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Abstract: Mathematical modelling of heating and current drive as well as yields and distributions
of fusion products in a magnetically confined plasma subject to neutral beam injection requires, in
turn, modelling of distributions of fast ions, which is a complex task including calculations of the
source of suprathermal particles, i.e., the number of fast ions occurring in unit volume during unit
time owing to the injection of fast atoms. The knowledge of the magnetohydrodynamic equilibrium,
beam injection geometry and spatial distribution of the magnetic field are the necessary prerequisites.
Explicit general analytical formulae for the source of fast ions have been obtained by two different
methods. In addition, a method of statistical modelling is presented. Calculations of spatial and
angular distributions of the fast ion source for a tokamak and verifications of the obtained results
have been performed by a number of methods.
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1. Introduction

At an early stage of controlled nuclear fusion research in review paper [1] L.A. Art-
simovich mentioned the injection of beams of fast neutral particles into plasma as one of
the natural ways of achieving the required level of ion temperatures and predicted that, al-
though little or nothing had then been done to develop this method, probably it would own
the future, taking an important place in the overall research programme. In [2], T. Ohkawa
suggested the use of beams of neutral atoms as a method of driving the plasma current.

Today neutral beam injection (NBI) is an established method of heating and non-
inductive generation of an electric current in many experimental fusion devices with
magnetic confinement of plasma [3]. ITER will be equipped with the most powerful neutral
beam injectors ever, capable of delivering higher energy beams for longer than any previous
systems [4]. Prototypes of neutral beam injectors [5,6] are being developed for the Tokamak
with Reactor Technologies (TRT) [7]. NBI is also being considered for demonstrative fusion
power plant concepts (DEMO) [8].

In the works on the development of fusion neutron sources and fusion-fission hybrid
systems NBI is considered as the main source of high-energy particles generating primary
neutrons [9,10]. Calculations of spatial, angular, and energetic distributions of the neutron
source in a plasma and the subsequent modelling of neutron transport processes first
require distributions of velocities of plasma ions to be obtained, which in turn require
calculations of the penetration of fast neutral beams into plasma.

Calculations of the penetration and deposition of neutral beams for large tokamaks
such as TFTR [11,12], EAST [13,14], KSTAR [15], and JET [16] were made on the basis
of [17,18]. Simulations of the neutral beam injection in ITER were reported in [19]. NBI-
induced effects in plasma of a compact fusion neutron source were studied in [20]. Applica-
tions of NBI modelling for stellarator/heliotron devices, such as LHD [21] and W7-X [22],
were based on the works [23] and [24] correspondingly.

Atoms 2023, 11, 24. https://doi.org/10.3390/atoms11020024 https://www.mdpi.com/journal/atoms

https://doi.org/10.3390/atoms11020024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atoms
https://www.mdpi.com
https://orcid.org/0000-0001-9226-1694
https://doi.org/10.3390/atoms11020024
https://www.mdpi.com/journal/atoms
https://www.mdpi.com/article/10.3390/atoms11020024?type=check_update&version=1


Atoms 2023, 11, 24 2 of 15

The above-mentioned bibliographic sources are mostly relying on basic descriptions
of different sorts of simulation techniques predominantly related to various Monte Carlo
methods, rather than explicit general analytical closed-form expressions for the source
function of fast ions produced in a magnetically confined plasma due to neutral beam
injection. The treatments in [25,26] include a larger mathematical background. A compact
overview of commonly adopted approaches to describe the penetration of neutral beams
into fusion plasmas is given in [27]. Among newer works dedicated to the modelling of
neutral beam injection, articles [28–30] can be referenced. As stated in [25,27,31], if the
confinement of fast ions is sufficiently good, an ion originating from NBI can be assumed
to stay on its magnetic surface. The same assumption is adopted herein. Deviations from
such a basic model, i.e., corrections for drift orbits, are beyond the scope of this study and
may be introduced on top of the present results.

The purpose of this article is to present rigorous general derivations of the source func-
tion by two different methods, providing a cross check, in addition to statistical modelling.
The approach presented here is based on explicit analytical formulae, which are repro-
ducible and exact in the frame of the adopted physics model. This approach is preferable
from the viewpoint of the development of the physics basis as well as the reliability and
the computational speed of the integrated systems codes where the complexity necessitates
optimisation.

Two alternative derivations of the analytical formulae are given in Section 2. Statistical
modelling based on kernel smoothing is described in Section 3. Examples of calculations of
spatial and angular distributions of the source of fast ions originating from neutral beam
injection into a tokamak are shown in Section 4, followed by conclusions in Section 5.

2. Analytical Approach

Two methods are given in this section to derive an analytical formula for the local
source of suprathermal ions supplied by a monoenergetic beam of fast neutral atoms
injected into a magnetically confined fusion plasma. The local source S [cm−3s−1] is the
number of ions, occurring in unit volume during unit time, expressed as a function of
coordinates. A phenomenological derivation method and a more formal mathematical
method lead to the same result, thus providing a validating cross check.

2.1. Phenomenological Derivation

First, let us consider a mathematical line instead of a finite width beam. Figure 1 shows
such a line and a cross-section of nested magnetic surfaces in a device for the magnetic
confinement of plasma. It is assumed that once an injected H0 (or D0, or T0) atom loses
its electron and becomes an ion, it remains at the same magnetic surface, i.e., that the
source S(ρ) is a function of the dimensionless magnetic flux surface label ρ, which is a
generalisation of radius. This can be e.g., the normalised poloidal radius defined as

ρ =

√
Ψ−Ψa

Ψb −Ψa
, (1)

where Ψ is the local value of the poloidal magnetic flux function, Ψa is its value at the
magnetic axis, where ρ = 0, and Ψb is its value at the boundary, where ρ = 1. Let us denote
the length along the injection line as Λ. The line is crossing the last closed flux surface ρ = 1
at Λ = Λen, where it is entering the plasma and at Λ = Λex, where it is exiting the plasma.
Let us denote the neutral particle current carried by this injection line as I [s−1].
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Figure 1. Neutral particle injection line crossing an arbitrary system of convex closed curves repre-
senting a cross-section of nested magnetic surfaces.

The probability that an atom entering the plasma at Λen penetrates to a position Λ is
given by the Poisson exponent

P(Λ) = e
−

Λ∫
Λen

dl
λm f p , (2)

where λm f p is the mean free path of an atom with respect to electron loss, so the inte-

gral
Λ∫

Λen

dl
λm f p

is the average number of electron loss events along the path from Λen to

Λ. This means that the injected neutral particle density along the line nb(Λ) decreases
exponentially as

nb(Λ) = nb(Λen)e
−

Λ∫
Λen

dl
λm f p , (3)

where nb(Λen) is the initial density at the entrance to the plasma. The electron loss frequency
ν [s−1] is

ν =
vb

λm f p
, (4)

where vb is the injection velocity. By electron loss throughout this article all the electric
charge changing processes of the type H0 → H+ are meant, including charge exchange,
impact ionisation, etc.

The above considerations lead to the following qualitatively derived source function
of fast ions in the plasma at the position Λ along the fast atom injection line

S(Λ) = νnb(Λ) = nb(Λen)
vb

λm f p
e
−

Λ∫
Λen

dl
λm f p . (5)

However, this qualitative derivation above is not yet properly taking into account the
geometry. The desired quantity is the source of fast ions at a given magnetic surface. As
Figure 2 illustrates, a given increment of the effective radius dρ may correspond to different
increments dΛ of the length along the injection line, depending on the injection direction.

Let us attribute a cross-section area dS to the injection line, considering it as a narrow
infinitesimal beam, as shown in Figure 3. Then dSdΛ is the volume of the cylinder between
the magnetic surfaces ρ and ρ + dρ.



Atoms 2023, 11, 24 4 of 15

Atoms 2023, 11, x FOR PEER REVIEW 4 of 16 
 

( ) ( ) ( )
mfp

en

dl

b
b b en

mfp

S n n e









− 
 =  = 

v
. (5) 

However, this qualitative derivation above is not yet properly taking into account 

the geometry. The desired quantity is the source of fast ions at a given magnetic surface. 

As Figure 2 illustrates, a given increment of the effective radius d  may correspond to 

different increments d  of the length along the injection line, depending on the 

injection direction. 

 

Figure 2. Two different injection directions and two different increments 1d  and 2d  of the 

distance along the injection line, both corresponding to the same increment of the effective radius 

d . 

Let us attribute a cross-section area dS  to the injection line, considering it as a 

narrow infinitesimal beam, as shown in Figure 3. Then dSd  is the volume of the 

cylinder between the magnetic surfaces   and d + . 

 

 

Figure 3. An elementary volume of a narrow infinitesimal beam between the magnetic surfaces la-

beled   and d + . 

The number of atoms undergoing electron loss collisions in the depicted volume 

dSd  at the position   per second is the product of this volume dSd  and the 

number of electron loss events per unit volume during unit time ( )S  , given by (5). 

Figure 2. Two different injection directions and two different increments dΛ1 and dΛ2 of the distance
along the injection line, both corresponding to the same increment of the effective radius dρ.
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Figure 3. An elementary volume of a narrow infinitesimal beam between the magnetic surfaces
labeled ρ and ρ + dρ.

The number of atoms undergoing electron loss collisions in the depicted volume dSdΛ
at the position Λ per second is the product of this volume dSdΛ and the number of electron
loss events per unit volume during unit time S(Λ), given by (5). Assuming that all the
resulting fast ions are staying at the corresponding magnetic surface ρ, we need to divide
the mentioned quantity, i.e., the number of atoms undergoing electron loss collisions per
second, by the corresponding volume dV enclosed between the magnetic surfaces ρ and
ρ + dρ. This will be the desired source function S(ρ) per unit volume during unit time.
Using (5) we have

S(ρ) = I
e
−

Λ∫
Λen

dl
λm f p(l)

λm f p(Λ)

(
dΛ
dρ

)
(

dV
dρ

) , (6)

because the initial injection current at the entrance equals

I = nb(Λen)vbdS. (7)

Such is the phenomenological derivation of the analytic formula for the fast ion source
function. Since Λ(ρ) is a multivalued function, the final formula needs to contain the sum
over all branches of this function. An example is depicted in Figure 4a showing an injection
line crossing the magnetic surfaces, and in Figure 4b showing the variation of the effective
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radius versus the distance along this injection line. The value ρ∗ designates some particular
magnetic surface. There are four branches with alternating monotonicity in this example.
These branches are shown by different colours. This illustrates that different values of Λ
may contribute to the source function S(ρ) at the same magnetic surface ρ.
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Therefore, the formula becomes

S(ρ) = ∑
k

I
λm f p(Λk)

e
−

Λk∫
Λen

dl
λm f p(l)

(
dΛ
dρ

)
(Λk)(

dV
dρ

)
(Λk)

. (8)

The argument Λk is the spatial location. This is the value of Λ corresponding to the
given ρ at the k-th branch. The value dV

dρ does not depend on the branch index k. The mean
free path of a fast hydrogen atom in a fusion plasma in accordance with the models [32,33] is

λm f p =
1

neσs
, (9)

where ne is the electron density and σs is the effective stopping cross-section depending on
the electron temperature Te, the electron density ne, and impurity densities. The value σs is
determined by parameterisations given in [32,33]. The mean free path λm f p given by (9) is
also a function of the magnetic surface, i.e., does not depend on the branch index k in (8).
Taking λm f p and dV

dρ out of the summation over the branches we obtain

S(ρ) =
I

λm f p(ρ)
dV
dρ (ρ)

∑
k

(
dΛ
dρ

)
k
e
−

Λk∫
Λen

dl
λm f p(l) . (10)

Such is the source function of fast ions in the plasma due to the injection of fast atoms
along a mathematical line representing a narrow beam.
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2.2. Mathematical Derivation

A formula identical to (10) can be obtained formally using the language of mathemati-
cal statistics as follows. The probability for an atom to undergo no electron loss collisions
along the path inside the plasma from Λen to the point Λ on the injection line is given by
(2). The value Λ, where the electron loss takes place, is a random number. The cumulative
distribution function for Λ is then

F(Λ) = 1− P(Λ), (11)

which is the probability that the electron loss does occur somewhere along the path inside
the plasma from Λen to the point Λ, i.e., that the atom does not penetrate as deep as to the
point Λ. For the probability density function (p.d.f.) for Λ, using (2), we therefore have

f (Λ) =
dF
dΛ

=
1

λm f p
e
−

Λ∫
Λen

dl
λm f p(l) . (12)

The probability that the electron loss occurs between Λ and Λ + dΛ is

dP = f (Λ)dΛ. (13)

Let dP be the probability that the electron loss occurs between ρ and ρ + dρ. To
calculate dP we need the summation over all Λk values corresponding to the given ρ value,
i.e., over all branches of the function Λ(ρ), thus

dP = ∑
k

f (Λk)
dΛk
dρ

dρ =
1

λm f p(ρ)

∑
k

dΛk
dρ

e
−

Λk∫
Λen

dl
λm f p(l)

dρ. (14)

This means that the probability density f (ρ) for the ρ coordinate of the electron loss
location is

f (ρ) =
1

λm f p(ρ)
∑
k

(
dΛ
dρ

)
k
e
−

Λk∫
Λen

dl
λm f p(l) . (15)

The source function of fast ions at the magnetic surface ρ is

S(ρ) = I
dP (ρ)

dV(ρ)
, (16)

where I [s−1] is the ‘input’ neutral current attributed to the injection line under considera-
tion, dV(ρ) is the volume where the ions reside, occurring due to the electron loss by the
injected atoms, dP (ρ) is the probability that the electron loss occurs particularly at the
given ρ value. Using (14), (15) and (16) we arrive at the source function

S(ρ) =
I

dV/dρ
f (ρ) =

I

λm f p(ρ)
(

dV
dρ

)
(ρ)

∑
k

(
dΛ
dρ

)
k
e
−

Λk∫
Λen

dl
λm f p(l) , (17)

which coincides with (10), i.e., the formal result is the same as the phenomenologically
derived expression.
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3. Statistical Approach

An alternative way to calculate f (ρ) instead of Formula (15) is to use the so-called
kernel probability density function (p.d.f.) estimator

f (ρ) ≈ 1
Nh

N

∑
i=1

K
(

ρ− ρi
h

)
, (18)

where K is called a kernel function, h is an arbitrary positive number called the kernel
bandwidth, and N is the number of random values of the electron loss locations ρi. The
selection of an optimum bandwidth and an optimum kernel function is a separate subject
in mathematical statistics. With I(−1,1)(z) being equal to unity inside the (−1, 1) interval
and equal to nought outside, kernel functions typically in use include the rectangular
window function

K(z) =
1
2

I(−1,1)(z), (19)

Gaussian kernel
K(z) =

1√
2π

e−z2/2, (20)

Epanechnikov kernel

K(z) =
3
4

(
1− z2

)
I(−1,1)(z), (21)

and others.
The algorithm to calculate f (ρ) via the kernel p.d.f. estimator (18) is as follows. First of

all, N uniformly distributed random numbers ui in the (0, 1) interval need to be generated,
where i ∈ 1, N. Each ui will represent the value of the probability (2) for an atom to reach
the location Λi along the injection line in plasma in accordance with

ui = e
−

Λi∫
Λen

dl
λm f p(l) . (22)

Next, the corresponding Λi values need to be calculated from (22) for each of the N
numbers ui. The knowledge of the local mean free path λm f p of an atom in the plasma
is required, as a function of the kinetic energy of the atom and the plasma parameters
depending on the spatial coordinates. After that, the obtained values Λi of the length along
the injection line need to be recalculated into the corresponding values of the effective
radius ρi where the electron loss occurs. For this, the equation of the injection line is needed
and the transformation of the coordinates in configuration space (Cartesian of cylindrical)
to flux coordinates using the magnetohydrodynamic equilibrium data determining the
geometry of magnetic surfaces. Finally, the obtained ρi values need to be substituted to (18).

Calculations show that both the statistical approach (18) and the analytical Formula (15)
for the probability density f (ρ) for the ρ coordinate of the electron loss location lead to the
same source function S(ρ).

4. Calculations of Spatial and Angular Distributions of the Fast Ion Source

The initial angle between the fast ion velocity and the magnetic field, i.e., the angle
between the injection line and the magnetic field at the spatial point where the fast neutral
beam atom undergoes the electron loss, is obviously not constant along the injection line.
The source of fast ions has a certain angular distribution. This section illustrates the
approach to calculate this distribution.

In addition, the source function S(ρ) considered in Section 2 was obtained for the
injection along a mathematical line, which is an abstraction, necessary as a building block
for the modelling of realistic beams. This section also describes the approach to calculate
the source of fast ions in the plasma for the case of a finite width of a neutral beam.
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Figure 5a shows the poloidal cross-section of magnetic surfaces, i.e., the nested iso-
lines of the normalised poloidal radius calculated on the basis of magnetohydrodynamic
equilibrium data for the DEMO-FNS project [34] for a candidate operating regime used
herein as a sample case. Either analytical equilibria such as the Soloviev solution [35] of the
Grad–Shafranov equation or numerical magnetohydrodynamic codes such as [36] can be
employed. The values Rax and Zax in Figure 5a refer to the magnetic axis position, ah is
the horizontal minor radius, the values ε(1), τ(1), and ∆(1) correspond to the elongation,
triangularity and the Shfranov shift calculated for the last closed flux surface (LCFS), V(1)
denotes the volume enclosed by the LCFS, and S(1) is the LCFS area. The functions of the
volume enclosed by magnetic surfaces and its derivative, with respect to the normalised
poloidal radius, are shown in Figure 5b versus the normalised poloidal radius defined
by (1).
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magnetic surface versus the normalised poloidal radius and the derivative of the volume (right scale)
calculated for a candidate regime of DEMO-FNS.

Details of the implementation of the analytical geometry to calculate coordinates along
injection lines and the transformation between cylindrical coordinates (R, Z, ϕ) and flux
coordinates (ρ, ϑ, ϕ) are not discussed here since these both are rather common techniques.
Suffice it to mention that the volume enclosed by the magnetic surface labeled ρ is given by

V(ρ) =

ρ∫
0

2π∫
0

2π∫
0

R(ρ̃, ϑ, ϕ)|J|dρ̃dϑdϕ, (23)

the azimuthal (toroidal) angle ϕ ∈ [0, 2π) preserves when azimuthally symmetric magnetic
surfaces are assumed for tokamaks, and the Jacobian determinant is

J =

∣∣∣∣∣∣∣
∂R
∂ρ

∂R
∂ϑ 0

∂Z
∂ρ

∂Z
∂ϑ 0

0 0 1

∣∣∣∣∣∣∣. (24)

Jacobian determinant (24) calculated using the DEMO-FNS magnetohydrodynamic
equilibrium data is depicted in Figure 6 as a surface plot versus the normalised poloidal
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radius ρ and the poloidal angle ϑ to illustrate a typical example of the qualitative behaviour
for a tokamak equilibrium where the volume derivative is

dV
dρ

= 2π

2π∫
0

R(ρ, ϑ, ϕ)|J|dϑ. (25)
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The coordinate transformation procedure is involved in such calculations.
A 3D mesh in Figure 7a illustrates the last closed flux surface corresponding to the

normalised poloidal radius ρ = 1. The three lines in Figure 7a show three different
injection directions corresponding to three different values of tangency radius. The values
of the effective radius (dashed lines) and the angle (solid lines) between the injection line
and the magnetic field vector are shown in Figure 7b for each of the injection lines by the
corresponding colours. The radial profiles of the plasma parameters used in calculations are
shown in Figure 8. The profiles were fixed, and no self-consistent iterative procedures were
involved herein to simulate the effect of neutral beam injection on the plasma parameters.
The specified impurity densities represent a sample model example used for illustrative
purposes. In practice either numerical modelling, or experimental data are required.

Actual neutral beams of a finite width are approximated by a large number of mathe-
matical lines, i.e., infinitesimal beams. Injection geometry and beam divergence are taken
into account. A certain neutral current is attributed to each of the injection lines in accor-
dance with the beam current density distribution in the beam cross-section plane. Figure 9a
shows such approximations of beams with cross-section areas comparable with the poloidal
cross-section area of the plasma column. Three beams are shown, each of which is approxi-
mated by a large number of mathematical lines. The central lines of the beams are the lines
shown in Figure 7a by the corresponding colours.

The resultant source function of fast ions in the plasma is calculated for a neutral beam
of a finite width as the sum of the source functions obtained as described in Section 2 for
each of the mathematical lines all together approximating the beam. An example of such a
calculation is shown in Figure 9b for three neutral beams shown in Figure 9a assuming the
magnetohydrodynamic equilibrium depicted in Figures 5 and 6.
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Figure 7. (a) LCFS and three injection lines corresponding to three different target points or tangency
radii R = 2056 mm (red), R = 2481 mm (orange), R = 2906 mm (yellow); (b) Values of the effective
radius (dashed curves, right scale) and the injection angle (solid curves, left scale) along the three
injection lines versus the distance along the corresponding line.
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The distribution of the source of fast ions in the plasma noticeably depends on the
beam injection geometry. Different colours in Figure 9b correspond to different tangency
radii of the beam central lines. Mathematical modelling of the interaction of fast ions with
the background plasma is described in [37] and references therein.

The initial beam current density distribution in the beam cross-section plane is shown
in Figure 10a, and the residual beam current density distribution where the “remainder” of
the beam “exits” the plasma is shown in Figure 10b. This is the so-called shine-through
which is rather small in this example being three orders of magnitude weaker than the
initial beam current density. For a more peripheral injection, i.e., for the beam with tangency
radius R = 2906 mm shown by the yellow colour in Figure 9a, the shine-through current
density is greater reaching several per cent of the initial current density.
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Figure 9. (a) Approximation of finite width neutral beams by a large number of mathematical lines.
The central injection lines correspond to those shown in Figure 6a; (b) Source functions of fast ions
produced by neutral beams depicted by the corresponding colours.
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Figure 10. (a) Initial neutral particle current density distribution over the beam cross-section;
(b) Residual neutral particle current density distribution over the beam cross-section (shine-through)
for the beam with tangency radius R = 2056 mm corresponding to the red colour in Figure 8a.

The angular distribution of the source function at each magnetic surface is calculated
as a histogram of the values of the angle between the injection line and the magnetic field at
the point where the beam atom undergoes the electron loss. Figure 11a,b show the obtained
angular distributions at ρ = 0.4 and at ρ = 0.8 respectively. Angular distributions of the
source of fast ions in the plasma noticeably depend on the beam injection geometry as well.
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Figure 11. Angular distributions of the source of fast ions produced by three neutral beams shown in
Figure 8a by the corresponding colours, (a) at ρ = 0.4; (b) at ρ = 0.8.

Figure 12 shows verifications of the spatial and angular distributions of the source
of fast ions in the plasma due to neutral beam injection. The lowermost curves are those
obtained for finite width beams with nominal cross-section areas. The other coloured
curves were calculated for narrower beams with smaller and smaller cross-section areas.
Figure 12a shows that as the beam cross-section is decreasing, the source function is
approaching the radial distribution, shown by the grey colour, obtained for a mathematical
line corresponding to the central line of the beam. Similarly, Figure 12b shows that as the
beam cross-section is decreasing, the angular distribution is approaching the curve, shown
by the grey colour, obtained for a mathematical line corresponding to the central line of the
beam, as it ought to be.
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Figure 12. (a) Verification of the source function of fast ions produced by the neutral beam with
tangency radius R = 2906 mm; (b) Verification of the angular distribution of the source of fast ions
produced by the neutral beam with tangency radius R = 2056 mm.

It should be noted that although an azimuthally symmetric sample case is illustrated
for simplicity, the presented general formalism for the fast ion source due to neutral beam
injection is certainly applicable equally well for stellarator/heliotron devices, however the
treatment of the equilibrium and coordinates will be different, e.g., based on [38].



Atoms 2023, 11, 24 13 of 15

5. Conclusions

Explicit general analytical formulae have been obtained for the source of fast ions
originating from the injection of fast neutral beams into magnetically confined fusion
plasma. Two derivation methods for the analytical formulae have been demonstrated.
Both the phenomenological and the formal mathematical approach lead to identical results,
which fact is one of successfully performed verifications of the obtained results. In addition,
an alternative method has been described for calculations of the source of fast ions in a
beam heated plasma. This method is based on mathematical statistics and the use of kernel
estimation of the probability density, also called kernel smoothing. For this approach related
to statistical modelling, an explicit mathematical formulation is given as well. This method
of statistical modelling of the penetration of neutral beams into plasma produces the same
results as calculations by the analytical formulae, which is an additional verification.

The obtained results have been applied to a sample case input data corresponding to a
candidate operating regime of a classical tokamak DEMO-FNS [34]. Spatial and angular
distributions of the source of fast ions in plasma subject to neutral beam injection have been
obtained. As an extra verification, a number of test calculations have been performed with
a gradual decrease in the cross-section area of the injected beam. As it ought to be, in this
case the results approach the distributions calculated independently for the simple limiting
case of a mathematical line.

The use of a rigorous analytical approach is beneficial for the development of the
physics basis of controlled fusion and the reliability, reproducibility, and operation speed
of integrated numerical codes.
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