
Citation: Connerade, J.-P. The Atom

at the Heart of Physics. Atoms 2023,

11, 32. https://doi.org/10.3390/

atoms11020032

Academic Editors: Himadri S.

Chakraborty and Hari R. Varma

Received: 21 December 2022

Revised: 1 February 2023

Accepted: 2 February 2023

Published: 6 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atoms

Opinion

The Atom at the Heart of Physics
Jean-Patrick Connerade 1,2

1 Quantum Optics and Spectroscopy Group, Physics Department, Imperial College London,
London SW7 2BZ, UK; jean-patrick@connerade.com

2 European Academy of Sciences Arts and Letters (EASAL), 75006 Paris, France

Abstract: A number of reasons are advanced for which atoms stand at the heart of research in the
physical sciences. There are issues in physics which are both fundamental and only partly resolved or,
at least, imperfectly understood. Rather than chase them towards higher and higher energies, which
mainly results in greater complexity, it makes sense to restrict oneself to the simplest systems known,
held together by the best understood force in nature, viz. those governed by the inverse square law.
Our line of argument complements the adage of Richard Feynman, who asked: should Armageddon
occur, is there a simple, most important idea to preserve as a testament to human knowledge? The
answer he suggested is: the atomic hypothesis.
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1. Introduction

Scientists, although it may not always be apparent, do follow trends, and scientific
fashions, like others, come and go. We see the birth of new journals, covering areas nobody
had named before and there is always a temptation to consider that a subject must appear
strikingly new to be of interest. However, novelty is more elusive than it seems. Some areas
use new words, but the key point is whether they involve new principles. In reverse, when
considering the importance of a field of research, it is just as relevant to enquire how long it
has been pursued fruitfully rather than always insisting on evident novelty. Thus, Richard
Feynman [1], in his celebrated series of lectures, once asked a fundamental question. In the
event of Armageddon, were all human knowledge to be threatened with extinction, is there
one single idea which should be preserved for future inhabitants of our planet? The answer
he suggested is The atomic hypothesis, namely that all matter is made of atoms. When one
considers how ancient this idea is, stretching back at least as far as Democritos, issues of
fashion may well appear secondary. There is, however, another aspect to consider. Once
a problem is fully resolved, a subject previously regarded as very relevant may suddenly
cease to be attractive. So, a periodic re-appraisal of central themes is a necessity in scientific
research to make sure they remain relevant.

2. Concerning Unsolved Problems

Unanswered questions and unsolved problems are the true stimulus of scientific
investigation. The discussion presented here is an attempt to consider why atomic physics
is useful from the standpoint: how does it help us deal with so far incompletely resolved
issues in science?

This form of discussion is more difficult than presenting results. Conventionally,
through the corpus of research papers, scientists must present solutions, i.e., answers which
advance our understanding. Discussing unsolved problems means approaching research
from the opposite point of view. The importance of an area of work then stems from the
difficulty of discovering answers or, to put it another way, ‘so far unsolved’ problems are
regarded as very significant. If an area of investigation does not call for new methods or
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principles, it then implements nothing fundamentally ‘new’. As a simple example, bio-
chemistry is an important subject, because, despite great strides in contemporary research,
nobody can claim to understand how a particular molecular structure comes to life while
another, little different and of equivalent complexity, remains inert. (e.g., Salam [2]).

Model problems which can be solved exactly in physics are all very interesting, but
turn out to have limited scope. Inevitably, they involve some kind of compromise with
reality. Thus, an allegedly simple situation, such as the two-body problem (hydrogen) in
quantum mechanics is closely related to Newton’s exact solution of the two-body problem
in celestial mechanics, but neither of them really exists in nature. Taking hydrogen first [3],
there are different degrees of approximation. The Schrödinger equation possesses many
wonderful properties, but there are also difficulties associated with its use. Its leading term
is the nonrelativistic kinetic energy, which obeys the Galilean transformation law. The next
term is a scalar electric potential, i.e., an incomplete electromagnetic term. One can insert
the vector potential of electromagnetism into the first term, but the result is no substitute
for a proper covariant equation.

In addition, there is the difficulty that time, in quantum mechanics, possesses no
associated operator and is not ‘quantised’. It appears in the Schrödinger equation as a
classical parameter (see, e.g., [4] for discussion) and is therefore different from space in
this respect. The next improvement is to replace the Schrödinger equation by the Dirac
equation [5] which, at least formally, satisfies the Lorentz transformation, but this does
not dispel the qualitative difference between space and time just noted. Furthermore,
this is still not enough, because neither of these equations allow for the quantisation of
radiation. Further progress takes us into quantum electrodynamics and quantum field
theory, for which we must accept that no exact solution is known. One usually resorts to
the so called Furry picture [6], which introduces radiation via a perturbative scheme, with a
complexity increasing order by order as the calculations are improved and further extended.
At present, this is seemingly the best one can do to compute the two-body problem in
quantum mechanics.

3. Is There a ‘Pure’ Two-Body Problem?

One might at first suspect that the problem just described occurs only due to the
radiation field. However, even in celestial mechanics, it turns out, first, that there is no such
thing as an isolated two-body system in nature and, second, that the gravitational field
is not the only force between two particles. The first of these problems was addressed by
Poincaré in 1891 [7]. He considered the three-body problem and proved that the orbits do
not close. They give rise to chaos (non-integrable solutions of the equations of motion),
even allowing only for a pure gravitational field. The best one can do is to obtain very local
solutions, such as the one discovered by Lagrange [8] in connection with the system known
as ‘the Greeks and the Trojans’ in astronomy.

The second issue (i.e., the existence of further fields of force) emerges in high energy
physics. Accelerators of ever greater sophistication allow all of the forces between a pair
of particles to be explored by increasing their relative energies to extremely high values.
Entirely novel systems of particles then appear. This has opened up a magnificent and
inspiring intellectual adventure in modern physics, culminating in the unification of all the
fundamental forces (with the sole exception of gravitation [9]. Its crowning achievement
is the Weinberg–Salam theory. The next unification point (to include gravitation) would
require an energy of 1017 GeV, way beyond what can be reached experimentally, except
perhaps through astronomical observation of early (remote) stages of the universe. These
are all wonderfully impressive developments, but they do not bring us closer to resolving
the issue raised at the outset of the present comment.

Chasing the two-body problem towards higher and higher energies does not preserve
the simplicity of the original two-body system. In fact, one of the main consequences is
the production of many new particles, which of course can be classified through a novel
form of spectroscopy. However, their presence complexifies the system. I will argue that, in
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quantum mechanics, even at low energies, the pure two-body problem is something of an
illusion, despite the impression that ‘exact solutions’ exist. In reality, the closest we can get
to it, and to extending it to a few bodies, occurs in atomic physics.

4. The Challenge of the ‘Few-Body’ Problem

So far, the problem uncovered by Poincaré in classical mechanics remains unsolved,
even at low energies, and this transposes into quantum mechanics when the latter is set
up following the path of Landau and Lifshitz [10,11]. One can well argue that, in addition
to discovering new particles or unifying the fundamental forces, one should continue to
study an energy range within which interactions remain limited to the best-documented
interactions in physics (i.e., those governed by the inverse square law) and to investigate
the effect of slowly increasing the number of interacting particles (essentially electrons,
protons and neutrons) within a system. This brings us straight back to atomic physics and
to the periodic table of elements as the set of basic situations to study. Atoms thus appear
as the ideal testing ground for the many-body problem.

Although one refers to ‘many-body’ effects in atomic and molecular physics, this
terminology is not really the most accurate. The word ‘many’ creates the impression that
the difficulties involved necessarily increase with number. In fact this is not the case. For
example, an infinite ‘sea’ of occupied states (as considered originally by Dirac to handle
the negative energy states in his equation) minus only one particle behaves as just a single
‘antiparticle’, viz: the positron. Likewise, the fundamental antisymmetry of many-electron
states lead to the discovery of ‘closed electronic shells’ and a single ‘hole’ in a closed shell
is, again, similar in behaviour to a single ‘antiparticle’. Thus, in some situations, quantum
mechanics allows a more promising description of the many-body problem than classical
mechanics. In a sense, this is a surprising consequence of a more sophisticated theory.
‘Few-body problem’ might be a better description.

Perhaps one should even restrict the definition of the most suitable energy range by
excluding excitation energies high enough to produce electron–positron pairs. This would
avoid not only single excitations of very high energy, but also multiphoton excitation by
very intense laser fields and would stay more closely within the first order of the Furry
picture [6].

5. The Awkward Connection between Classical and Quantum Mechanics

Even if we do restrict ourselves carefully, as just described, there are deeper issues to
consider. As already noted, the three-body problem in classical mechanics cannot be solved
exactly. This may seem semantic, since pretty accurate perturbative methods, well known
to astronomers, can handle most practical problems when computing orbits. However, the
issue looms again in the formulation of elementary quantum mechanics.

For this purpose, we need to specify the correct Hermitian operator to associate with
each and every observable while avoiding an extensive and clumsy table as a separate
postulate. A first approach, suggested by Bohr and Sommerfeld and refined by Landau
and Lifshitz [10,11], was to study the so-called ‘semiclassical limit’ of quantum theory
via the ‘correspondence principle’ through which the quantum and classical theories are
supposed to merge. To be useful, the process would need to be applied ‘backwards’ i.e.,
from classical to quantum physics, since the classical problem is the one regarded as ‘well-
understood’. The procedure, however, involves integration around closed orbits of the
underlying classical systems.

The difficulty, as Einstein famously objected, is: what should one do if the orbit never
closes? Unfortunately, this is precisely the case for the few-body problem, as Poincaré [7]
had discovered. So, the Bohr–Sommerfeld ‘principle’ actually fails in most situations except
for a few ideal, integrable problems, such as the harmonic oscillator, Newton’s two-body
problem, etc. There are some complicated orbits (the Landau orbits) which resemble
Lissajoux figures in phase space because they ‘eventually’ close, but these are not sufficient
in number to account for all possible orbits of a non-integrable system.
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Thus, ‘difficult’ situations, such as three-body problem, a pendulum with a magnet,
etc., cannot strictly be handled in this way. In classical physics, a pen attached to a
pendulum with a magnet underneath will write all over a piece of paper within the
constraint imposed by its total energy and will never follow the same path twice, i.e., the
orbit will never close. This leaves us with the complication that, despite the intuitively
rather obvious correspondence principle, classical mechanics contains information which
simply cannot be transferred to quantum mechanics. Why this happens remains a matter
of opinion.

We end up with two physical theories connected by an imperfect correspondence.
On the one hand, classical mechanics contains systems with both integrable and non-
integrable solutions, while, on the other, quantum mechanics seemingly allows only one
kind of solution. A legitimate question becomes: does the semi-classical limit of quantum
mechanics recover all or can it recover only a part of classical mechanics?

To this one can add, starting out from the Dirac equation, that no semi-classical limit
is known for this case, since the solutions involve spinors, and spin does not exist in
classical physics. Hence, in the relativistic theory, the whole concept of the correspondence
principle as the basis of a systematic method to set up quantum mechanics breaks down,
which is why, in response to the question ‘why is there no book by Landau and Lifshitz on
relativistic quantum mechanics?’, Lev Landau is said to have replied; “Because there is no
such theory!”

6. The Structure of Empty Space

Another way of looking at the question is to ask what one would mean by orbits
which do or do not ‘close’ in quantum mechanics. Would asking this very question imply
a violation of the uncertainty principle? In quantum mechanics, should one consider
phase-space itself as exhibiting a granular structure, with dimensions of individual grains
determined by the magnitude of Planck’s constant? Would it then suffice for the electron
to return to within one such grain for an orbit to be regarded as ‘closed’? This of course
suggests a different definition of dynamical ‘chaos’ for classical and for quantum systems.
There has been much discussion of the issue since the earliest experiments, by Garton and
Tomkins [12], revealed the problem.

The refinement would be all well and good were it not that the theory of relativity
requires space-time to be continuous and freely differentiable in the sense of classical
mechanics. Hence, no doubt, Einstein’s insistence that the Bohr–Sommerfeld quantisation
was unsatisfactory. The nature of space (continuous or granular) becomes an awkward
issue. It is even more so when we consider the difference between space (a true observable)
and time (a classical parameter) in quantum mechanics, already noted above. There is
perhaps no other situation in which the incompatibility of the two conceptions of empty
space is so apparent as in atomic physics.

The problem of infinite divisibility, first raised by Pascal [13] in connection with
the structure of atoms and of matter itself, re-emerges when one attempts to extend the
equipartition theorem to microscopic systems. As commented by Dirac [5], it would
ultimately imply infinite specific heats. Granularity is therefore also an essential ingredient
in thermodynamics and this remark provided one of the earliest ‘proofs’ of the necessity of
quantum mechanics.

7. Compressed Atoms

In the kinetic theory of gases, atoms and molecules also play an essential role without
which the concept of pressure would remain undefined. It is assumed that they behave
as point-like masses, bombarding one side of the walls of the container. The average
force they exert is given as the origin of pressure, which becomes a macroscopic thermo-
dynamic variable. Unfortunately, this picture, as so often happens in physics, becomes
less straightforward as corrections to the ideal gas law are introduced. The first, due to
van der Waals, involves attributing intrinsic volume to the atoms or molecules, but this
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volume is considered as ‘fixed’. The reason for imposing this restriction is to preserve the
consistency of the formalism, but it is obvious that a physical volume cannot remain fixed
as the pressure increases. The real situation must of necessity be more complex.

Within the Thomas–Fermi model of the atom [14,15], the effect of externally applied
pressure is readily understood as the compression of an electron ‘gas’. One can simulate
it by changing the external boundary condition and studying how the total energy and
occupied volume are related. Within the Schrödinger picture also, the electron cloud is
a kind of ‘fluid’ with the Schrödinger equation as an equation of state. Changes in the
external boundary conditions then act like the external piston. The model just described
was developed by Hellman [16], Feynman [17] and Feynman et al. [18]. Within it, there are
difficult issues relating to the different definitions of probability in thermodynamics and in
quantum physics which have to be reconciled.

This takes us to the area of microscopic thermodynamics and confined atomic sys-
tems ([19] and refs. therein). The natural starting point is still the Thomas–Fermi model
of the atom because it provides the atom with a well-defined volume to start with. How-
ever, there is nothing to prevent extending the idea to the Hartree–Fock and Dirac–Fock
equations (see [20] and earlier refs. therein). One readily establishes that the periodic table
for atoms under compression is not the same as for free atoms because the order of filling
is modified and actually approaches the ideal and complete aufbau principle (see [21] )
more and more closely as the pressure is increased. A whole new chemistry opens up for
study, for underlying reasons which stem from atomic physics, but it remains necessary to
perform extensive ab initio calculations to account for them in detail (see e.g., [22]). One can
think of many experimental applications (bubbles in solids, clusters, polaronic insertion of
ions, atoms under extreme pressure, etc.).

8. Endohedral Confinement

Closely related to the atom under pressure is another novel area of research, namely
the atom endohedrally confined within a hollow molecule, the most typical example being
the metallofullerene. There are basically two conceptual approaches for such systems.
The first is to attempt full molecular calculations, from which geometrical structures and
symmetries can in principle be deduced (e.g., [23]). The second is to approximate the
confining molecule semi-empirically as a hollow, spherical potential shell whose properties
can be deduced experimentally from electron scattering experiments [24]. Apart from
greater simplicity, the latter approach allows one to include some important quantum
effects, such as the occurrence of confinement resonances [25].

9. Many-Body Theories of the Atom

Returning to the (unsolved) many-body problem, three general remarks can be made.
The first, as noted above, is that many-electron states in quantum mechanics obey the
Pauli principle. There is no such principle in classical physics, so we have good reason to
hope for a better understanding of the many-body problem. The periodic table informs
us about the properties of closed shells. They imply that atoms return regularly to nearly
spherical shapes at each period as the number of electrons is increased, which is the crucial
simplifying feature.

A first step towards the many-body theory of the atom is of course to solve the coupled
system of ‘independent electron’ Schrödinger equations by the Hartree–Fock method [26],
refined by the introduction of mixing between configurations. This method has been
successfully extended to the Dirac equation [27] despite a complication originally pointed
out by Brown and Ravenhall [28] for the multiconfigurational Dirac–Fock method: namely
that configuration mixing, in this case, might involve negative energy states which cannot
all be ‘filled’ simultaneously, in which case the variational principle upon which the Hartree–
Fock method rests for convergence would collapse. This is somewhat controversial because
properly converged multiconfigurational Dirac–Fock solutions have been obtained [27]
and correspond very well with experimental data. It would be desirable for practitioners of
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the method to dispel any residual uncertainty surrounding this alleged ‘dissolution into
the negative energy continuum’ if it is indeed a real effect.

Plasmon excitations (i.e., oscillations of closed shells) in free atoms can be computed
either by the many-body perturbation theory (MBPT Kelly [29]) or by the random phase
approximation with exchange (RPAE Amus’ya et al. [30]). These two theories are not
equivalent, even when the perturbative expansions are performed on the same independent
electron atomic basis. In the MBPT, all of the terms identified by their Feynman graphs
are summed up to a given order, but the summation cannot be extended to the high order,
as the computations become progressively more and more extensive. In the RPAE, only
two classes of diagrams are treated (the forward bubble diagrams and their exchange
equivalents) but they are summed to the infinite order. Obviously, the two approaches
cannot be equivalent. These are the two theories we have at our disposal, neither of which
is ‘complete’. Both are useful, generally in different situations, the MBPT being more
appropriate for open-shell systems and the RPAE for closed shell or half-closed shell atoms.

This ambivalence, again, can be taken to express the fact that we have no general
solution of the many-body problem in quantum mechanics. The study of plasmon effects
(giant resonances) in free atoms and in atoms trapped in different environments is one
of the more promising areas for developing and improving theoretical tools to handle
many-body systems.

The formation of negative ions by addition of an electron to a neutral atom also goes
beyond the convergence capabilities of the Hartree–Fock basis. The polarisation of atomic
shells by the extra electron is the mechanism involved. In this situation, a new model has
been developed based on the many-body Dyson equation [31] which holds great promise
for systematic computations of different negative ion species.

10. Wigner Scattering Theory and the Wigner Time delay

Atoms, of course, involve no new forces as compared to other physical systems
and, in line with the economy of principles which should ultimately underpin a general
understanding of nature, would be best described within the same, single, conceptual
framework as all the other physical systems. The theory which best accomplishes this is
the Wigner scattering theory [32,33], because it is extremely general in its formulation. It
applies to all branches of physics where quantum scattering occurs and does not even
require an explicit solution of the Schrödinger equation, but only postulates the existence
of a differential equation of the Schrödinger type, together with the boundary conditions
usual in quantum mechanics.

Even in this general context, however, atoms still have a very special role to play, by
virtue of the asymptotic inverse square law of force, which allows the external K-matrix to
be inverted analytically [21,34,35]. This situation is unique, on a par with Kepler’s laws of
planetary motion in a central inverse square field of force.

Scattering is, of course, not an instantaneous process because it involves the propaga-
tion of a scattered wave. This implies a time delay which, as shown originally by Wigner,
is given by the derivative of the phase shift of the scattered wave with respect to energy.
In the context of condensed matter or of large molecules or clusters, Wigner time delays
are readily measurable by short pulse laser techniques. For individual atoms, this can
also be true. A pioneering example is the work of Bourgain et al. [36] on the resonance
line of a single trapped Rb atom, for which a time resolution of 256 ps proves adequate.
The really interesting situation, however, is for interacting autoionizing resonances [35],
where the time scales generally become much shorter (in the attosecond range) so that
experimentation has only become feasible recently by ultrashort pulse technology.

11. Atomic Clusters

Traditionally, the transition from the free atom to the solid state has always been
imagined by ‘piling up’ atoms or attempting to model infinite sequences similar to crystals.
More recently, it has been shown [37] that this description gives an incomplete picture of
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the transition from the free atom to the solid. In reality, when atoms are piled together one
by one, they first form clusters and several different transition points occur, depending
on which physical variable is under study. Thus, the emergence of solid state properties
occurs in different ranges as the size of a cluster is increased (e.g., [37–41]) etc.

Again, via the physics of clusters, the properties of atoms are central to a good un-
derstanding of condensed matter, achieved by adding them together one by one. Experi-
mentally, the evolution of clusters as a function of size is now accessible by the study of
mass-selected clusters. This is particularly interesting in the context of the present article for
metallic clusters, because they possess delocalised electrons (precursors of the conduction
bands in solids) and form closed electronic shells similar in principle to those of noble
gas atoms.

12. Mie and Shape Resonances—Wigner Time Delays

The dynamics of such shells turn into the Mie resonances of classical electrodynam-
ics [42]. In quantum systems with closed shells, they become shape or giant resonances. As
such, they involve the collective pulsation of several electrons, i.e., an intrinsic ‘many-body’
effect which, however, is very short-lived as it is strongly damped. It can be calculated by
the many-body perturbation theory (RPAE or MBPT) in non-relativistic or in relativistic
versions and can also be modelled by using an effective atomic potential, which must
include the influence of the centrifugal barrier, i.e., the angular momentum term in the
radial Schrödinger equation. They are due to the shape of this effective potential, hence
the name.

The physics of atoms with d and f subshells and the study of metallic clusters with
delocalised electrons forming closed shells have revealed for both atoms and metallic clus-
ters, the importance of the collective many-body phenomena or plasmon excitations [43].
By analogy with nuclear physics and in connection with the sum rule for a given atomic
shell, they are termed ‘giant resonances’ when they exhaust most of the available oscillator
strength available within a single feature. A peculiar property of these excitations for
atoms is that they occur deep inside the system and are able to survive in different phases,
from the free atom to clusters, molecules and solids [44], in contrast with other atomic
states which are destroyed. This opens up new possibilities for extending and adapting
many-body theories within different environments.

Giant resonances, or rather their Fourier transforms, yielding observable Wigner time
delays, are also relevant in attosecond spectroscopy. As noted above, this new range of
time intervals has recently become accessible to ultrafast laser experiments. A fine example
is by Biswas et al. [45]. The observation of photoionization and the corresponding time-
resolved atomic spectra provide complementary information which may eventually help
to discriminate between the predictions of different models, such as the RPAE, RRPAE and
MBPT theories and pseudopotential models.

13. Cooling, etc.

Last but by no means least, an area not covered in the present Comment, because
it is a huge subject in its own right and would require a good deal more space, is the
theme of atomic cooling and trapping, the Bose–Einstein condensation and all of the effects
described by the Gross–Pitaevsky theory of ground-state bosonic fluids [46,47]. A Bose–
Einstein condensate is a gas of bosons which are all in the same quantum state, described
by a single wavefunction. The Gross–Pitaevsky equation is essentially a transposition of the
Hartree–Fock theory to the ground state of a quantum system of identical bosons using a
pseudopotential interaction. Both in terms of the general principles involved and the fluids
to which they are applied, atomic physics is central also to this extensive area of study.

14. Conclusions

In summary, atomic physics remains a privileged testing ground for the fundamental
problems of physics which are so far incompletely resolved, extending from the many-
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body theory to relativistic mechanics, the nature of ‘empty’ space and the principles of
quantum field theory, as well as the full connection between quantum mechanics and
classical physics, also including thermodynamics. Thus, the atom, as a system, remains
very much at the heart of contemporary research in physics and chemistry.
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