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Abstract: We investigate the effects of higher-order quantum fluctuations on the bulk properties of
self-bound droplets in three-, two- and one-dimensional binary Bose mixtures using the Hartree–
Fock–Bogoliubov theory. We calculate higher-order corrections to the equation of state of the droplet
at both zero and finite temperatures. We show that our results for the ground-state energy are in a
good agreement with recent quantum Monte Carlo simulations in any dimension. Our study extends
to the finite temperature case where it is found that thermal fluctuations may destabilize the droplet
state and eventually destroy it. In two dimensions, we reveal that the droplet occurs at temperatures
well below the Berezinskii–Kosterlitz–Thouless transition temperature.

Keywords: quantum droplets; Bose-Bose mixtures; higher-order quantum fluctuations

1. Introduction

Quantum fluctuations which are crucially tied to Heisenberg’s uncertainty principle
are ubiquitous in nature. This fascinating phenomenon is often associated with a change
in the energy of the system. Quantum fluctuations can alter virtually all aspects of matter
leading to the emergence of novel phase transitions such as quantum liquid droplets,
supersolids and superglasses.

Ultracold quantum gases offer new vistas for the quantum simulation of interacting
many-body systems. It has long been common that the presence of quantum fluctuations
in a Bose gas can modify its equation of state, which at first order is given by the seminal
Lee–Huang–Yang (LHY) correction [1]. On the theoretical side, the LHY correction to
the ground-state energy has been calculated for the Bose–Einstein condensate (BEC) with
a pure contact interaction [1–6] and for dipolar BECs [7–10] using different approaches.
Experimental evidence of the LHY for a single BEC has been reported in [11–14] for both
bosonic and fermionic systems.

On the other hand, the LHY corrections to the ground-state energy for homogeneous
Bose–Bose mixtures were addressed in refs. [15,16] using the Bogoliubov theory. At finite
temperatures, such LHY fluctuations have been computed using different models (see
e.g., [17–19]). In d-dimensional binary BECs, quantum stabilization stems from the interplay
of the attractive mean–field interaction, proportional to the density of the system n, and the
repulsive LHY correction proportional to nd/2 [20,21]. Quite recently, quantum corrections
of self-bound Bose mixtures beyond LHY have been discussed in several works [22–25].

A similar stabilization scenario has been observed in single and binary dipolar Bose
gases, where the competition between the mean-field energy associated with short and
long-range interactions and the LHY corrections arrests the dipolar instability at high
density, forming ultradilute quantum droplets [26–30]. Furthermore, quantum fluctuations
play an intriguing role in low-dimensional dipolar BECs. They change their nature from
repulsive to attractive due to the peculiar momentum dependence of the dipole–dipole
interactions [8,31,32]. The dipolar instability is halted by such unconventional beyond
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mean-field corrections, leading to the formation of a droplet phase. The LHY quantum
corrections lead also to shift the equation of state of disordered BECs [33,34].

Recent numerical results based on Quantum and Diffusion Monte Carlo simulations
(QMC and DMC) [21,35–40] have verified the essential role played by the quantum fluctua-
tions for the description of the self-bound droplets of both dipolar and nondipolar BECs
realized in recent experiments. One year after the theoretical prediction, the experiment
performed by Pfau et al. [26–28] confirmed the existence of quantum droplets in dipolar
Bose gases. This exotic state of matter has also been successfully realized in experiments on
the homonuclear mixture [41–43] and the heteronuclear mixture [44].

The aim of this paper is to investigate the influence of higher-order quantum fluctu-
ations upon quantum droplets of symmetric Bose–Bose mixtures in three (3D), two (2D)
and one (1D) dimensions using the self-consistent Hartree–Fock–Bogoliubov (HFB) the-
ory. This model which, we developed recently to remove the handicaps of the standard
Bogoliubov prescription [20,21], can self-consistently evaluate the quantum and thermal
fluctuations exhibited by weakly interacting binary BECs [18,24,25]. It has been shown that
the HFB theory is able to produce excellent predictions for the condensate, depletion, pair
correlation function, critical number of particles and ground-state energy that have been
measured experimentally and with QMC [18,24,25,30].

In 3D geometry, we show that at zero temperature, our theory captures genuine
higher-order quantum effects predicted from recent DMC simulations for the ground-state
energy [37]. At finite temperature, we calculate the free energy and find that the droplet
destabilizes when the temperature becomes slightly larger than the ground-state energy of
the droplet. Our study is extended to the regime of relatively strong interactions. We reveal
that such higher-order quantum corrections become more pronounced for large values of
the interspecies interaction. The latter may also considerably shift the critical temperature.

In the 2D case, the obtained ground-state energy shows a good agreement with the
DMC results of ref. [21], indicating the relevance of our model. At finite temperature, we
find that the self-bound droplet can survive only at a certain critical temperature well
below the Berezinskii–Kosterlitz–Thouless (BKT) transition due to the crucial role played
by thermal fluctuation effects. Such a critical temperature decreases as the strength of
interspecies interactions grows.

We then confine ourselves to analyze the bulk properties of 1D quantum droplets.
Beyond the LHY, quantum corrections to the ground-state energy are accurately worked
out and an excellent agreement is found with the QMC of ref. [38]. Similarly to the 3D
and 2D cases, we point out that at finite temperature, the thermal fluctuations are able to
destroy the droplet.

2. HFB Theory

We consider weakly interacting two-component BECs with equal masses, m1 = m2 = m,
in d-dimensions. The dynamics of this system, including the effect of quantum and
thermal fluctuations, is modeled by the coupled HFB equations, which can be written
as [18,24,25,29,30]:

ih̄
dΦj

dt
=

(
hsp

j + gjnj + g12n3−j + δµjLHY

)
Φj, (1)

where hsp
j = −(h̄2/2m)∆ +U(r)− µj is the single particle Hamiltonian, U(r) is an external

potential, µj is the chemical potential of each component and gj and g12 = g21 are the
intraspecies and the interspecies coupling constants, respectively. In order to ensure the
gaplessness of the spectrum, we renormalize the coupling constants as : ḡj = gj(1 +
m̃j/ncj) [18]. Such a renormalization scheme was used for a single-component Bose gas
a long time ago (see for reviews [45,46]) and provides excellent results for the density
profiles and the collective modes, and the agreement with experiments is better than other
approaches. In Equation (1), ˆ̄ψj(r) = ψ̂j(r)−Φj(r) is the noncondensed part of the field
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operator with Φj(r) = 〈ψ̂j(r)〉, ncj = |Φj|2 is the condensed density, ñj = 〈 ˆ̄ψ†
j

ˆ̄ψj〉 is the

noncondensed density, m̃j = 〈 ˆ̄ψj
ˆ̄ψj〉 is the anomalous correlation and nj = ncj + ñj is the

total density of each species. The presence of these quantities enables us to derive the LHY
term without any ad hoc assumptions, in contrast to the standard generalized GPE. The
relevant LHY term is given by

δµjLHY(r)Φj(r) = gj
[
ñj(r)Φj(r) + m̃j(r)Φ∗j (r)

]
, (2)

which can be calculated self-consistently.
Let us now assume a uniform binary Bose mixture. The Bogoliubov excitations

energy can be obtained by linearizing Equation (1), employing the generalized random-
phase approximation [18]: Φj =

√ncj + δΦj, ñj = ñj + δñj, and m̃j = m̃j + δm̃j, where
δΦj(r, t) = ujkeik·r−iεkt/h̄ + vjkeik·r+iεkt/h̄ � √ncj, δñj � ñj, and δm̃j � m̃j [8,9]. Keeping
only terms up to second order in the coupling constants, we obtain for symmetric mixtures
with n1 = n2 = n/2, ñ1 = ñ2 = ñ/2, m̃1 = m̃2 = m̃/2 and g1 = g2 = g the following
formula of the Bogoliubov energy spectrum:

εk± =
√

E2
k + 2Ekµ±, (3)

where Ek = h̄2k2/2m, and µ± = nc ḡ(1± g12/ḡ). For small momenta k→ 0, the Bogoliubov
dispersion relation is phononlike εk± = h̄cs±k, where cs+ = cs

√
1 + g12/ḡ, and cs− =

cs
√

1− g12/ḡ are the sound velocities in the density and spin channels [19], respectively,
with cs =

√
ḡnc/m being the corrected sound velocity of a single BEC [6]. In the opposite

limit k→ ∞, the excitations spectrum (3) reduces to the free particle law.
The condensed depletion and the anomalous density are defined in d-dimensions

as [6]:

ñ± =
1
2

∫ ddk
(2π)d

[
Ek + µ±

εk±

√
Ik± − 1

]
, (4)

and

m̃± = −1
2

∫ ddk
(2π)d

µ±
εk±

√
Ik±, (5)

where Ik± = coth2(εk±/2T) [18]. Equations (4) and (5) are self-consistent since they rely on
the density-dependent coupling ḡ and must be solved iteratively.

In the spirit of our HFB theory, the energy of the system including the LHY corrections
is defined as:

E = E0 +
1
2 ∑
±

∫ ddk
(2π)d (εk± − 2Ek − µ±), (6)

where E0 = g(n2
c + 4ncñ+ 2ñ2 + m̃2 + 2ncm̃)+ g12n2 is the ground-state energy. The second

term in Equation (6) accounts for the LHY quantum corrections. It can be computed using
the dimensional regularization. The subleading term in Equation (7), which represents the
thermal effects, is finite.

It is worth stressing that integrals associated with anomalous density (5) and the
ground-state energy (6) are ultraviolet divergent in both 3D and 2D cases and necessitate to
be regularized [6,18]. We use the dimensional regularization that is asymptotically accurate
for weak interactions [24,25].

The knowledge of the noncondensed and anomalous densities allows one to predict
higher-order corrections to the free energy. In the frame of our formalism, it can be
written as:

F = E + T
∫ ddk

(2π)d ln

(
2√

Ik± + 1

)
. (7)
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The minimization of the free energy with respect to the density permits us to check
the existence of the self-bound droplet at finite temperatures, as we see below.

3. Three-Dimensional Droplets

The regime of interest corresponds to repulsive intraspecies interaction
gj = 4πh̄2aj/m > 0, and attractive interspecies interaction g12 = g21 = 4πh̄2a12/m < 0
with aj and a12 being the intraspecies and the interspecies scattering lengths, respectively.

After regularization, the ground-state energy (6) takes the following dimensionless
form [24]:

E3D
NE03

=π

(
δa
a

)
+
(na3) +

32
√

2π

15
(na3)3/2

×∑
±

(
δa
a

)5/2

±

(
1 +

m̃± − ñ±
n

)5/2
, (8)

where E03 = h̄2/ma2, and (δa/a)± = 1 ± (a12/a). Here, the noncondensed and the
anomalous fractions can be obtained from Equations (4) and (5), respectively, as:

ñ±
n

=
5

96
√

2

(
n

neq

)1/2( δa
a

)
+

(9)

×∑
±

(
δa
a

)3/2

±

(
1 +

m̃± − ñ±
n

)3/2
,

and

m̃±
n

=
5

32
√

2

(
n

neq

)1/2( δa
a

)
+

(10)

×∑
±

(
δa
a

)3/2

±

(
1 +

m̃± − ñ±
n

)3/2
.

Obviously, for m̃ = ñ = 0, Equation (8) reduces to Petrov’s equation [20]. The energy (8) can
be rewitten in terms of the equilibrium density neqa3 = (25π/16384)(δa+/a)2 predicted
by Petrov [20] as:

E3D
E03

= −3
(

n
neq

)
+

1
2
√

2

(
n

neq

)3/2
(11)

×∑
±

(
δa
a

)5/2

±

(
1 +

m̃± − ñ±
n

)5/2
.

It is useful to compare our analytical expression which we solve iteratively with the
energy obtained from the theory of [22] based on the inclusion of higher-order terms in the
sound velocities, calculated perturbatively, and with the QMC simulations [37].

Figure 1 shows that our findings are in excellent agreement with the QMC simu-
lations [37], practically in the whole range of density, and improve upon the existing
theoretical results. This reveals the importance of higher-order fluctuations in the stabiliza-
tion and in the robustness of the droplet. We see also as |a12/a| become larger, both the
HFB theory and Petrov’s approach [20] diverge from the QMC data [37] in the high-density
limit n/neq & 1. Notice that for a12/a < −1.1, the effects of fluctuations higher than first
order are not important. However, such quantum fluctuations become more prominent
for relatively large interspecies interactions, as shown in Figure 2a. This is indeed under-
standable since both the normal and anomalous fluctuations originate themselves from
the interaction.
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Figure 1. (Color online) Three-dimensional ground-state energy from (11) as a function of n/neq for
different values of a12/a. Color solid lines correspond to our results up to second-order corrections of
quantum fluctuations. Black line correspond to the results of ref. [20] . Color dots represent the QMC
results of ref. [37].
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Figure 2. (Color online) (a) Three-dimensional ground-state energy from Equation (8) as a function
of the density for a12/a = −10. Black line: zeroth-order corrections. Red line: first-order corrections.
Blue line: second-order corrections. Green line: third-order corrections. Orange line: fourth-order
corrections. Purple line: fifth-order corrections. (b) Three-dimensional ground-state energy up to
second-order corrections as a function of the density for different values of interspecies.
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To gain further insights into the stabilization mechanism, we analyze the density
dependence of the energy per particle in the strongly interacting regime, i.e., |a12| � a.
Figure 2b depicts that as interspecies attraction becomes larger the energy decreases (depth
of the local minimum increases), indicating that a stable droplet still survives even for
a strongly interacting regime. One can expect that this behavior persists even when a12
crosses the Feshbach resonance [23]. It is noteworthy that strong interactions and higher-
order fluctuations do not considerably affect the equilibrium density of the self-bound
droplet. The latter can be obtained by minimizing the energy with respect to the density.

At finite temperature, the 3D free energy can be evaluated from Equation (7). Gathering
quantum and thermal fluctuation contributions, we obtain [24]:

F3D
NE03

=
E3D

NE03
−
√

2π

180
(na3)−5/2

(
T

E03

)4

×∑
±

(
δa
a

)−3/2

±

(
1 +

m̃± − ñ±
n

)−3/2
, (12)

where E3D is given in Equation (8). The lowest thermal approximation (m̃ = ñ = 0)
implies that the free energy (12) reduces to its standard form (i.e., without higher-order
corrections). The self-consistent solutions of Equation (12) up to second-order for several
values of temperature and interspecies interactions are shown in Figure 3. We see that
at temperatures higher than the critical temperature (T > Tc ≈ 5× 10−4E0) at which the
thermal fluctuations compensate the repulsive quantum fluctuations, i.e., disapearence
of the local minimum, the self-bound droplet is completely evaporated due to the strong
thermal effects.

T � E0 = 0

T � E0 = 5 ´ 10
-4

T � E0 = 10
-3
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-3
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n
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of

10
-
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E
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E

Figure 3. (Color online) Three-dimensional free energy up to the second order in m̃ and ñ as a function
of the density for a12 = −3a at different values of temperature.

Importantly, the interspecies interactions may significantly increase the critical tem-
perature. For instance, our HFB predicts a critical temeprature Tc ≈ 1.3 × 10−4E0 for
a12 = −1.1a [24], which is around four times lower than Tc predicted above for a12 = −3a.
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4. Two-Dimensional Droplets

Let us now consider homogeneous 2D Bose–Bose mixtures. It has been shown that
below the BKT transition temperature [47,48], one can use the HFB theory to describe the
true BEC [6,25,49] even though it cannot predict the critical fluctuations near the BKT region.

In 2D Bose gases, the intra- and interspecies coupling strengths are defined as: gj =

4πh̄2/
[
m ln

(
4e−2γ/a2

j κ2
)]

and g12 = g21 = 4πh̄2/
[
m ln

(
42e−2γ/a2

12κ2)], where aj and a12

are the 2D scattering lengths among the particles (see, e.g., [2,21,25]), and γ = 0.5772 is
Euler’s constant. An adequate value of the cutoff κ can be obtained in the weakly interacting
regime. In such a case, attraction (repulsion) can be reached when the scattering lengths
are exponentially large (small) compared with the mean interparticle separation [21].

Using again the dimensional regularization to evaluate the ground-state energy (6) [25],
one then analytically continues the result to finite coupling including a low-energy cutoff
εc = h̄2κ2/m� µ± [25]. We thus obtain

E2D = E0 +
m

8πh̄2 ∑
±

µ2
± ln

(√
eµ±
εc

)
. (13)

Following Petrov’s method [21], we introduce a new set of coupling constants given
as: g = 4π/ ln

(
4e−2γ/a2ε0

)
and g12 = 4π/ ln

(
4e−2γ/a2

12ε0
)
, where ε0 = 4e−2γ/a12a was

chosen in such a way that the condition g2 = g2
12 must be fulfilled. In Figure 4, we compare

the resulting ground-state energy up to third order in m̃ and ñ of the iteration method
with the DMC data [21] and the Bogoliubov theory [21]. We observe that our results
excellently agree with the DMC simulations and improve both the Bogoliubov theory and
our recent second-order HFB calculation [25]. This indicates that the HFB predictions
become increasingly accurate due to the crucial role of higher-order terms.
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Figure 4. Two-dimensional ground-state energy as a function of the density for ln(a12/a) = 20. Solid
lines correspond to our beyond-LHY results up to third order in ñ and m̃. Dashed line corresponds to
the Bogoliubov theory [21]. Black squares correspond to DMC data [21]. Here, E02 = 4h̄2/(e2γma2

12).
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Collecting both quantum and thermal fluctuations contributions to the free energy (7),
we obtain [25]

F2D = E2D −∑
±

mζ(3)
h̄2µ±

T3, (14)

where ζ(3) is the Riemann zeta function.
At finite temperature, the minimization of the free energy (7) reveals that a higher-

density stable self-bound solution supported by the local minimum can be formed only
at temperatures well below the BKT transition, as seen in Figure 5a. At higher tempera-
tures, the self-bound state loses its peculiar self-evaporation phenomenon and eventually
entirely destroys owing to the thermal fluctuations effects. Remarkably, the variation of
the energy-cutoff, ε0, which depends on interspecies interactions, may strongly change the
position of the local minimum of the free energy, giving rise to shift the critical temperature.
For instance, for ε0 = 2.8, the droplet emerges at very low temperatures 0 < T . 0.18 TBKT,
while for ε0 = 5.8, the self-bound droplet occurs at 0 < T . 0.35 TBKT (see Figure 5b).
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-0.05

0.00
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F
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Ε0 = 5.8HbL
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-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

n

F
2

D
�
n

Figure 5. (Color online) (a) Two-dimensional free energy as a function of the density for different
values of temperature, T/TBKT and for ε0 = 2.8. Black lines: T/TBKT = 0.4. Green dotted lines:
T/TBKT = 0.3. Red dashed lines: T/TBKT = 0.18. Blue-dot-dashed lines: T/TBKT = 0. (b) The same
as (a) but for ε0 = 5.8. Black lines: T/TBKT = 0.5. Green dotted lines: T/TBKT = 0.35. Red dashed
lines: T/TBKT = 0.25. Blue-dot-dashed lines: T/TBKT = 0. Parameters are: g = 0.45, and g12 = 0.2.

5. One-Dimensional Droplets

It is well known that in 1D geometry, the fluctuations are strong enough to destroy the
Bose condensate. However, in the weak-coupling regime in which the ratio between the
interaction energy and the kinetic energy is much smaller than unity, the mean-field theory
can be safely used at both zero and finite temperatures.

Let us now consider a 1D symmetric homogeneous Bose mixture in a box of size
L. It is worth stressing that the 1D droplets nucleate in the dominantly repulsive regime
δg = g + g12 > 0, where gj = −2h̄2/(maj), is opposite to the 3D case.

The ground-state energy can be computed straightforwardly via Equation (6), yielding:

E1D
L

=
n2

4
δg− 2

√
m

3πh̄ ∑
±

µ3/2
± . (15)

For ñ = m̃ = 0, the energy (15) reduces to that obtained in ref. [21] using the Bogoli-
ubov prescription.

In Figure 6a, we show the ground-state energy predicted by the HFB theory up to first-
order in ñ and m̃ for g12/g = −0.7 (i.e., δg/g = 0.3) and compare it with the Bogoliubov
prescription [21] and QMC simulation [38]. We find an excellent agreement between our
HFB theory and the QMC data [38]. However, the discrepancy between the HFB results and
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the Bogoliubov theory of ref. [21] can be attributed to the quantum fluctuation corrections.
In the regime of strong interactions, one can expect that the Bogoliubov theory significantly
deviates from the QMC data, since it is valid only in the dilute regime.
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Figure 6. (Color online) (a) One-dimensional ground-state energy as a function of the density for
g12/g = −0.7. (b) One-dimensional free energy as a function of the density for g12/g = −0.7 and
T/εB = 0.15. Here, the energies are normalized by the binding energy of dimmers composed from
atoms from different components εB = −h̄2/(ma2

12) [22].

At finite temperature, the free energy reads:

F1D
L

=
E1D

L
− π
√

mT2

12h̄
(µ−1/2

+ + µ−1/2
− ), (16)

where E1D is given in Equation (15). In the absence of higher-order quantum and thermal
fluctuations, we recover the results of [50]. At sufficiently low temperature, the free energy
has a local maximum which corresponds to an unstable droplet and a local minimum
supporting a higher-density stable self-bound solution. Similarly to the 2D and 3D cases,
by augmenting further the temperature, the liquid is predicted to destroy due to the
thermal fluctuations.

6. Conclusions

We systematically studied the effects of higher-order quantum and thermal fluctu-
ations on the bulk properties of utradilute quantum droplets in a Bose–Bose mixture
utilizing our HFB formalism. These higher-order quantum corrections turn to improve
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the ground-state energy, bringing our model in excellent agreement with recent QMC and
DMC findings in any dimension. Relatively strongly interacting 3D quantum droplets
were analyzed. We also revealed that the self-evaporation phenomenon is affected by the
higher-order correlations and interspecies interactions. The results of the present work are
not only significant to understand the fundamental properties of the ultradilute quantum
liquids but also offer the possibility to experimentally explore them in low dimensions.
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