≡ (

√
2GF)

−2 ≈ 246.22 GeV, one integrates out the BSM degrees of freedom and write
down a Standard Model Effective Field Theory (SMEFT) that consists of the most general
Lagrangian operating with SM fields SM gauge symmetries. Moving down in the energy
scale to µ ∼ 2 GeV, one further integrates out the heavy gauge bosons, and transitions
from SMEFT to the Low-Energy Effective Field Theory (LEFT). The leading order LEFT
Lagrangian relevant to beta decays reads [118]:

L ⊃ LSM − Vud
v2 ∑

i

[
εi ē ΓiνL ū Γid + ε̃i ē ΓiνR ū Γid

]
, (55)

where u, d, e are the up quark, down quark, and electron fields, νL,R ≡ (1± γ5)ν/2 are the
left-handed and right-handed electron neutrino fields. The index i = L, R, S, T, P counts
structures that describe lefthanded, righthanded, scalar, tensor and pseudoscalar currents
on the quark side, correspondingly. The Wilson coefficients εi and ε̃j describe the coupling
to left- and righthanded neutrinos, respectively, and vanish in absence of BSM.

The momentum exchange in beta decays is far below the QCD scale, and the quark-
level Lagrangian above is embedded in the nucleon-level Lee-Yang Lagrangian [49,119–121],

LLY = − p̄γµn
(
C+

V ēγµνL + C−V ēγµνR
)
− p̄γµγ5n

(
C+

A ēγµνL − C−A ēγµνR
)

− p̄n
(
C+

S ēνL + C−S ēνR
)
− 1

2
p̄σµνn

(
C+

T ēσµννL + C−T ēσµννR
)

+ p̄γ5n
(
C+

P ēνL − C−P ēνR
)
+ h.c. (56)

The quark- and nucleon level parameters are interrelated [121]:

C+
V,A =

Vud
v2 g̊V,A

√
1 + ∆V,A

R
(
1 + εL ± εR

)
, C−V,A = ±Vud

v2 g̊V,A

√
1 + ∆V,A

R
(
ε̃L ± ε̃R

)
,

C+
i =

Vud
v2 gi εi , C−i = ±Vud

v2 gi ε̃i , for i = S, T, P , (57)

where the + (−) sign should be taken for V, S, T (A, P) couplings, respectively. We have
already discussed the vector and axial nucleon charges g̊V,A in the previous sections;
meanwhile, the FLAG’21 averages [40] for the scalar and tensor charges read: gS = 1.02(10)
and gT = 0.989(34). Although the pseudoscalar charge is enhanced by the pion pole,
gP = 349(9) [41], the kinematical suppression of the pseudoscalar contributions to the β
decay observables is still more significant. The relations of Equation (57), together with the
known [42,52] contribution of the Lee-Yang effective couplings to the total decay rate and
correlation coefficients in Equation (5), ultimately allow one to set constraints upon heavy
new physics with beta decays.

Figure 8 displays current limits on the Wilson coefficients εS,T obtained in Ref. [122]
from beta decays and collider observables in the scenario of only two dimension-6 operators
present at the TeV scale. Sensitivity to various non-standard interactions is very different at
low and high energies because of the small electron and neutrino mass. V, A interactions
do not flip the lepton helicity and can be very efficiently probed at the LHC. Instead, S, T
involve a helicity flip, hence their contribution is suppressed as me/Ee at high energy. Beta
decays are free from this suppression, making their sensitivity to εS,T very competitive as
compared to that of the LHC observables, as can be seen in Figure 8. Numerically, beta decay
measurements translate into 10−3 level constraints, εS = 0.0001(10), εT = 0.0005(13) [122].
The main source of constraints on εS remain superallowed nuclear decays, whereas those
on εT mainly come from precise measurements of neutron decay. Note that since a very
large number of SMEFT operators may contribute at the LHC energies, the respective
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limits on εS,T depicted in Figure 8 were obtained in a simplified scenario switching all BSM
operators but S, T off. A complete SMEFT analysis is very complicated and will likely give
much looser constraints on these two Wilson coefficients. Recent global analyses of beta
decays and LHC observables in terms of SMEFT operators can be found in [122,123] (see
also Ref. [124]). Heavy new physics explanations of the CKM unitarity deficit may require,
e.g., lepton-flavor universality violation and quark-flavor dependent right-handed currents,
and we refer the reader to Ref. [108] and references therein for a detailed discussion.

Furthermore, non-SMEFT new physics scenarios have been considered in the liter-
ature, mostly triggered by the stark beam-bottle disagreement for the neutron lifetime.
If additional, nonstandard neutron decay channels would exist, the shorter lifetime ob-
tained from counting the surviving neutrons in the bottle method could be accommodated
with a smaller number of protons resulting from the neutron decay (and hence, a longer
lifetime), as observed with the beam method [125]. We refer the reader to a dedicated
review of dark and mirror neutron decay modes included in this issue, Ref. [126].

β decays

LHC13 pp→e e-)

LHC13 (pp→eν)

-0.004 -0.002 0.000 0.002 0.004

-0.004

-0.002

0.000

0.002

0.004

ϵT

ϵ
S

Figure 8. Constraints on scalar and tensor coupling constants from beta decays and LHC respectively.
Figure reproduced from Ref. [118] with permission of the authors.

8. Conclusions & Outlook

In view of the currently accessible and ever improving experimental precision in
measuring neutron lifetime and correlation coefficients, neutron decay is one of our best
avenues to test the SM and its extensions at the relative level of few parts in 104. Future
measurements are expected to bring Vud extracted from neutron decay to 0.01− 0.02%. To
empower this program, SM RC to similar or better precision are necessary. In this review, we
provided an in-depth overview of recent developments in this area. In particular, the recent
factor 2 reduction of the uncertainty of the inner radiative corrections ∆V,A

R achieved in the
novel dispersive approach combined with inputs from experimental data, perturbative
QCD, chiral EFT, lattice QCD, and Regge theory ensures that the aforementioned future
experimental improvements will not be blurred by theory uncertainties. This situation is
different from that in the superallowed nuclear decays where, following the recent scrutiny
of nuclear structure effects, the uncertainty of the latter is by far the limiting factor. This
situation marks the shift of paradigm in beta decays: after decades of the domination of the
superallowed nuclear decays as the primary source of Vud, for the first time, the neutron
comes center stage on par with the latter.

At the 10−4 level of accuracy, beta decays of free and bound neutrons allow to set
stringent constraints on possible SM extensions. From this perspective, having both neutron
and nuclear decays at a similar level of precision fosters sensitive tests of nonstandard
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scalar and tensor currents. The two beta decay channels show different sensitivities to
scalar and tensor BSM contributions thus being complementary to each other. Importantly,
the impact of a high-precision neutron and nuclear beta decay as a sensitive avenue through
which to search for new physics will persist even into the high-luminosity LHC era.
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Appendix A. Kinematics

Figure A1. Illustration of the D3 region (blue) and D4−3 region (green) in free neutron decay.

The process of primary interest is n→ p + e + ν̄e, accompanied by the experimentally
indistinguishable inclusive process n → p + e + ν̄e + Nγ with N ≥ 0 photons. To match
the current experimental precision only N = 0, 1 are needed. If massless particles (ν̄e and γ)
are unobserved, there are only three independent Lorentz-invariant kinematic variables:

x ≡ P2

M2
n

, y ≡ 2pn · pe

M2
n

, z ≡
2pn · pp

M2
n

, (A1)

with P ≡ pn − pp − pe the sum of the momenta of the unobserved massless particles,
and rp ≡ M2

p/M2
n and re ≡ m2

e /M2
n. For N = 0 the three-body kinematics D3 is defined by

a(y)− b(y) < z < a(y) + b(y) , 2
√

re < y < 1 + re − rp

a(y) ≡
(2− y)(1 + rp + re − y)

2(1 + re − y)
, b(y) ≡

√
y2 − 4re(1 + re − rp − y)

2(1 + re − y)
(A2)



Universe 2023, 9, 422 22 of 26

or, equivalently,

c(z)− d(z) < y < c(z) + d(z) , 2
√

rp < z < 1 + rp − re

c(z) ≡
(2− z)(1 + re + rp − z)

2(1 + rp − z)
, d(z) ≡

√
z2 − 4rp(1 + rp − re − z)

2(1 + rp − z)
. (A3)

Notice that x = 0 for N = 0 assuming massless neutrino. For N = 1, the four-body
kinematics D4 consists of two regions depicted in Figure A1:

0 < x < α+(y, z) , (y, z) ∈ D3 and α−(y, z) < x < α+(y, z) , (y, z) ∈ D4−3 , (A4)

where α±(y, z) ≡ 1− y− z + rp + re + yz/2± (1/2)
√

y2 − 4re

√
z2 − 4rp. There are also

two equivalent way to represent D4−3:

2
√

re < y < c(z)− d(z) , 2
√

rp < z < 1−
√

re +
rp

1−√re
. or

2
√

rp < z < a(y)− b(y) , 2
√

re < y < 1−√rp +
re

1−√rp
. (A5)

In the existing literature, the differential decay rate is always expressed in terms of
~pν rather than ~P, despite the fact that it is the latter that is an experimental observable.
In this case, an extra step to theoretically subtract out the observed photon momentum is
necessary. The failure to do so could lead to an error in the extraction of λ from certain
correlation coefficients in the differential rate, e.g., the coefficients “a” and “B” in Section 2.
This was pointed out in Refs. [127–131].

Notes
1 Notice:

(
1 + αem

2π δ
(1)
α (Ee)

)
in Ref. [45] corresponds to g2

V

(
1 + αem

2π δ(1)(Ee)
)

in this work.

2 The normalization of Tµν
γW here is the same as Ref. [47], but is two times as large as Refs. [60,61].
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