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Abstract: A ring of radius h̄k0 in the momentum distribution of a Bose–Einstein condensate is visible
when the atoms scatter a single photon. Here, we describe an approximated theory of this effect,
leading to an analytic expression of the isotropic momentum scattering rate.
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1. Introduction

Superradiant Rayleigh scattering in a Bose–Einstein condensate provides a striking
example of collective enhancement in the interaction of light and matter in ultracold atomic
samples [1–4]. In this regime, an elongated BEC is exposed to an off-resonant laser pulse
pump beam directed along the condensate symmetry axis. The laser is far detuned from
the atomic resonance, so that resonant absorption is suppressed and the only scattering
mechanism present is Rayleigh scattering. The atoms, after a transient where they initially
scatter in random directions, start to back-scatter photons along the main axis of the
condensate. Then, they interfere with the atoms in the original momentum state, creating
a matter–wave grating with the right periodicity to further scatter the laser photons in
the same mode, gaining a recoil momentum of 2h̄k0, where k0 is the wave number of the
pump photon.

Figure 1 shows two typical results of experiments with a Bose–Einstein condensate
exposed to a single far-off detuned laser beam. The left image shows a ring pattern with
radius h̄k0 (image taken from Ref. [5]), whereas the right image shows a superradiant
Rayleigh scattering experiment (image taken from Ref. [6]): both figures show the absorp-
tion image in which the left peak is the condensate in its original momentum state around
p = 0, whereas the right peak in the right image is formed by atoms recoiling after the
superradiant Rayleigh scattering at p = 2h̄k0. The ring observed in the left picture and the
spherical halo centered between the two density peaks in the right picture are due to nonen-
hanced spontaneous processes—i.e., random isotropic emission following the absorption of
a single laser photon [5]. In Figure 1, the ring appears filled with atoms since the absorption
image reports the ‘column-integrated’ three-dimensional momentum distribution.

Although the origin of this momentum halo is rather clear from a physical point of
view, it has not received much attention theoretically. However, although it is formed by
atoms recoiling by spontaneous emission, the coherent nature of a Bose–Einstein condensate
makes it appear more as a cooperative process rather than a single-particle random process.
In this sense, the effect can be interpreted as a cooperative light scattering from an ensemble
of weakly excited atoms [7–9]. On these lines, a description of the momentum halo has
been proposed in ref. [10] in terms of Mie scattering from ultracold atoms. Mie scattering
acts as a seed of the superradiant Rayleigh scattering, weakly populating the momentum
state p = 2h̄k0, further enhanced by the superradiant coherent process. However, the Mie
scattering approach remains rather difficult, and is limited to spherical, sharp-edged atomic
distributions, the solution of which can be obtained only numerically [11]. Conversely, in
this work we propose a simplified analytic approach, from which we obtain an expression
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of the cooperative momentum scattering rate, Γ(p), showing the momentum halo due to
isotropic Rayleigh scattering.

Figure 1. Two examples of momentum halos observed in the experiments with ultracold atoms
after exposition to a single far-off detuned laser beam incident from left to right. (Left): Absorption
image taken after 5.6 ms time-of-flight, showing a ring pattern with radius h̄k0, resulting from
dipole emission of atoms illuminated by a single traveling wave (Adapted with permission from
Ref. [5]. Copyright 1999, The American Physical Society). (Right): Superradiant Rayleigh scattering
experiment, where the absorption image, taken after 45 ms time-of-flight, shows the atoms transferred
in the momentum state with p = 2h̄k0 surrounded by an halo centered at p = h̄k0 (Adapted with
permission from Ref. [6]. Copyright 2008, The American Physical Society).

2. Quantum Model

Consider the atomic system as a bosonic ensemble of N two-level atoms described by
the field operator

Ψ̂(r, t) = Ψ̂g(r, t) + Ψ̂e(r, t) (1)

for the ground g and excited e internal states, obeying to bosonic equal-time commutation
rules [Ψ̂α(r, t), Ψ̂†

β(r
′, t)] = δαβδ(r− r′). The N-atom Hamiltonian is

H =
N

∑
j=1

{
p2

j

2m
+ h̄
(

Ω0

2
σ̂je

i∆0t−ik0·rj + h.c.
)
+ h̄ ∑

k
gk

(
σ̂j â†

kei∆kt−ik·rj + h.c.
)}

, (2)

where Ω0 = dE0/h̄ is the Rabi frequency of a linearly polarized incident laser field
with electric field E0 and frequency ω0 = ck0, d is the electric dipole, ∆0 = ω0 −ωa is the

detuning between the laser and the atomic transition frequencies and gk =
√

d2ωk/2h̄ε0Vph,

where Vph is the photon mode volume; σ̂j = |g〉j〈e|j and âk are the lowering operator for
the jth atom and the photon annihilation operator in the mode k, respectively. We assume
∆0 � Γ where Γ = d2ω3

a/2πh̄ε0c3 is the spontaneous decay rate. In the second quantization,
the Hamiltonian operator is

Ĥ(t) =
∫

dr
{

Ψ̂†
g(r, t)

[
−h̄2∇2

2m

]
Ψ̂g(r, t) + Ψ̂†

e (r, t)
[
−h̄2∇2

2m

]
Ψ̂e(r, t)

}
+

h̄Ω0

2

∫
dr
{

Ψ̂†
e (r, t)Ψ̂g(r, t)e−i∆0t+ik0·r + Ψ̂†

g(r, t)Ψ̂e(r, t)ei∆0t−ik0·r
}

+ h̄ ∑
k

gk

∫
dr
{

Ψ̂†
e (r, t)Ψ̂g(r, t)âke−i∆kt+ik·r + Ψ̂†

g(r, t)Ψ̂e(r, t)â†
kei∆kt−ik·r

}
. (3)

The first and second terms of the second and third lines describe absorption and
emission of a pump (Ω0) or vacuum mode (âk) photon, respectively. We write the Heisen-
berg equations for the field operators Ψ̂g, Ψ̂′e = Ψ̂e exp(i∆0t) and âk. For large atom
numbers and far detuning from the atomic transition frequency, one can neglect quantum
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fluctuations and treat these operators as c-numbers, Ψ̂g,e(r, t) → ψg,e(r, t), âk(t) → ak(t).
Their dynamical equations are

∂ψg

∂t
= i

h̄
2m
∇2ψg − i

Ω0

2
ψ′ee−ik0·r − iψ′e ∑

k
gka∗ke−i(ω0−ωk)t−ik·r, (4)

∂ψ′e
∂t

= i∆0ψ′e − i
h̄

2m
∇2ψ′e − i

Ω0

2
ψgeik0·r − iψg ∑

k
gkakei(ω0−ωk)t+ik·r (5)

dak
dt

= −igke−i(ω0−ωk)t
∫

drψ∗g(r, t)ψ′e(r, t)e−ik·r. (6)

In order to describe the evolution in the momentum space, we introduce the Fourier
transforms of ψg and ψ′e:

cg(p, t) =
1

(2πh̄)3

∫
drψg(r, t)e−ip·r/h̄ (7)

ce(p, t) =
1

(2πh̄)3

∫
drψ′e(r, t)e−ip·r/h̄. (8)

The Equations (4)–(6) transform into:

∂cg(p, t)
∂t

= −i
p2

2mh̄
cg(p, t)− i

Ω0

2
ce(p + h̄k0, t)

− i ∑
k

gka∗ke−i(ω0−ωk)tce(p + h̄k, t), (9)

∂ce(p, t)
∂t

= i
[

∆0 −
p2

2mh̄

]
ce(p, t)− i

Ω0

2
cg(p− h̄k0, t)

− i ∑
k

gk âkei(ω0−ωk)tcg(p− h̄k, t), (10)

dak
dt

= −ie−i(ω0−ωk)tgk(2πh̄)3
∫

dpc∗g(p, t)ce(p + h̄k, t). (11)

We solve Equations (9)–(11) assuming a weak field Ω0 � ∆0: At the first order in Ω0,
the atoms are weakly excited (i.e., |ce(p, t)| � |cg(p, t)|) and the population of the ground
state does not significantly change, with

cg(p, t) ≈ cg(p, 0)e−i(p2/2mh̄)t. (12)

Defining ce(p, t) = c̃e(p, t) exp[−i(p2/2mh̄)t], Equations (10) and (11) become

∂c̃e(p, t)
∂t

= i∆0 c̃e(p, t)− i
Ω0

2
cg(p− h̄k0)ei(k0·p/m)t−iωRt

− i ∑
k

gkakei(ω0−ωk+k·p/m−h̄k2/2m)tcg(p− h̄k), (13)

dak
dt

= −igk(2πh̄)3
∫

dpc∗g(p)e
−i(ω0−ωk+h̄k2/2m+k·p/m)t c̃e(p + h̄k, t), (14)

where ωR = h̄k2
0/2m is the recoil frequency and cg(p) = cg(p, 0). We eliminate the field

variable by integrating Equation (14) over time and substituting it in Equation (13),

∂c̃e(p, t)
∂t

= i∆0 c̃e(p, t)− i
Ω0

2
cg(p− h̄k0)ei(k0·p/m)t−iωRt

− (2πh̄)3 ∑
k

g2
kcg(p− h̄k)

∫
dp′c∗g(p

′)ei[k·(p−p′−h̄k)/m]t

×
∫ t

0
dt′ei[ω0−ωk+h̄k2/2m+k·p′/m]t′ c̃e(p′ + h̄k, t− t′) (15)
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The second term of Equation (15) describes the absorption process of the photon h̄k0.
The exponential factors in the third term of Equation (15) reflect the energy and momentum
conservation of the emission photon process, i.e., p = p′ + h̄k and p2/2m = p′2/2m + h̄ωk:
the atoms in the excited state with momentum p′ at time t′ decay to the ground state
recoiling with momentum −h̄k, after a free evolution within the time interval t− t′. The
free evolution consists of quantum diffusion and drift caused by the momentum of the
emitted photon and ends at time t when recombination to the ground state accompanied
by emission of a photon of momentum k takes place.

We can assume the Markov approximation (i.e., c̃e(p′ + h̄k, t − t′) ≈ c̃e(p′ + h̄k, t)
in the time integral of Equation (15)) and a continuous distribution for k (i.e., ∑k ≈
Vph/(2π)3

∫
dk), with gk ≈ gk0 ,

∂c̃e(p, t)
∂t

= i∆0 c̃e(p, t)− i
Ω0

2
cg(p− h̄k0)ei(k0·p/m)t−iωRt

− πVph h̄3g2
k0

∫
dkcg(p− h̄k)

∫
dp′′c∗g(p

′′ − h̄k)ei[k·(p−p′′)/m]t

× δ(ω0 −ωk − h̄k2/2m + k · p′′/m)c̃e(p′′, t) (16)

where we changed the integration variable, defining p′′ = p′ + h̄k, and where we have
approximated the time integral as a Dirac delta in the limit t → ∞. The approach
adopted here is similar to the Weisskopf–Wigner theory for the spontaneous emission of
a photon in the vacuum modes for a single excited atom [12]. We outline that with the
approximation (12) we limit the description to only the spontaneous decay from the excited
state. Instead, the description of the superradiant Rayleigh scattering would require the
adiabatic elimination of the excited state from Equation (10), writing ce(p, t) as proportional
to cg(p− h̄k0) and cg(p− h̄k) ≈ cg(p + h̄k0), with the backward emission assumption,
k ≈ −k0. Then, inserting ce(p) into Equation (9) and eliminating the scattered field ak in
the same way as for Equation (15), we obtain the self-interaction of the condensate with the
matter–wave grating formed by the interference between cg(p) and cg(p + 2h̄k0) [13].

Returning to Equation (16), let us assume an initial spherical Gaussian profile:

ψg(r) =

√
N
V

e−r2/4σ2
, cg(p) =

√
N

(2πh̄)3Vp
e−p2/4σ2

p (17)

where V = (2π)3/2σ3, Vp = (2π)3/2σ3
p and σp = h̄/2σ. They satisfy the normalization

relations,
∫

dr |ψg(r)|2 = N and
∫

dp |cg(p)|2 = N/(2πh̄)3. Assuming the momentum
distribution described by |cg(p)|2 is sufficiently narrow for large values of k0σ, we can
approximate p′′ ≈ p in the integral over p′′ in Equation (16), obtaining

∂c̃e(p, t)
∂t

= i∆0 c̃e(p, t)− i
Ω0

2
cg(p− h̄k0)ei(k0·p/m)t−iωRt

− πVpVph h̄3g2
k0

∫
dk|cg(p− h̄k)|2

× δ(ω0 −ωk − h̄k2/2m + k · p/m)c̃e(p, t) (18)

Neglecting the recoil energy h̄k2/2m ∼ ωR � ω0 and the Doppler shift k · p/m ∼
k0(p/m)� ω0, and introducing Γ = k2

0Vphg2
k0

/πc, we obtain finally

∂c̃e(p, t)
∂t

= i∆0 c̃e(p, t)− i
Ω0

2
cg(p− h̄k0)−

1
2

Γ(p)c̃e(p, t) (19)

where the decay rate for atomic momentum is

Γ(p) =
2π2Vp h̄3

k2
0

Γ
∫

dk|cg(p− h̄k)|2δ(k− k0). (20)
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The momentum rate (20) can be evaluated analytically for a Gaussian distribution. In
fact, changing the integration variable from k to q = k0 − k,

Γ(p) =
N

4πk2
0

Γe−|p−h̄k0|2/2σ2
p

×
∫

dqe−h̄2q2/2σ2
p−h̄q·(p−h̄k0)/σ2

p δ(k0 − |k0 − q|). (21)

Taking the vectors p and q with their z-axis along the direction of k0, defining in polar
coordinates p = p(sin θp cos φp, sin θp sin φp, cos θp) and q = q(sin θ cos φ, sin θ sin φ, cos θ),

Γ(p) =
N

4πk2
0

Γe−|p−h̄k0|2/2σ2
p

×
∫ ∞

0
dqq2e−h̄2q2/2σ2

p

×
∫ π

0
dθ sin θe−(h̄q/σ2

p)(p cos θp−h̄k0) cos θ

×
∫ 2π

0
dφ e−(h̄pq/σ2

p) sin θp sin θ cos(φ−φp) 1
q

δ

(
cos θ − q

2k0

)
. (22)

Solving the integral over φ and θ,

Γ(p) =
N

2k2
0

Γe−|p−h̄k0|2/2σ2
p

∫ 2k0

0
dqqe−h̄2q2/2σ2

p

× e−(h̄q2/2k0σ2
p)(p cos θp−h̄k0)

× I0

[
(h̄pq/2k0σ2

p) sin θp

√
4k2

0 − q2
]

(23)

where I0(x) is the modified Bessel function of zero order. Changing integration variable
from q to x = q/2k0, defining p̄ = p/(h̄k0) and σ̄ = k0σ,

Γ(p) = 2NΓe−2σ̄2( p̄2+1−2p̄ cos θp)
∫ 1

0
dxxe−8σ̄2x2 p̄ cos θp I0

[
8σ̄2 p̄ sin θpx

√
1− x2

]
. (24)

Using the special integral [14]

2
∫ 1

0
dxxe−2ax2

I0[2bx
√

1− x2] = e−a sinh
√

a2 + b2
√

a2 + b2

we obtain

Γ(p) = NΓe−2σ̄2( p̄2+1) sinh
[
4σ̄2 p̄

]
4σ̄2 p̄

. (25)

This function for k0σ � 1 describes a ring centered in p = 0 with radius h̄k0 and
thickness h̄/(2σ). Figure 2 shows Γ(p)/NΓ vs px and pz (in units of h̄k0) for k0σ = 4 and
py = 0.
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Figure 2. Γ(p)/NΓ vs px and pz in units of h̄k0, for k0σ = 4 and py = 0.

This describes the isotropic emission of a photon with momentum h̄k0. The atoms,
after absorption of a photon with momentum h̄k0 along the z-axis and the subsequent
isotropic emission, recoil with a momentum distribution proportional to Γ(p− h̄k0). Exper-
imentally, the column-integrated momentum distribution is observed in time-of-flight im-
ages. This leads to defining the projected distribution Dy(px, pz) =

∫
Γ(px, py, pz− h̄k0)dpy,

shown in Figure 3 for k0σ = 4. The blob on the left represents the initial momentum distri-
bution, in qualitative agreement with the experimental results of Figure 1.

Figure 3. Dy(px, pz) =
∫

Γ(px, py, pz − h̄k0)dpy, vs px and pz in units of h̄k0, for k0σ = 4.

The expression (25) recalls a similar result of the cooperative decay rate [8], ΓN =

NΓe−2σ̄2
sinh(2σ̄2)/2σ̄2, obtained by considering N atoms with a spherical Gaussian distri-

bution and excited state approximated by the timed Dicke state ψe(r) ∼ βTDSψg(r) exp(ik0 ·
r) [15]. The analogies between the present result, based on a quantum matter–wave descrip-
tion, and those of Ref. [8], referring to a discrete ensemble of cold classical dipoles without
any information about their momentum distribution, may infer that the spontaneous light
scattering for a Bose–Einstein condensate can be considered a cooperative effect, with a
rate proportional to the resonant optical thickness b0 = N/4σ̄2.

3. Conclusions

From an approximated approach of the equations describing the interaction of a Bose–
Einstein condensate with an incident laser beam in the momentum space, we have obtained
an expression for the momentum scattering rate, describing the Rayleigh scattering in
a form of a ring with radius h̄k0. The expression has been obtained in the case of a
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spherical Gaussian distribution, but the general expression (20) could be evaluated for
other atomic distributions, for instance with an ellipsoidal shape. This should still result
in a ring-like pattern with average radius h̄k0, but asymmetrical and with more complex
features, depending on the Fresnel number F = k0σ2

r /σz, where σr and σz are the transverse
and longitudinal size, respectively [8]. The result for the spherical Gaussian distribution
reproduces the observed halo qualitatively well in the momentum distribution, shown in
the left image of Figure 1, due to the isotropic re-emission of the single photon absorbed by
the atoms.
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