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Abstract: Modeling plasmas in terms of atoms or ions is theoretically appealing for several reasons.
When it is relevant, the notion of atom or ion in a plasma provides us with an interpretation scheme
of the plasma’s internal functioning. From the standpoint of quantitative estimation of plasma
properties, atomic models of plasma allow one to extend many theoretical tools of atomic physics to
plasmas. This notably includes the statistical approaches to the detailed accounting for excited states,
or the collisional-radiative modeling of non-equilibrium plasmas, which is based on the notion of
atomic processes. This paper is focused on the theoretical challenges raised by the atomic modeling
of dense, non-ideal plasmas. It is intended to give a synthetic and pedagogical view on the evolution
of ideas in the field, with an accent on the theoretical consistency issues, rather than an exhaustive
review of models and experimental benchmarks. First we make a brief, non-exhaustive review of
atomic models of plasmas, from ideal plasmas to strongly-coupled and pressure-ionized plasmas.
We discuss the limitations of these models and pinpoint some open problems in the field of atomic
modeling of plasmas. We then address the peculiarities of atomic processes in dense plasmas and
point out some specific issues relative to the calculation of their cross-sections. In particular, we
discuss the modeling of fluctuations, the accounting for channel mixing and collective phenomena in
the photoabsorption, or the impact of pressure ionization on collisional processes.
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1. Introduction

Plasma physics, in its generality, deals with the physics of partially or fully ionized
matter, not having a periodic structure (i.e., ionized fluids). Fundamentally, a plasma is
just a collection of a large number of electrons and nuclei interacting through Coulomb
potentials, both repulsive and attractive. The notions of atom, ion, free-electron, and
ionization are interpreting schemes that may emerge from particular models and should
not be seen as objects whose existence is pre-supposed.

In the following, we focus on the case of homogeneous plasmas in thermodynamic
equilibrium. In this context, homogeneous means that the thermodynamic averages of
the particle densities have no spatial variation. Any spatial inhomogeneity or structure
(electronic structure or fluid structure) that is considered is then a matter of correlations
among the particle positions.

Due to the existence of long-range attractive potentials in the system, a first-principle
modeling of plasmas based on classical mechanics only is virtually impossible because
of the classical Coulomb catastrophe. It requires either an ad hoc modification of the
potential at short distances (regularization, cut-off, smearing of charges, etc.) or a well-
chosen hypothesis that allows one to circumvent this problem. In a sense, whatever the
thermodynamic conditions, the quantum behavior of the electrons is always essential in
founding the stability of plasmas [1–5].

Among the various models that may be used to describe plasmas, models that define
a notion of atom or ion are particularly appealing. We mean here an idealized system
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that describes the plasma using effective 1-electron states (orbitals) stemming from a
spherically symmetric 1-electron Hamiltonian. With such a model, one can greatly reduce
the complexity of the description of the microstates of the plasma, using the notion of
atomic excited states.

A description of the atomic excited states in the plasma is essential to the modeling of
spectral quantities, such as radiative properties, which can reveal the fluctuations around
the average atomic state. More generally, many phenomena are described using approaches
based on the notion of atomic processes. One may cite, for instance, the collisional-radiative
modeling of plasmas out of local thermodynamic equilibrium [6,7], or the approaches to
line-broadening mechanisms (see [8–12], and [13] for a review).

Being spherically symmetric, the effective 1-electron Hamiltonian commutes with
angular momentum operators, which enables the separation of the angular part of the
1-electron states (spherical harmonic or spinors). Many-electron states can then be built
from the orbitals using a well-established mathematical apparatus, with the Wigner–Eckart
theorem as a cornerstone of matrix-element evaluation. Methods of angular-momentum
coupling were thoroughly studied, both as regards the formalism [14–18] and the numerical
methods [19,20].

Due to the tremendous number of populated atomic states at high temperatures,
statistical grouping of energy levels is particularly useful for hot-plasma modeling. Analytic
results from atomic physics are available for the statistical properties of configurations [21]
and transition arrays between configurations [22–24] (UTA, SOSA). This enables powerful
detailed configuration accounting (DCA) approaches. In order to handle the calculation of
spectra for ions with a highly complex electronic structure, coarser statistical approaches
were developed, such as the Gaussian approximation [25] and the super transition arrays
(STA) formalism [26,27]. On the other hand, in order to refine the UTA approach, finer
approaches were also developed, such as the mixed-UTA [28] and the partially resolved
transition arrays (PRTA) [29].

In the present article, we briefly review a selection of atomic models of plasmas, from
ideal plasmas (Section 2) to non-ideal (Section 3) and pressure-ionized plasmas (Section 4).
We discuss the limitations of these models and pinpoint some open problems in the field of
atomic modeling of plasmas. We then address the peculiarities of atomic processes in dense
plasmas and point out some specific issues relative to the calculation of their cross-sections.
Radiative processes and photoabsorption are first considered (Section 5). In particular,
we discuss the modeling of fluctuations, accounting for channel mixing and collective
phenomena in the photoabsorption. Finally, the impact of pressure ionization on collisional
processes is briefly discussed (Section 6).

2. Atomic Modeling of Ideal Plasmas

The simplest hypothesis allowing one to circumvent the classical catastrophe is to ne-
glect all interactions in the plasma (ideal-gas approximation). Applying this approximation
directly to the system of nuclei and electrons yields an ideal-gas model valid for a fully
ionized plasma at zero coupling.

Usually, in plasma physics, the ideal-gas approximation is only partially applied. One
first defines a quasi-particle composed of a nucleus and a set of bound electrons that interact
with the nucleus and among themselves. This is the definition of an ion in this model. All
electrons of the plasma that are not bound to a nucleus are viewed as “free” electrons. One
then makes the ideal-gas hypothesis on the system of ions and free electrons. This is the
picture of an ideal plasma.

In this type of model, one usually resorts to a quantum model for the electronic
structure of the ion, which of course does not lead to the Coulomb catastrophe. On the
other hand, the ideal-gas approximation allows one to circumvent the Coulomb catastrophe
for the whole plasma of ions and free electrons.

In this context, the ion is seen as a charged, isolated system having a finite spatial
extension. It is an isolated ion since its electronic structure is obtained disregarding all
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the other particle of the plasma: other ions and free electrons. To describe this electronic
structure requires one to address an N-body problem with N ∼ Z + 1 at most, where Z is
the atomic number of the nucleus.

2.1. Saha–Boltzmann Model and Isolated Ion: A Variational Detailed Model of Ideal Plasma

The approach in which one accounts for the various electronic states of the ions
as different species is known as detailed modeling (sometimes also called the “chemical
approach”). For an ideal plasma in thermal equilibrium, this approach yields the Saha–
Boltzmann model of plasma [30,31].

The modeling of the isolated-ion electronic structure can be treated independently
from the modeling of the whole plasma. A typical quantum Hamiltonian of the isolated
ion having Q bound electrons is the Q-electron operator:

ĤQ
isol.ion =

Q

∑
j=1

P̃2
j

2me
−

Q

∑
j=1

Ze2

|R̃j|
+

Q

∑
j=1

Q

∑
k=1
k ̸=j

e2

|R̃j − R̃k|
(1)

where P̃j is the 1-electron momentum operator acting on the j electron, R̃j is the 1-electron
position operator acting on the j electron, and e2 = q2

e/(4πϵ0), with qe being the elemen-
tary charge.

The problem of finding the stationnary states of this isolated-ion Hamiltonian has a
variational formulation (Ritz theorem). However, to tackle this problem, one resorts to
approximate methods. Such methods often start with a model based on effective 1-electron
states φξ (i.e., orbitals), which are solutions of a 1-electron Schrödinger equation associated
with an effective spherically symmetric potential veff(r).

H̃eff|φξ⟩ =
(

H̃0 + veff(R̃)
)
|φξ⟩ = εξ |φξ⟩ (2)

− h̄2

2me
∇2

r φξ(r) + veff(r)φξ(r) = εξ φξ(r) (3)

with H̃0 = P̃2/(2me) being the 1-electron free-particle Hamiltonian.
Various models exist, which mostly differ in their way of obtaining the effective

potential veff(r) (Hartree–Fock–Slater [32], optimized effective potential [33], parametric
potential [34]...). In the Hartree–Fock model [35], a nonlocal exchange term is added to
Equation (3). However, the problem is often restricted to an effective 1-electron problem
having spherical symmetry (the restricted Hartree–Fock approach; see, for instance, [36]).

One then refines this approximate description using perturbation theory, performing
the diagonalization of the many-electron perturbation operators in a many-electron basis
built from the orbitals (see, for instance, [36–38]). Depending on the approach used, such
an approximate model may have a variational formulation or not.

The approximate many-electron states are naturally grouped into degenerate energy
levels, which in practice depend on the coupling scheme that is chosen. Accounting for
each level as a species is called a detailed level accounting (DLA) approach. One may also
perform detailed configuration accounting (DCA), grouping the levels according to their
parent configuration [39]. One may even group the configurations into broader statistical
objects: superconfigurations [26]. Each degree of statistical grouping goes along with a
set of ion species α to consider, each having as main properties a mean energy Eα and
a degeneracy gα. Usually the reference of energies is taken such as Eα = 0 for the bare
nucleus and the free electrons.

The classical Hamiltonian for the ion-free-electron ideal plasma is the following:

Hid({pα,j}) =
M,e

∑
α=1

Nα

∑
j=1

(
p2

α,j

2mα
+ Eα

)
(4)
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where the first sum runs over the M ion species plus the free-electron species labelled by
“e”. In this Hamiltonian, interactions among the particles of the plasma are neglected. The
ion-free-electron system is considered in the canonical ensemble and the free energy per
ion of the classical ideal-gas mixture is:

Ḟid({nα}, T) = −
M,e

∑
α=1

nα

niβ

(
log
(

gαe−βEα

nαΛ3
α

)
+ 1
)

(5)

where nα is the number of particle of species α per unit volume (in particular, ne is the free-
electron density), ni = ∑M

α=1 nα, and Λα = h/
√

2πmαkBT is the classical thermal length. We
will denote by a dot the quantities per ion, in order to avoid confusion with total quantities
or quantities per unit volume.

The equations of the Saha equilibrium model are obtained through a minimization of
the free energy of the system with respect to the species populations, while also requiring
the neutrality of the plasma and a fixed number of ions. Thus, transfers of population
among the various ion species are allowed, and the populations are ultimately set by the
condition of thermodynamic equilibrium. Only the populations, and not the quantities
related to the shell structure of the ions, stem from the model.

Ḟeq(ni, T) = Min
{nα}

Ḟ({nα}, T) s. t. ∑
α

nα = ni

s. t. ∑
α

nαZ∗
α = ne (6)

The latter minimization yields the following condition on the chemical potentials:

for all α ̸= e, µid,α(nα, T) + µid,e(ne, T)Z∗
α = λi independent of α (7)

with the classical-ideal-gas chemical potentials being:

µid,α(nα, T) =
∂

∂nα

(
ni Ḟ({nα}, T)

)
=

1
β

log
(

gαe−βEα

nαΛ3
α

)
(8)

For a plasma of a pure substance, one usually assumes the thermal lengths Λα of all
ion species to be equal: Λα ≈ Λi. From Equation (7) and the two contrains, one obtains the
populations:

nα

ni
=

gαe−β(Eα−µid,eZ∗
α)

∑M
γ=1 gγe−β(Eγ−µid,eZ∗

γ)
(9)

∑
α

nαZ∗
α = ne (10)

From these populations follows notably the mean ionization of the plasma Z∗ = ne/ni,
as a value set by the thermodynamic equilibrium condition. Obtaining the ionization state
of the plasma as a result of its equilibrium state is among the purposes of plasma modeling.

The plasma being treated in the ideal-gas approximation, the pair distribution func-
tions among the particle of the plasma are identically gα,γ = 1, and the mean interparticle
distance is Γ(4/3)Rα,γ with Rα,γ = (3/(4π

√nαnγ))1/3 (see [40]).
The thermodynamic quantities stemming from this model (internal energy, pres-

sure...) can be obtained from the free energy, using the appropriate derivatives. They
simply correspond to those of the ideal-gas mixture, taken with the equilibrium values
of the species populations. Moreover they obviously fulfill the virial theorem (in its non-
relativistic version):

Pthermo = n2
i

∂Ḟeq(ni, T)
∂ni

= Pvirial =
ni

3
(
2U̇eq(ni, T)− U̇inter,eq(ni, T)

)
(11)
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where U̇eq denotes the internal energy per ion, and U̇inter,eq denotes the interaction energy
per ion, which is zero for the ideal-gas mixture. This is an important feature as regards the
consistency of the equation of state.

An issue with the present model is that, in principle, when accounting for the excited
states in a complete manner, the partition function (denominator in the right-hand side of
Equation (9)) diverges because of the infinite number of bound states. Let us consider, for
instance, the hydrogen-like atomic states. We have:

∑
γ H-like

gγe−β(Eγ−µid,eZ∗
γ) = eβµid,e(Z−1)

∞

∑
n=1

2n2e
βZ2

2n2 α2mec2
(12)

lim
n→∞

(
2n2e

βZ2

2n2 α2mec2
)
= 2n2 + βZ2α2mec2 + O

(
1
n2

)
(13)

The two first terms of the right-hand side of Equation (13) lead to the divergence of the sum.
The solution to this puzzle is to be found in the distortion of the continuum wave

functions and in the non-ideal corrections to the Saha equilibrium. These somehow restrict
the set of states to be accounted for in the calculation. We postpone the discussion of this
point to Section 3.5 and consider that the sum is in practice truncated at some value of the
principal quantum number.

Finally, let us mention the straightforward extension of the Saha model that consists
of replacing the classical-ideal-gas free energy for the free electrons with that of the Fermi
ideal gas.

Ḟ({nα}, T) = −
M

∑
α=1

nα

niβ

(
log
(

gαe−βEα

nαΛ3
α

)
+ 1
)
+

f F
e (ne, T)

ni
(14)

f F
e (ne, T) = neµF

e(ne, T)− 2
3

uF
e(ne, T) (15)

uF
e(ne, T) =

4
β
√

πΛ3
e

I3/2

(
βµF

e(ne)
)

(16)

ne =
4√

πΛ3
e

I1/2

(
βµF

e(ne, T)
)

(17)

where the sum in Equation (14) only runs over the M ion species. f F
e (ne, T) and uF

e(ne, T) are
the free and internal energies per unit volume of a Fermi gas of density ne and temperature
T, respectively. µF

e(ne, T) is the corresponding canonical chemical potential.

2.2. Average-Atom Model of Isolated Ion from a Variational Perspective

The case of an ideal plasma of isolated ions can also be addressed through an average-
atom approach. In this kind of approach, instead of accounting for the many-electron states
in a detailed fashion, one only aims to describe the average many-electron state of the
plasma, associating fractional occupation numbers with the orbitals. The finite-temperature
density-functional theory [41–43] offers a sound theoretical basis for such models. In order
to model an average isolated ion, we just have to restrict interactions to the ion nucleus
and bound electrons and to consider that any continuum electron participate in a uniform,
noninteracting electron density ne.

The free energy per ion of such a system can be written as follows:

Ḟ
{{

pξ

}
, vtrial, ne; ni, T

}
= Ḟid,i(ni, T) + Ḟid,e(ne; ni, T) + ∆F1

{{
pξ

}
, vtrial

}
(18)

where the functional dependencies are underlined. Here, the Ḟid,i term corresponds to
the contribution of the nuclei ideal-gas and Ḟid,e corresponds to the contribution of the
free-electron ideal gas:
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Ḟid,i =
1
β

(
ln
(

niΛ3
i

)
− 1
)

; Ḟid,e =
ne

niβ

(
ln
(

neΛ3
e

)
− 1
)

(19)

where Λi and Λe are the nucleus and electron thermal lengths, respectively. As in the Saha
model, the classical ideal-gas free energy of the electrons may also be replaced by the Fermi
ideal-gas free energy:

Ḟid,e =
f F
e (ne, T)

ni
(20)

The ∆F1 term corresponds to the free-energy of the average ion electronic structure,
that is: the interacting system of bound electrons and the nucleus. We treat this system
using the Kohn–Sham method [42], that is, we split ∆F1 into the three contributions:

∆F1
{{

pξ

}
, vtrial; T

}
= ∆F0

1 + ∆Fel
1 + ∆Fxc

1 (21)

where ∆F0
1 is the kinetic-entropic contribution to the free energy of a system of independent

bound electrons, feeling an external potential vtrial(r) and having 1-electron-orbital occupa-
tion numbers {pξ} that together yield the density n(r) of the interacting bound electrons.
∆Fel

1 is the direct electrostatic contribution, and ∆Fxc
1 is the contribution of exchange and

correlation to the free energy of the electronic structure.
According to its definition, the expression of ∆F0

1 is:

∆F0
1
{{

pξ

}
, vtrial; T

}
= ∑

ξ bound

(
pξ⟨φξ |H̃0|φξ⟩ − Tsξ

)
(22)

= ∑
ξ bound

(
pξεξ −

∫
d3r{n(r)vtrial(r)} − Tsξ

)
(23)

where the sum over the ξ-indices only runs over the bound 1-electron states (bound
orbitals). pξ is the mean occupation number of the 1-electron state ξ, and the corresponding
contribution to the entropy of the effective non-interacting system is:

sξ = s(pξ) = −kB
(

pξ ln
(

pξ

)
+ (1 − pξ) ln

(
1 − pξ

))
(24)

εξ and φξ(r) are shorthand notations for εξ{vtrial} and φξ{vtrial; r}, respectively. These are
the eigenvalues and wave functions of the 1-electron states obtained in the trial potential
vtrial(r). In the non-relativistic case, they are obtained by solving the 1-electron Schrödinger
equation:

− h̄2

2me
∇2

r φξ(r) + vtrial(r)φξ(r) = εξ φξ(r) (25)

We take the convention of normalizing the φξ to unity. The trial potential vtrial(r) and
occupation numbers {pξ} are such that the density of the system of independent bound
electrons is n(r). In this context, n(r) is a shorthand notation for n

{{
pξ

}
, vtrial; r

}
:

n
{

vtrial, {pξ}; r
}
= ∑

ξ bound
pξ |φξ(r)|2 (26)

The direct electrostatic contribution ∆Fel
1 can be written as a functional of n(r):

∆Fel
1
{{

pξ

}
, vtrial

}
= ∆̃Fel

1 {n} = e2
∫

d3r
{−Zn(r)

r

}
+

e2

2

∫
d3rd3r′

{
n(r)n(r′)
|r − r′|

}
(27)
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The exchange-correlation contribution can be approximated by:

∆Fxc
1
{{

pξ

}
, vtrial; T

}
= ∆̃Fxc

1 {n; T} =
∫

d3r{ fxc(n(r), T)} (28)

where fxc is the exchange-correlation free energy per unit volume of a homogeneous
electron gas (local density approximation).

We stress that in this model, as in the Saha model, there is a strong distinction between
bound and free electrons since any electron that belongs to the continuum is considered
as non-interacting, whereas bound electrons participate in n(r) and interact both with the
other bound electrons of the same ion and with its nucleus, as is seen from the expressions
of ∆Fel

1 and ∆Fxc
1 .

In order to obtain the equations of the model, we minimize the free energy per ion,
requiring the additional constraint of overall neutrality:

Ḟeq(ni, T) = Min
pξ ,vtrial,ne

Ḟ
{
{pξ}, vtrial, ne; ni, T

}
s. t. Z − ∑

ξ bound
pξ =

ne

ni
(29)

Performing this constrained minimization, we obtain the equations of the average-atom
model of isolated-ion (AAII):

vtrial(r) = vel(r) + µxc(n(r), T) (30)

pξ = pF(µ, T, εξ) =
1

eβ(εξ−µ) + 1
(31)

µ =

{
µid,e(ne, T) (classical ideal gas)
µF

id,e(ne, T) (Fermi ideal gas)
(32)

Z − ∑
ξ bound

pξ =
ne

ni
(33)

where µxc(n, T) = ∂ fxc(n, T)/∂n, and where vel(r) is a shorthand notation for vel{n; r},
defined as follows:

vel{n; r} =
δ∆̃Fel

1
δn(r)

= −Ze2

r
+ e2

∫
d3r′

{
n(r′)
|r − r′|

}
(34)

As a consequence of addressing the average electronic configuration of an ion, the
electronic structure has to be determined self-consistently with the occupation numbers.
The calculation of the electronic structure cannot be separated from the statistical modeling,
as it is in the Saha model. This may appear as a major drawback of this model but, on the
other hand, the average-atom approach is intrinsically complete. It has no issue of practical
limitation in the number of excited multi-electron states that may be accounted for.

However, the average atom model has the same issue of divergence of the partition
function as the Saha model. If one considers, for instance, the sum of the occupation
numbers, in the non-degenerate limit of the Fermi–Dirac distribution:

∑
ξ bound

pF
ξ = 2

∞

∑
n=1

n−1

∑
ℓ=0

(2ℓ+ 1)e−β(εn,ℓ−µ) (35)

Assuming that the exchange-correlation potential µxc does not compensate the self interac-
tion in vel, we have:

lim
r→∞

vtrial(r) = −Z∗e2

r
; lim

n→∞
εn,ℓ = −Z∗ 2

2n2 α2mec2 ; lim
n→∞

n−1

∑
ℓ=0

2(2ℓ+ 1)e−βεn,ℓ = 2n2 + βZ∗ 2α2mec2 + O
(

1
n2

)
(36)



Atoms 2024, 12, 26 8 of 55

Again, we postpone a longer discussion of this point to Section 3.5 and will assume that the
principal quantum number is limited somehow.

From the free energy at equilibrium, we can derive all the thermodynamic quantities
of interest, in particular, the pressure:

P = n2
i

∂Ḟeq

∂ni
=

{
nikBT + nekBT (classical ideal gas)
nikBT − f F

e (ne, T) + neµF
e(ne, T) (Fermi ideal gas)

(37)

This corresponds to the pressure of the ideal-gas mixture of ions and free-electrons. It
may be shown easily (the method is described in [44]) that the virial theorem is fulfilled in
this model.

To conclude about this derivation, let us note that instead of considering as variables
the arbitrary occupation numbers pξ and trial potential vtrial(r), one can consider the
electron density n(r) as the variable, formally inverting the relation between vtrial(r) and
n(r). In this case, one defines vtrial{n, ne; r} as the external potential yielding the density
n(r) for a system of independent particle at equilibrium, that is, with pξ = pF(µ, T, εξ).
This corresponds more closely to the usual standpoint of density functional theory, and we
will use this one in the following derivations.

Figure 1 presents a comparison between the mean ionization: Z∗ ≡ ne/ni obtained
from the Saha equilibrium model, using a detailed configuration accounting for the ion
electron states, and the present average-atom model of isolated ion, for the case of silicon,
with an arbitrary limitation of the principal quantum number to n ≤ 8. Though the results
differ slightly, they are rather close. The qualitative behavior of decreasing mean ionization
when the density increases is similar, clearly exhibiting the lack of pressure ionization in
these models.

10−8
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10−4

10−210
0

101

102

103
0
2
4
6
8
10
12
14

Saha-Boltzmann model
AAII model

density (g.cm−3)
te
m
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tu
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(e
V)

m
ea
n
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n
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at
io
n
(Z

∗ )

Figure 1. Mean ionization Z∗ of silicon stemming from the Saha equilibrium model, with detailed
configuration accounting for the ion electron states, and from the average-atom model of isolated
ion (AAII).

3. Nonideality Corrections to Isolated Ions
3.1. General Considerations, Notion of Ionization-Potential Depression

Nonideal plasmas specifically correspond to those plasmas for which the interactions
of the ions with the surrounding ions and free electrons cannot be disregarded. In first
approximation, one may assume that the internal structure of the ions remains untouched
and simply refine the ideal-gas approximation for the system of point-like ions and free
electrons (ion-free-electron plasma) by accounting for the interaction energy. The classical
Hamiltonian for this interacting ion-free-electron plasma is the following:
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H({pα,j, rα,j}) = Hid({pα,j}) + WIFE({rα,j}) (38)

WIFE({rα,j}) =
e2

2

M,e

∑
α=1

Nα

∑
j=1

M,e

∑
γ=1

Nγ

∑
k=1

(γ,k) ̸=(α,j)

Z∗
α Z∗

γ

|rα,j − rγ,k|
(39)

where the charge of a free electron is Z∗
e = −1.

Since the ions are assumed to be point-like in this approach, interactions can only be
sensitive to the ion charge rather than to the detail of its electronic structure. All species
α sharing a same ion charge Z∗

α behave the same. Consequently, effective changes only
occur in energy differences among different charge states, yielding the notion of ionization-
potential depression (IPD) or continuum lowering.

Two ways of accounting for this interaction energy are often described in the literature.
These two mostly lead to the same results and rather pertain to different standpoints on the
problem than to strictly distinct approaches.

A first approach is to evaluate the average potentials v∗α per unit charge, acting on
the various point-like particles of the plasma, due to the interactions with all of the other
particles of the plasma. Typically, if we set vα(r) to be the average potential around a
particle of species α, we have:

v∗α = lim
r→0

(
vα(r)−

Zαe
2

r

)
(40)

For each ion, one then adds the corresponding v∗α potential to the binding energy Eα

found from the Hamiltonian ĤQ
isol.ion pertaining to the electronic structure. This may be in-

terpreted as adding a constant perturbing potential to the Hamiltonian. This interpretation
is, for instance, used in [45]. The nucleus and each bound electron of the ion are subject to
the same perturbing potential. This is consistent with the point-like ion hypothesis made in
Equation (39). Of course, this hypothesis ceases to be relevant if vα(r) varies appreciably
over the scale of the electronic structure of the ion. In the context of detailed modeling, this
approach results in substituting for the energies Eα in Equation (9):

E∗
α = Eα + Z∗

αv∗α (41)

The correction to the ionization potential is thus:

∆Iα = Z∗
γv∗γ − Z∗

αv∗α with Z∗
γ = Z∗

α + 1 (42)

≈ v∗γ (43)

In the average-atom model, each of the independent electrons (of charge −1) is subject to the
same perturbing potential v∗. The energies of the orbitals, in Equation (31), then become:

ε∗α = εα − v∗ (44)

with v∗ calculated for the average ion charge Z∗.
However, this does not correspond to a unified treatment of both the atomic structure

of the ions and the interactions among the particles of the plasma. Such a transposition of
the interaction potentials in the plasma, stemming from a particular model, to the effective
potentials pertaining to the ions’ electronic structure is rather heuristic than formally
justified. Moreover, this standpoint on the treatment of interactions in the plasma can lead
to some confusion as it may appear as accounting for the effect of interactions on the ion
electronic structure, which it does not really do. This procedure shifts the energy reference
of each charge state without modifying the spectrum or the orbitals of the electronic
structure per se.
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A slightly different standpoint, maybe less heuristic, on the accounting for the interac-
tion energy is to add an approximate interaction contribution to the free energy of the ideal
plasma. In statistical mechanics, such a contribution is called an excess free energy.

In the detailed approach, Equation (5) becomes:

Ḟ({nα}, T) = Ḟid({nα}, T) + Ḟex({nα}, T) (45)

This results in adding excess chemical potentials µex,α in the chemical-equilibrium equation
Equation (7). This standpoint is, for instance, adopted in [46].

for all α ̸= e, µid,α(nα, T) + µex,α({nα}, T) +
(
µid,e(ne, T) + µex,e({nα}, T)

)
Z∗

α = λi (46)

In this framework, the effective correction to the ionization potential appears when one
calculates, for instance, the ratio of populations for levels belonging to neighbouring charge
states. It results from the corrections to the chemical potentials of the neighbouring charge
states, and free electrons:

∆Iα = µex,γ − µex,α + µex,e with Zγ = Zα + 1 (47)

In the average-atom case, one simply adds the excess free energy Ḟex(ne, ni, Z∗, T)
corresponding to the plasma of free electrons and a sole species of ions having the average
charge Z∗, which depends on ne. Equation (18) becomes:

Ḟ
{{

pξ

}
, vtrial, ne; ni, T

}
= Ḟid,i(ni, T) + Ḟid,e(ne; ni, T) + Ḟex(ne, ni, Z∗ = ne/ni, T) + ∆F1

{{
pξ

}
, vtrial

}
(48)

and Equation (32) becomes

µ = µid,e(ne, T) +
∂

∂ne
Ḟex(ne, ni, Z∗ = ne/ni, T) (49)

where one must account for the dependency of Z∗ on ne when calculating the derivative.
The underlying hypothesis common to these approaches is that the ion is point-like

when compared to the typical interparticle distance d in the ion-free-electron plasma.

router << d (50)

In a detailed model, router is the largest mean radius of any populated orbital of any
significantly populated multi-electron state. In an average-atom model, router is the mean
radius of the outer significantly populated orbital. The relevant interparticle distance d
depends on the model used for the ion-free-electron plasma.

The point-like-ion hypothesis is the key argument in separating the modeling of
interactions in the plasma from the modeling of the ion electronic structure. However, it
excludes the case where some populated orbitals of an ion are perturbed by the effect of its
surrounding particles, that is, the case of pressure-ionized plasmas.

3.2. Mean-Field Approach

Calculating the interaction energy in the ion-free-electron plasma requires one to
address its spatial correlations functions. In classical mechanics, this may be achieved using
the Percus picture, which relates the two-particle correlation functions in a homogeneous
system to 1-particle densities in inhomogeneous fictitious systems [47]. In brief, the α, γ
pair distribution function of the homogeneous fluid is related to the average density nα,γ(r)
of particles of species γ, around a particle of species α placed at the origin:

nα,γ(r) = nγgα,γ(r) (51)

One is then left with the problem of calculating the particle densities nα,γ(r) in a set of
fictitious systems, each rendered inhomogeneous by a particle of species α placed at the
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origin. The mean field (or Hartree) approach to this problem yields the nonlinear Debye–
Hückel model (NLDH model) of the ion-free-electron plasma, which can also be called the
Poisson–Boltzmann model of ion-free-electron plasma. The equations of this model may be
summarized as follows:

∇2vα(r) = −4πe2
M,e

∑
γ=1

Z∗
γnα,γ(r) (52)

lim
r→0

vα(r) =
Z∗

αe
2

r
(53)

lim
r→∞

vα(r) = 0 (54)

nα,γ(r) = nγe−βZ∗
γvα(r) (55)

M,e

∑
γ=1

nγZ∗
γ = 0 (56)

Here, vα(r) corresponds to the self-consistent-field potential around the central particle of
species α, in the related Percus fictitious system. Equation (52) is the Poisson equation for
vα(r), Equations (53) and (54) are the associated boundary conditions, Equation (55) follows
from the 1-particle Boltzmann distribution, and Equation (56) expresses the neutrality of
the system.

In itself, the NLDH model of ion-free-electron plasma is of no use since it leads to the
Coulomb collapse. However, in the context of non-ideality corrections, the accounting for
interactions in the ion-free-electron plasma is often performed using two more-approximate
models based on classical mechanics: the Debye–Hückel model and the ion-sphere model.
Each of these models is based on a different hypothesis, both of them allowing one to
circumvent the Coulomb catastrophe.

3.3. Debye–Hückel Model

The Debye–Hückel model [48] (DH) is based on a linearization with respect to the
mean-field potential in Equation (55).

nα,γ(r) = nγ(1 − βZγvα(r)) (57)

This linerization both allows one to have an analytical solution and to circumvent
the Coulomb catastrophe. It is valid in the weak-coupling limit, but is in fact strongly
unphysical in the vicinity of the nucleus at any conditions. This yields an unphysical
singularity at the origin in the Debye–Hückel correlation functions, which can be seen as a
consequence of circumventing the Coulomb catastrophe.

The analytical solution of Equations (51)–(53), (56) and (57) is

vDH
α (r) = Z∗

αe
2 e−r/λD

r
(58)

gDH
α,γ (r) = 1 − βZ∗

α Z∗
γe

2 e−r/λD

r
(59)

where λD =
(

4πβe2 ∑M,e
α=1 nαZ2

α

)−1/2
is the Debye length.

The mean-field potential applied on the central particle of species α, due to the other
particles, is the divergence-free mean-field potential at the origin:

v∗DH
α = vDH

α (r)− Zαe
2

r
= −Zαe

2

λD
(60)
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The excess free energy can be calculated either by using an integration over the inverse
temperature (see [49]), or by using the Debye–Kirkwood charging method [50] (see, for
instance, [51] for an application to the DH model with arbitrary potential).

ḞDH
ex = − 1

12πβniλ
3
D

(61)

From this free energy, the excess contribution to the pressure and internal energy are readily
obtained, and it can be shown that the model fulfills the virial theorem of Equation (11).
Thus, adding the excess free-energy FDH

ex to the Saha model, as in Equation (45), preserves
the virial theorem.

The free energy can also be used to calculate the chemical potentials

µDH
ex,α = −1

2
Z∗ 2

α e2

λD
(62)

which yields the following correction to the ionization potentials (see, for instance, [46]):

∆IDH
α = − (Z∗

α + 1)e2

λD
(63)

The latter correction is equivalent to applying the correction v∗DH
α using the upper charge

state, as in [45].
In the average-atom context, the excess free energy of Equation (48) is:

ḞDH
ex = − 1

12πβni

(
4πe2β

(
ne + ni

n2
e

n2
i

))3/2

(64)

Accounting for this interaction correction leads to shifting the 1-electron eigenvalues
as follows:

ε∗ξ = εξ +
(Z∗ + 1/2)e2

λD
(65)

3.4. Ion-Sphere Model from a Classical-Plasma Perspective

In order to apply the notion of IPD to strongly coupled plasma, one often resorts to
the “ion-sphere” (IS) model (see e.g., [45]). In this model, one considers a point-like ion
placed at the center of a sphere filled only with a uniform density of free electrons, with
which it interacts (see Figure 2). The uniform density of free electrons corresponds to the
mean free-electron density of the plasma ne = ∑α nαZ∗

α , while the radius of the sphere is
such that the ion sphere is neutral:

RZ∗
α
=

(
3Z∗

α

4πne

)1/3
(66)

In the case of an average ion, ne = niZ∗, the ion charge Z∗
α is replaced by Z∗ and the sphere

radius is just the Wigner–Seitz radius RWS = (3/(4πni))
1/3.

From this model, one may evaluate the interaction energy of the central ion with the
surrounding electrons in the sphere. This yields the correction v∗ IS

α to the energy of the
α species.

vIS
α (r) =

Z∗
αe

2

r
+

1
2

Z∗
αe

2

RZ∗
α

r2

R2
Z∗

α

− 3
2

Z∗
αe

2

RZ∗
α

; v∗ IS
α = −3

2
Z∗

αe
2

RZ∗
α

(67)
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One may also evaluate the total interaction energy of the ion sphere, which corresponds
to the energy added if one adds an ion to the system and thus gives the correction to the
chemical potential.

µIS
ex,α = − 9

10
Z∗ 2

α e2

RZ∗
α

(68)

This leads to the following correction to the ionization potentials:

∆IIS
α = − 9

10

(
Z∗ 2

γ e2

RZ∗
γ

− Z∗ 2
α e2

RZ∗
α

)
with Zγ = Zα + 1 (69)

≈ −3
2

Z∗
αe

2

RZ∗
α

to first order (70)

which is equivalent to first order to applying the correction v∗IS
α , as in [45].

Figure 2. Schematic picture of the ion-sphere model. The electron density of the uniform background
corresponds to the free-electron density of the plasma. The radius of the sphere Rα is such as to
neutralize the central ion charge Z∗

α .

On the interpretation of this model, two different physical pictures may be put forward.
In the first, the plasma is seen as a highly structured set of neutral spheres, somehow
resembling a solid-state situation. This interpretation is given, for instance, in [45]. Another
interpretation is that the medium surrounding the ion may be split in two regions: a
spherical statistical cavity in which other ions do not enter, and a uniform neutral plasma
beyond the cavity (physical picture illustrated on Figure 2). This more resembles a liquid-
state situation, and we will elaborate on the latter picture hereafter.

In the ion-sphere model, the founding hypothesis that allows one to circumvent the
Coulomb catastrophe is to neglect the polarization of the free electrons, which is driven by
the attractive long range potential. Free electrons then constitute a uniform background
neutralizing the ions. If multiple ion species are considered, the system corresponds to the
multi-component classical plasma (MCP) system. The Hamiltonian of such a system is

HMCP({pα,j, rα,j}) = Hid({pα,j}) + WMCP({rα,j}) (71)

WMCP({rα,j}) =
e2

2

M

∑
α=1

Nα

∑
j=1

M

∑
γ=1

Nγ

∑
k=1

(γ,k) ̸=(α,j)

Z∗
α Z∗

γ

|rα,j − rγ,k|
− e2

M

∑
α=1

Nα

∑
j=1

∫
V

d3r

{
neZ∗

α

|rα,j − r|

}
+

e2

2

∫
V

d3rd3r′
{

n2
e

|r′ − r|

}
(72)

where the sums only run over the M ions species. If only one ion species is considered, the
system corresponds to the one-component plasma (OCP).
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Rigorously speaking, such a rigid electron background hypothesis is applicable only
in the case of electron–electron and ion–electron couplings much weaker than the ion–ion
coupling. Such conditions are found only when free electrons are strongly degenerate. Yet,
this model is often used in practice to address the qualitative behavior of moderately or
strongly coupled plasmas, as the only classical model available.

The OCP/MCP system may be addressed in the thermodynamic limit of the canonical
ensemble either using methods of simulation [52,53] or statistical physics models (e.g., hy-
pernetted chain [54,55], Percus–Yevick [56,57], etc.). Among the statistical-physics models,
the mean-field approach yields the nonlinear Debye–Hückel model (or Poisson–Boltzmann
model) of the OCP/MCP, whose equations are:

nγhα,γ(r) = nγ(gα,γ(r)− 1) = nα,γ(r)− nγ (73)

∇2vα(r) = −4πe2
M,e

∑
γ=1

Z∗
γ(nα,γ(r)− nγ) (74)

lim
r→0

vα(r) =
Z∗

αe
2

r
(75)

lim
r→∞

vα(r) = 0 (76)

nα,γ(r) = nγe−βZ∗
γvα(r) (77)

M

∑
γ=1

nγZ∗
γ = ne (78)

In the weak coupling limit Γα,γ → 0, one can perform the Debye–Hückel linearization,
replacing Equation (77) with Equation (57). This leads to the DH model of the OCP/MCP,
that is, a DH model in which polarization of free electrons is neglected.

In the strong-coupling limit Γα,γ → ∞ of this model, the pair distribution functions
gα,γ(r) take the form of Heaviside functions, yielding spherical, statistical cavities around
each ion:

gα,γ(r) → θ(r − Rα,γ) (79)

In the OCP case, there is only one ion–ion pair distribution function to consider, and
the mean density of ion charge ϱ(r) around an ion directly becomes that of the ion-sphere
with radius RWS.

ϱ(r) = niZ∗qeθ(r − RWS) = neqeθ(r − RWS) (80)

Figure 3 shows how the OCP pair distribution function obtained from the NLDH
model changes from the DH shape to the IS shape when Γ is increased. Consistently,
Figure 4 displays the values of the divergence-free mean-field potential at the origin v∗

and of the excess chemical potential µex as functions of Γ. One clearly sees how these two
quantities go from the DH behavior (in the sense of the OCP) to the IS limiting values.

In the MCP case, the mean density of ion charge ϱα(r) around a given ion of species α
results from the sum of the multiple pair distribution functions gα,γ. In the Γα,γ → ∞ limit,
it ultimately tends to the ion sphere form:

ϱα(r) = ∑
γ

nγZ∗
γqeθ(r − Rα) ≈ neqe(1 − θ(r − RZ∗

α
)) (81)

As an example, we present in Figure 5 the case of a 6-component classical plasma
corresponding to the charge-state distribution obtained from the DCA model [58] for an
iron plasma at solid density and 40-eV temperature. Ion coupling in this case is moderate
to strong, going from Γ4+,4+ = 1.4 to Γ9+,9+ = 7.6.
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Let us mention that the hypothesis of a Heaviside-shaped cavity with a radius varying
so as to ensure neutrality for each charge state is precisely the hypothesis made in the
model described in [58], and the present discussion gives the physical picture underlying
this hypothesis.

The problem of bridging the gap between the DH model of ion-free-electron plasma
and the IS model of the OCP is notably addressed by Stewart and Pyatt in [45], using
an approach inspired from the Thomas–Fermi model (see next section) and the Poisson–
Boltzmann model of the OCP. However, in this paper, the model is used to describe the
electron cloud around an ion rather than the electronic structure of the ion itself. They
obtain the following formula, which smoothly switches from the DH to the IS result,
according to the ratio between the Debye length and the ion-sphere radius:

∆ISP
α = − 1

β

(
ne

ni
+ 1

)−1
[(RZ∗

α

λ∗
D

)3
+ 1

]2/3

− 1.

 (82)

with λ∗
D =

(
4πβe2ne(ne/ni + 1)

)−1/2.
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Figure 3. Pair distribution function g(r) from the NLDH model of the OCP for various values of Γ.
Comparison with g(r) obtained from the Debye–Hückel model of the OCP at Γ = 0.01, and with the
ion-sphere assumption for g(r).
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Figure 5. Example of a 6-component classical plasma, typical of the charge-state distribution of an
iron plasma at solid density (7.8 g·cm−3) and 40-eV temperature, after [58] (a). Ion–ion coupling
of significantly populated ions spans from Γ4+,4+ = 1.4 to Γ9+,9+ = 7.6. Plots of the average ion
charge density ϱα(r) around an ion of of species α (b) and of the related pair distribution functions
gα,γ(r) (c,d) obtained using the NLDH model of the MCP, for the two charge states α = 4+ and 9+.
Comparison with the IS approximation of ϱα(r) is shown in (b).

Finally, whereas the DH model of ion-free-electron plasma may be seen as rigorously
valid in the limit of weak coupling, the ion-sphere model may only be related to the
mean-field approach of the OCP/MCP model. In the case of strong coupling, the effect
of correlations, beyond the reach of the mean-field approximation, becomes important.
Models that account for these effects, such as the hypernetted-chain model (HNC) [59,60],
exhibit a different behavior of the pair distribution functions at high Γ, as well as a different
limit for the chemical potential. Figure 6 illustrates these differences between the NLDH
and HNC model of the OCP, as regards both the pair distribution function and the excess
chemical potential.
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Figure 6. Comparison between the NLDH and HNC models of the OCP. Pair distribution functions
for various values of Γ (a) and excess chemical potential as a function of Γ (b).

One may then put forward the other interpretation of the ion-sphere model: a highly
ordered, periodical set of neutral spheres, which may consistute a good approximation of
the lattice situation. Indeed, it is known that the OCP system crystallizes at Γ close to 175,
yielding a Wigner crystal having a body-centered-cubic lattice (bcc, see [61–63]). For the
bcc crystal of an OCP, at zero temperature, we have [63]:

βU0 = −0.895929 Γ (83)

βµ =
4
3

βU0 (84)

where U0 is the internal energy per ion.
As may be seen on Figure 6, a statistical model accounting for correlations beyond the

mean-field approximation, such as HNC, yields results much closer to those of the OCP
bcc lattice than does the IS model. In fact, the close proximity in a large range of Γ between
thermodynamic quantities stemming from the fluid phase and those from the bcc crystal is
among the challenges in the precise determination of the OCP phase transition.

3.5. Divergence of Partition Functions, Suppression of Bound States, Screening and Limitations of
the Nonideality Corrections

The isolated-ion models of Section 2 both exhibit divergences of their partition func-
tions. One may relate this divergence issue to the Coulombic behavior of the atomic
potential at large distances, typical of isolated-ion models.

First, let us remark that in the n → ∞ limit, the 1-electron spectrum of the average-
atom model of isolated ion forms a quasi-continuum having a density of states ϱqc, which
diverges for ε → 0−:

ϱqc(ε) =
Z∗ 2

ε2 (85)

The partition function of high-lying levels ε > εqc may be seen as the diverging integral:

∫ 0

εqc
dε
{

ϱqc(ε)pF(µ, T, ε)
}

(86)

However, limiting the partition function to the negative-energy part of spectrum, one
disregards the distortion of the density of states induced by the atomic potential in the
positive-energy part.

Let us consider two 1-electron Hamiltonians: the Hamiltonian of free electrons H̃0 and
the Hamiltionian of electrons feeling the external effective potential H̃eff. Eigenstates of
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each of those Hamiltonians constitute a complete orthonormal basis of the same 1-electron-
state space E . The total number of states within each of these bases is thus the same. If
those two bases share a common continuous label, for instance ε, then the density of states
with respect to this label may change, but its integral over the label remains the same. This
principle is the foundation of Levinson’s theorem [64,65]. From this principle, one may
expect the divergence of the density of states induced by a Coulomb-tail potential at ε → 0−

to be compensated elsewhere; more precisely, in the continuum.
A spherically symmetric potential does not couple the subspaces associated with the

various orbital quantum number ℓ. Consequently, it is possible to show that the total
number of states is conserved for each value of ℓ (see, for instance, [65,66]). Moreover, for a
spherically symmetric potential, the distortion of the density of states with respect to that
of free particles is related to the scattering phase shift.

Let us consider a the radial wave functions defined as follows:

φε,ℓ,m(r) =
Pε,ℓ(r)

r
Yℓ,mℓ

(r̂) (87)∫ ∞

0
dr
{

Pε,ℓ(r)Pε′ ,ℓ(r)
}
= δ(ε − ε′) (normalization convention) (88)

In the case of a free particle (zero external potential, Hamiltonian H̃0), the Schrödinger
radial equation is the Bessel equation and the radial wave functions are the spherical Bessel
function regular at r = 0:

Pε,ℓ(r) = Aεkrjℓ(kr) with k =
√

2meε (89)

where jℓ is the spherical Bessel function regular at 0, yℓ denoting the irregular one in the
following [67]. We define the phase shift ∆ε,ℓ(R) of a continuum radial wave function
Pε,ℓ(r) with respect to the regular Bessel function as follows. Setting the potential to zero
for r ≥ R, ∆ε,ℓ(R) is such that

Pε,ℓ(r ≥ R) = Aεkr(cos(∆ε,ℓ(R))jℓ(kr)− sin(∆ε,ℓ(R))yℓ(kr)) (90)

For a finite-range potential, the Schrödinger equation tends to the Bessel equation far
from the origin, and the phase shift has a finite asymptotic value, which is the scattering
phase shift.

lim
r→∞

∆ε,ℓ(r) = ∆ε,ℓ (91)

The latter scattering phase shift is related to the change of the density of state as follows
(see, for instance, [68]):

∆ϱℓ(ε) = 2(2ℓ+ 1)
1
π

∂∆ε,ℓ

∂ε
(92)

Applying the conservation of the total number of states for a given ℓ, and remembering
that there is no bound state for a free electron (no classically allowed region for ε < 0), one
immediately obtains:

∫ 0

−∞
dε

{nmax,ℓ

∑
n=1

2(2ℓ+ 1)δ(ε − εn,ℓ)

}
= −

∫ ∞

0
dε{∆ϱℓ(ε)} (93)

nmax,ℓ = lim
ε→0

∆ε,ℓ

π
(94)

which corresponds to Levinson’s theorem. For a finite-range potential, the number of
discrete orbitals is thus finite [69].
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For a Coulomb-tail potential, the solution of the Schrödinger equation tends to a
combination of regular and irregular Coulomb wave functions:

lim
r→∞

Pε,ℓ(r) = Ak

(
cos(∆C

ε,ℓ)FC
ℓ

(
−Z∗

k
; kr
)
+ sin(∆C

ε,ℓ)G
C
ℓ

(
−Z∗

k
; kr
))

(95)

where FC
ℓ , GC

ℓ are the Coulomb wave functions regular and singular at 0, respectively [67],
and where ∆C

k,ℓ is a constant phase shift with respect to the Coulomb wave functions.
This yields:

lim
r→∞

∆ε,ℓ(r) ∼
Z∗

k
log(2kr) (96)

This singularity of the scattering phase shift is fully consistent with the infinite number of
bound states for a Coulomb-tail potential.

The detailed analysis of the compensation between bound and continuum parts of the
partition function was studied thoroughly in the framework of the virial expansion by Beth
and Uhlenbeck [70], Larkin [71], Ebeling [72–74] and Rogers [75,76]. Accounting for the
density of state modification in the continuum yields the Planck–Larkin suppression of the
diverging terms in Equations (13) and (36). As a conclusion, the divergence of the partition
functions related to the infinite number of bound states is mostly a problem related to a
lack of proper accounting for the continuum.

However, non-ideal effects such as the screening by free electrons and the perturbation
by surrounding ions may also limit physically the range of the effective atomic potential
and consequently the number of bound states. In fact, in the context of the virial expansion,
the Debye–Hückel correction appears at the second order, together with the Planck–Larkin
regularization (see, for instance, [71]).

For the most weakly bound states (both in the sense of many-electron states or in the
sense of 1-electron orbitals), the non-ideality correction to the energy may be of the same
order as the energy itself, or even greater. The question then is: how to treat these states
that potentially end up in the continuum?

In [77], Herzfeld employs the heuristic argument of the mean radius of an hydrogenic
orbital being of the same order of the interparticle distance, in order to truncate the set
of bound states accounted for in the Saha equilibrium for hydrogen. Qualitatively, this
corresponds to limiting the spatial extension of existing states to the size of an ion sphere.
In [78,79], Urey and Fermi independently elaborate on this idea, introducing, in the free
energy, an excluded-volume term associated with the volume occupied by the various
hydrogenic states. Minimizing the free energy, Fermi obtains that the population of a state
drops when the total volume is smaller than the excluded volume of this state times the
population of the most populated state.

In [71], Larkin relates the truncation to an assumed Debye–Hückel decay of the 1-
electron effective potential. Qualitatively, this corresponds to limiting the spatial extension
of existing states to the Debye length. However, without a unified treatment for both the
electronic structure and the screening in the whole plasma, the argument for using the
Debye–Hückel potential in the ion electronic structure is heuristic.

In [45], Stewart and Pyatt recommend suppressing any level for which the ionization-
potential correction is greater than the level energy.

One may put forward that, if one sees the non-ideality correction as a lowering of the
continuum, then the intersection of this lowered continuum boundary with the isolated-ion
potential sets a restriction on the range of the potential, yielding the truncation of the bound
state spectrum. This qualitative standpoint is fully consistent with that of suppressing the
states whose energy lies above the lowered continuum.

However, correct accounting for the effect of the potential on the continuum remains
a crucial issue. In this context, even if there is no singularity of the density of state to
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compensate, a compensation still occurs between finite quantities, through the appearance
of resonances.

For any small perturbation of the potential that leads to the passing of a bound
state above the continuum limit, Levinson’s theorem informs us that the phase shift at
zero energy jumps accordingly. Since this small perturbation cannot lead to a modification
of the phase-shift at energies that are large compared to the perturbation, a rapid variation of
the phase shift necessarily occurs just above zero energy. This rapid variation corresponds
to a sharp peak in the continuum density of states, called a resonance. In the end, the
density of state, defined over the whole spectrum with Dirac δ in the negative energy part,
just evolves continuously when one of the Dirac δ crosses the zero energy. This way, any
observable remains continuous.

As an elementary illustration of the effect of a finite-range potential, Figure 7 presents
the 1-electron eigenvalues and the total ∆ϱ(ε) = ∑ℓ ∆ϱℓ(ε) contribution to the density of
states for a screened Coulomb potential, with charge Z = 26, as a function of the screening
length. For infinite screening length, one recovers the usual Coulomb eigenvalues, with
the accidental ℓ-degeneracy. As the screening length is decreased, one can see how the
accidental degeneracy is removed and how the eigenvalues are gradually shifted towards
the continuum until the removal of the orbital from the discrete spectrum. Once the orbital
is removed from the discrete spectrum, one can see how it is compensated for by a resonance
in the continuum, which gradually spreads out as screening length is further decreased.

Figure 7. Electron in a screened Coulomb potential with charge Z = 26. Eigenvalues as functions of
the screening length, for principal quantum numbers up to n = 8, and ion contribution to the density
of states ∆ϱ(ε) of Equation (92), showing the corresponding resonances.
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In conclusion, even assuming that a continuum-lowering model is yielding the correct
energy shift, a sharp suppression of the bound states does not correspond to what stems
from a screened potential with a proper accounting for the continuum.

In practice, the continuum-lowering argument or the introduction of Planck–Larkin
partition functions suffices to justify the suppression of weakly bound states, which have
negligible populations and do not yield significant contribution of the corresponding
resonances. This suppression enables the convergence of the Saha partition function.
However, when it comes to suppressing populated many-electron states or orbitals, this
method is no longer valid, and in fact the whole point-like-ion hypothesis used in the
treatment of interactions breaks down.

A proper answer to the problem requires one to account for the interactions among
particles of the plasma directly in the calculation of the ion electronic structure while
properly accounting for the continuum. As far as possible, such a calculation should
account for both the polarization of free electrons around the ions, and the interactions of
ions with their neighbours. This is the purpose of models of pressure-ionized plasmas.

Figure 8 shows the effect of various ionization potential depression models, either
disregarding or performing the suppression of bound orbitals. Looking at Figure 8a, one
can see that without suppressing any orbital, the effect on the mean ionzation remains
moderate, with the Debye–Hückel model yielding the largest effect. In the case considered,
the Stewart–Pyatt formula leads to results that are close to those of the ion-sphere model.
Looking at Figure 8b, one can see that when performing the associated suppression of
bound orbitals, the impact on the mean ionzation is much more pronounced. In fact,
most of the effect of accounting for non-ideality corrections is in the modification of the
partition function.
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Figure 8. Mean ionization Z∗ of a silicon plasma at 20 eV temperature, as a function of matter density.
Comparison between average-atom model of isolated ion without any continuum lowering (no IPD,
principal quantum number limited to n = 8), with Debye–Hückel continuum lowering (DH), with
ion-sphere continuum lowering (IS), and with Stewart–Pyatt continuum lowering (SP). Comparisons
are shown both without suppression of bound orbitals (a) and with suppression (b). In the latter
case, the curves stop where suppression of a subshell having more than 10% of the electrons occurs
(regime of significant pressure ionization).

4. Atomic Models of Pressure-Ionized Plasmas

Whenever the interactions of the ions with the surrounding ions and free electrons
have an impact on the electronic structure, we will speak of “pressure-ionized” plasma.
In such a case, the picture of a plasma of point-like ions and free electrons is not valid. It
is then required to properly account for the surrounding particles in the modeling of the
internal electronic structure of each ion. In the following, we will focus on the average-atom
description of the plasma since it offers a simpler framework for such modeling. However,
most of the presented models can be extended to a detailed description of the plasma.
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The modeling of dense, pressure-ionized plasmas has historically been addressed
using self-consistent-field models of the ion electronic structure, including all electrons
(bound and continuum) and accounting for the surrounding ions through the notion
of a Wigner–Seitz cavity. These models focus on the electronic structure around a bare
nucleus and depart from the formalism of correlations in the plasma. Being models of
the ion electronic structure, all these models necessarily rely, to some extent, on quantum
mechanics for the electrons and thus avoid the Coulomb catastrophe.

Depending on the model, the WS cavity is seen either as a neutral spherical cell
in which the ion is enclosed (ion-in-cell picture) or as a statistical cavity within which
surrounding ions do not enter and beyond which they are uniformly distributed (ion-in-
jellium picture).

A common feature of these models of pressure-ionized plasmas is that the resulting
atomic potential has finite range, and thus naturally leads to a finite number of bound states.

4.1. Thomas–Fermi Ion-in-Cell Model

The Thomas–Fermi (TF) model is a semiclassical mean-field model of the ion electronic
structure, accounting for all electrons and for the surrounding ions through the notion of an
ion cell (see Figure 9). Application of the TF model at finite temperature to dense plasmas
was first proposed in [80]. A numerical method for solving the TF set of equations was
given in [81]. The equations of the TF model are:

∇2vel(r) = −4πe2n(r) (97)

lim
r→0

vel(r) = −Ze2

r
(98)

vel(RWS) = 0 (99)∫
WS

d3r{n(r)} = Z (100)

n(r) =
4√

πΛ3
e

I1/2

(
β
(

µF
e(ne)− vel(r)

))
(101)

where the WS denotes that the integral is performed only within the WS sphere.

Figure 9. Schematic picture of the Thomas–Fermi model.

Equation (97) is the Poisson equation. Equations (98) and (99) are the boundary condi-
tions at the origin and at the WS radius, respectively. The latter sets the reference of the en-
ergies. Equation (100) is the condition of neutrality of the ion sphere. Equation (101) corre-
sponds to the local-ideal-Fermi-gas hypothesis. Equation (97), together with Equation (101),
imply a mean-field approximation.

An oft-used extension of the TF model consists of adding a local exchange or an
exchange-correlation contribution to the electrostatic potential. This is called the Thomas–



Atoms 2024, 12, 26 23 of 55

Fermi–Dirac model, referring to [82] in which a local exchange term was derived. In this
case, Equation (101) is replaced by:

n(r) =
4√

πΛ3
e

I1/2

(
β
(

µF
e(ne)− vel(r)− µxc(n(r))

))
(102)

with µxc = ∂ fxc(n)/∂n being the chemical potential associated with fxc, an approximate
exchange-correlation contribution to the free-energy per unit volume of a uniform electron gas.

Besides its heuristic setup, one may also derive the Thomas–Fermi–Dirac model from
a variational principle. One approximates the free energy per ion as the free energy of an
ion cell, filled with an electron gas, locally considered as an ideal Fermi gas of density n(r).

Ḟ{n; ni, T} =
∫

WS
d3r
{

f F
e (n(r), T) + fxc(n(r), T)

}
+
∫

WS
d3r
{
−Zn(r)e2

r
+

e2

2

∫
WS

d3r′
{

n(r)n(r)
|r − r′|

}}
(103)

It is worth noting that this free energy does not include terms related to the ion motion
or interactions. This is among the shortfalls of such kind of model, which only focuses
on the electronic structure of a central ion. In a first approximation, an ion ideal-gas free
energy contribution can be trivially added. However, a proper accounting for the ion–ion
interactions in such a model is a far more difficult subject, on which we will elaborate later.

One performs the minimization of the free energy per ion while requiring the neutrality
of the ion cell

Ḟeq(ni, T) = Min
n

Ḟ{n; ni, T} s. t. Z =
∫

WS
d3r{n(r)} (104)

The result of this constrained minimization is equivalent to Equations (97)–(100) and (102).
Starting from the equilibrium free energy, one can rigorously write the thermodynamic

quantities using the appropriate derivatives. One notably finds, for the pressure:

Pthermo(ni, T) = − f F
e (ne, T)− fxc(ne, T) + neµF

e(ne, T) + neµxc(ne, T) (105)

It can also be shown that the model fulfills the virial theorem [80].
In the TF model, the electron density is a local function of the potential. In fact, the

hypothesis of locally having an ideal Fermi gas may be recovered from a local-density
approximation of the quantum kinetic free energy of independent particles [83]. Since the
electrostatic potential is zero at the WS radius, the density at the WS radius is equal to that
obtained from the chemical potential:

Z∗ =
ne(RWS)

ni
=

ne

ni
(106)

Due to its semiclassical character, the TF model does not yield a shell structure in the
sense of quantum mechanics. Consequently, there are no ionization plateaus, as in the
mean ionization of the quantum isolated ion. As an illustration, Figure 10a displays the TF
mean ionization as a function of temperature for carbon at 10−4 g·cm−3, compared to that
of a quantum isolated ion.

On the other hand, in the TF model, pressure ionization is obtained through a squeez-
ing of the ion cell when density is increased. As an example, Figure 10b shows the TF mean
ionization as a function of matter density for carbon at a temperature of 20 eV.

In addition to being used in equation-of-state calculations, the TF model was also
used for the calculation of radiative properties. Such calculations were performed either
resorting to a heuristic use of the TF potential in orbital calculations [84] or from rigorous
approaches to the dynamic semiclassical model [85–87]. In the latter case, the unphysical
behavior of the TF electron density in the vicinity of the nucleus has strong consequences
on the photoabsorption cross-section at high frequencies [86]. Moreover, the lack of shell
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structure implies the absence of line emission and absorption in the spectra. For the reasons
given above, the need for a quantum extension of the TF model was quickly recognized.
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Figure 10. Mean ionization Z∗ of a C plasma along the 10−4-g·cm−3-isochore (a), and along the
20-eV-isotherm (b). Comparison between the Thomas–Fermi model (TF) and the average-atom model
of isolated ion (AAII).

Finally, let us remark that in the Thomas Fermi model, the equations are restricted
to the WS cell. This renders the model versatile in the sense that it is rather insensitive to
the modeling of the medium outside the WS sphere. On the one hand, one may interpret
the ion sphere as an element of a highly ordered pile of neutral spheres. In [88], the TF ion
cell is used in this way, as an approximation of the polyhedral WS cell of a metal lattice.
On the other hand, one may interpret the ion cell as a statistical cavity surrounded by a
homogeneous neutral plasma (jellium), as suggested later by Liberman in the context of his
INFERNO model [89]. The coexistence of these two possible interpretations relates to the
similar ambiguity of the physical picture underlying the ion-sphere model. This duality of
interpretation left an imprint on the models proposed later as quantum extensions to the
TF model.

4.2. Quantum Ion-in-Cell Models

Among the first quantum extensions to the TF model was the model of Rozsnyai [90].
This model is based on the solid-state picture of the ion cell. The bound electrons are
described by resorting to energy bands, whose boundaries are obtained from the Wigner–
Seitz cellular method (zeros of the wave function and of its derivative, see [91,92] or
the monograph [93]). Positive-energy spectrum (with respect to the effective potential at
infinity) is approximated using the TF approach, with a restriction on the energy integration
in order to only cover the classically allowed range. The treatment of continuum electrons
is therefore not consistent with that of bound electrons. In particular, the contributions of
resonances or energy bands in the continuum are disregarded. However, because of the
treatment of bound electrons through energy bands, the pressure ionization of a bound
state occurs gradually and does not result in a proper discontinuity of observables.

A common variant of this model resorts to wave functions calculated with boundary
conditions applied at infinity. In this case, the boundary condition is the exponential decay
of the wave function, or, in practice, the matching onto localized zero-field solutions at
the WS radius (third kind modified spherical Bessel function). This kind of model is, for
instance, used in [27]. In this model, due to the semiclassical treatment of the continuum
and the discrete nature of bound states, pressure ionization of a bound state results in a
discontinuity of observables.

In practice, the equations of the latter model are the same as in the TF model, except
that the electron density is partially calculated from quantum mechanics. Namely, one
retains Equations (97)–(100), whereas the electron density is given by:
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n(r) = ∑
ξ bound

pF(µ, T, εξ)|φξ(r)|2 +
4√

πΛ3
e

Iinc.
1/2

(
β
(

µF
e(ne)− vel(r)− µxc(n(r))

)
;−β(vel(r) + µxc(n(r)))

)
(107)

where the sum only runs over the discrete part of the spectrum, and where Iinc.
1/2 is the

incomplete Fermi integral defined as follows:

Iinc.
1/2(y; z) =

∫ ∞

z
dx

{
x1/2

ex−y + 1

}
(108)

Another slightly different variant of this model approximates the positive-energy
spectrum using the non-degenerate limit of the 1-electron distribution instead of the Fermi–
Dirac distribution [94]1. Let us also mention that some models also use bands for both
the negative and positive parts of the energy spectrum [95], with applications to matter in
which an ion lattice may subsist.

The first fully quantum model of the ion cell in a plasma was Liberman’s model named
“INFERNO” [89,96,97]. Contrary to Rozsnyai, Liberman proposes the physical picture of an
ion cell surrounded by a finite-temperature jellium, as sketched in Figure 11. A jellium is a
homogeneous electron gas, neutralized by a homogeneous ion background.

Figure 11. Schematic picture of Liberman’s INFERNO model. The electron density is represented
with a discontinuity at the WS radius, consistently with the interpretation proposed by Liberman of a
homogeneous jellium surrounding the WS sphere.

The equations of the INFERNO model are the same as in the TF model, with an electron
density fully calculated from quantum mechanics. One thus keeps Equations (97)–(100),
with an electron density given by:

n(r) = ∑
ξ

pF(µ, T, εξ)|φξ(r)|2 (109)

where the sum runs over both the discrete and the continuum part of the spectrum. For the
continuum, the sum is to be understood as an integral over the momentum. Contrary to
the Rozsnyai model and its variants, the INFERNO model accounts for the resonances in
the continuum.

Figure 12 shows the density of states obtained from the INFERNO model for silicon
at 5 eV temperature and matter densities of 1.1 and 1.2 10−2 g·cm−3. At these conditions,
one can observe resonances related to the delocalizations of the 5p and 4f subshells. In
particular, between 1.1 and 1.2 10−2 g·cm−3, the 5p subshell is pressure-ionized, yielding
a sharp resonance in the continuous spectrum. In order to illustrate the lack of reso-
nances in Rozsnyai-like models, we also display the density of states obtained when using
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Equation (107) for the electron density, at similar plasma conditions. The discrete spectrum
from the Rozsnyai-like model is not shown, to avoid obfuscation of the figure.

Consistently, with the picture of an ion cell surrounded by a neutral jellium, the
boundary condition applied to the wave functions φξ at the WS radius is just the matching
onto the zero-potential solution (a linear combination of Bessel functions, defining a phase
shift). Like in the TF model, the medium surrounding the ion cell does not interact with
the content of the ion cell. Consequently, the model can be formulated using equations
restricted to the WS cell, with the jellium surrounding the WS sphere playing no direct role
in the model.

The quantum electron density of Equation (109) is a nonlocal functional of the self-
consistent potential. As a consequence, even if the potential is zero at the WS radius, the
electron density n(RWS) in general differs from the electron density obtained from the
chemical potential ne. The latter corresponds to the asymptotic value limr→∞ n(r).
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Figure 12. Density of states obtained from the INFERNO model in the case of silicon at 5 eV
temperature and matter densities of 1.1 and 1.2 10−2 g·cm−3. In the negative energy ranges, the
Dirac distributions are represented by vertical lines. For the sake of comparison, the density of states
stemming from the Rozsnyai-like model of Equation (107), at 5 eV temperature and 1.15 10−2 g·cm−3,
is also shown, only in the positive energy range.

This yields an ambiguity in the definition of the mean ionization Z∗, which is closely
related to the ambiguity in the physical interpretation of the model. Either the electron
density has a discontinuity at the WS radius or it is continuous, but electrons of the jellium
have a chemical potential that is different from those of the ion cell.

Connected to this interpretation issue is the problem of defining the pressure in the
model (electron pressure at the WS boundary versus electron pressure stemming from a
jellium of density ne). More generally, due to the lack of variational formulation for this
model, any thermodynamic quantity is defined heuristically and may have more than one
possible definition. Indeed, Liberman proposed two versions of his model (denoted A
and T), differing in the region of integration for the free and internal energies [89,96,97].
Thermodynamic consistency among these quantities is in general not assured.

The sharp cut-off of the equations at the WS radius also implies that the virial theorem
is not fulfilled. When trying to derive the virial theorem for the system, surface terms
appear at the WS radius, which results in the impossibility of fulfilling the theorem (see,
for instance [98]).
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Nevertheless, Rozsnyai’s and Liberman’s models are among the most often used
when dealing with pressure-ionized plasma, both in their respective average-atom versions
(see, for instance, [99,100]) or in a modified version adapted to fixed configurations (see,
for instance, [27]). To some degree of approximation, these models account for both the
quantum shell structure of the ion and the pressure ionization phenomenon. Both also
have relatively light computation costs, favored by the restriction of the equations to the
WS cell. Of course, INFERNO involves a much higher computational cost than Rozsnyai’s
model, due to the quantum treatment of the continuum.

Moreover, a variant of Rozsnyai’s model was used in [94] as the starting point to
obtain an approximate, closed formula fitting the atomic potential. Such a fit for the atomic
potential can be used to infer corrections to the isolated-ion energies, from perturbation
theory [101,102]. Such an approach yields analytical formulae for the line shifts, which
showed agreement with experimental measurements [103] of line shifts in He-like ions at
electron densities of the order of 1023 cm−3 [104,105]. In prior studies, the simpler model
of the ion-sphere had also been used, outside the context of point-like ion hypothesis, to
calculate an analytical perturbing potential and infer line shifts [106].

4.3. Ion-in-Jellium Models

Models of an impurity (or a defect) in a jellium were developed during the 70’s in the
context of solid-state physics [107–109]. In these models, the perturbation generated by the
impurity may extend spatially far from its origin. There is no restriction to a particular cell
(see Figure 13a).

Figure 13. Schematic pictures of an impurity in a jellium (a), and of an ion-in-jellium model such as
AJCI or VAAQP (b).

A first extension of the treatment of an impurity in a jellium to the modeling of an
ion in a plasma was suggested by Perrot in the 90’s, in his “Atome dans le Jellium de
Charge Imposée” model (AJCI, atom in a jellium with fixed charge) [110]. In his model,
Perrot introduces a WS statistical cavity in the jellium, much like the picture proposed by
Liberman. However, he also considers an ion extending in the whole space, rather than
enclosed within a cell (see Figure 13b). Consistently, the neutrality is assumed to hold in
the whole space rather than in the ion cell. In this model, the uniform ion background of
the jellium surrounding the cavity interacts with the electron density, which asymptotically
tends to the jellium density. This leads to the charge density:

qe(n(r)− niZ∗θ(r − rWS)) = qe(n(r)− neθ(r − rWS)) (110)

The AJCI model, like models of impurity in metals, resorts to a fixed jellium density
ne, given as an input to the model. It is also lacking a variational derivation. However, the
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notion of an ion extending beyond the WS sphere, up to infinity, allows one in principle to
solve the problem of surface terms in the virial theorem.

Starting from the founding ideas of the AJCI model, a model of a variational average-
atom in a quantum plasma (VAAQP) was proposed and studied [111–114]. This showed
that building an atom-in-jellium model within a variational framework enables one to set
the jellium density from the thermodynamic equilibrium condition and to fulfill the virial
theorem.

Formally, to treat the nuclei-electron plasma as a set of ions, we resort to a reasoning
called a “cluster” decomposition. Let O be a quantity that may be calculated for any set of
K nuclei, with spatial configuration (R1...RK), including the empty set. We may then write
(see [115] for more detail):

O(R1...RK) = O(∅) +
K

∑
j=1

∆O1(Rj) +
1
2

K

∑
j=1

K

∑
k=1
k ̸=j

∆O2(Rj, Rk) + ... (111)

defining the ∆OK terms recursively, so as to assure the equality for each value of K:

∆O1(R) = O(R)− O(∅) (112)

∆O2(R1, R2) = O(R1, R2)− ∆O1(R1)− ∆O1(R2) + O(∅) (113)
...

The quantity O has a clustering property if the terms in Equation (111) exhibit a decreasing
ordering, which makes Equation (111) a convergent expansion.

In the VAAQP model, we first assume that the electron density n(R1...RNi ; r) for a
system of Ni ion is correctly described by limiting the cluster expansion to the zeroth and
first order only:

n(R1...RNi ; r) = n0(r) +
Ni

∑
j=1

∆n1(Rj; r) = ne +
Ni

∑
j=1

q(|r − Rj|) (114)

where the zeroth order term is identified as the homogeneous jellium density, and the first
order term corresponds to the sum of spherically symmetric clouds of displaced electrons,
corresponding each to an ion in a jellium. We also assume the first-order cluster expansion
to hold for the free energy of the system. This leads us to write the free energy per ion
as follows:

Ḟ(ni, T) = Ḟ0(ne; ni, T) + ∆F1{ne, q; T} (115)

Here, Ḟ0 = ( f F
e (ne, T) + fxc(ne, T))/ni is the free energy per ion of the uniform electron gas.

We choose to treat ∆F1 using a density-functional formalism [41–43] and decompose the
∆F1 as suggested by Kohn and Sham [42]:

∆F1{ne, q; T} = ∆F0
1 {ne, q; T}+ ∆Fel

1 {ne, q; T}+ ∆Fxc
1 {ne, q; T} (116)

∆F0
1 corresponds to the kinetic and entropic contribution to the free energy of a system

of independent electrons subject to an external potential vtrial

{
ne, q; r

}
that yields the

electron density ne + q(r), with the contribution from a homogeneous system of density ne
subtracted.

∆F0
1

{
ne, q; T

}
= ∑

ξ

∫
d3r
{

pF(εξ ; ne, T)
[(

εξ − vtrial(r)− TsF(εξ ; ne, T)
)
|φξ(r)|2 −

(
εξ − TsF(εξ ; ne, T)

)
|φ0

ξ(r)|2
]}

(117)
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where the sum runs over both the discrete and continuum part of the spectrum and
where the {φ0

ξ} correspond to the plane waves and only contribute in the continuum
part. ∆Fxc

1 corresponds to the exchange and correlation contribution to the free energy,
with the contribution from the homogeneous system subtracted, taken in the local density
approximation:

∆Fxc
1 {ne, q; T} =

∫
d3r{ fxc(ne + q(r), T)− fxc(ne, T)} (118)

∆Fel
1 is the direct interaction term, in which we introduce the hypothesis of the WS

cavity. We model the surrounding ions by a charge density qeneθ(r − RWS), like in the AJCI
model. This leads to:

∆Fel
1 =

∫
d3r
{
−Z(ne + q(r)− neθ(r − RWS))e

2

r

+
e2

2

∫
d3r′

{
(ne + q(r)− neθ(r − RWS))(ne + q(r)− neθ(r′ − RWS))

|r − r′|

}}
(119)

Accordingly, the condition of neutrality in the whole space can be written as:

Z =
∫

d3r{ne + q(r)− neθ(r − RWS)} (120)

Finally, the VAAQP model is based on the minimization of the free energy with respect
to the displaced-electron density q(r) and jellium density ne, while requiring the neutrality
condition:

Ḟeq(Ni, V, T) =Min
ne,q

Ḟ
{

ne, q; ni, T
}

s. t.
∫

d3r{ne + q(r)− neθ(r − RWS)} = Z (121)

This constrained minimization yields the following equations:

vtrial(r) = vel(r) + µxc(ne + q(r))− µxc(ne) (122)

vel(r) = −Ze2

r
+ e2

∫
d3r′

{
ne + q(r)− neθ(r′ − RWS)

|r − r′|

}
(123)∫

d3r{vel(r)θ(r − RWS)} = 0 (124)

Equation (124) stems from the minimization condition with respect to the jellium
density ne and allows its value to be set. Thus, in the VAAQP model, the density of the
uniform background is uniquely defined; it corresponds to the asymptotic electron density
of each ion and is set by the thermodynamic equilibrium condition.

From the equilibrium free energy per ion, it is possible to rigorously obtain the other
thermodynamic quantities, by calculating the appropriate derivatives. For the pressure, the
following formula is obtained:

Pthermo = − f F
e (ne, T)− fxc(ne, T) + neµF

e(ne, T) + neµxc(ne, T) + nevel(RWS) (125)

The first four terms correspond to the pressure of an ideal Fermi gas of density ne. The last
term is related to the WS cavity. Moreover, it can be shown that the virial pressure leads to
the same formula as Equation (125), meaning that the virial theorem is fulfilled in the VAAQP
model.

In the contributions to the free energy expression of Equation (115), the ions are
disregarded. For that reason, the thermodynamic quantities from the VAAQP model may
be viewed as electron contributions, which may be supplemented by ion contributions.
Adding an ion ideal-gas contribution to the model is straightforward. However, adding
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the results of a model of interacting ions is more problematic because part of the ion–ion
interactions is necessarily included in the VAAQP model through the WS-cavity hypothesis.

Like INFERNO, the VAAQP model allows for the description of the ion shell structure,
while the WS cavity assumed in the model enables the description of pressure ionization.
Treating the perturbation of the density in the whole space, the model also accounts for the
Friedel oscillations (see, for instance, [93]) of the displaced-electron density. The physical
relevance of these oscillations in the case of ions in a plasma is rather unclear. However,
accounting for these is essential to ensure the fulfilment of the virial theorem.

In the VAAQP model, the potential range is not strictly limited to the WS radius but
has a strong decay, due to the total screening of the nucleus in the whole space. In practice,
the variational equation Equation (124) most often constrains the atomic potential to take
small values at the WS radius, of the order of the amplitude of Friedel oscillations. For that
reason, the VAAQP model yields results that mostly agree with those of the INFERNO
model, except in the low-temperature/high-density regime.

Figure 14 shows an example comparison of results from the isolated-ion, INFERNO,
and VAAQP models in the case of silicon at 5-eV temperature. Both the mean ionization and
the 1-electron energies are displayed. As is seen from theses figures, the energy correction,
and consequently the mean ionization, are rather well estimated using the Stewart–Pyatt
approach with the suppression of bound orbitals [45], up to cases of significant pressure
ionization (here, around 0.1 g·cm−3). The INFERNO and VAAQP models agree well in
this regime. In the region of strong pressure ionization, the results from VAAQP depart
significantly from those of INFERNO. Accordingly, the thermodynamic consistency of
the INFERNO results is problematic in this region. However, differences in the 1-electron
energies are less pronounced (see Figure 14b).
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Figure 14. Mean ionization Z∗ (a), and 1-electron eigenvalues (b) as a function of matter density,
for silicon at 5-eV temperature. Comparisons between INFERNO, VAAQP, average-atom model of
isolated ion (AAII), and AAII with Stewart–Pyatt correction and suppression of orbitals.
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The VAAQP model was first applied to equation-of-state calculations [113,114,116]
but was also used in the calculation of radiative properties [58,117].

Finally, let us point out that atom-in-jellium models seem a better starting point for
improving the modeling of ion–ion correlations than ion–cell models since they account for
the ion surroundings in the whole space.

4.4. Going beyond the Cavity Hypothesis, the Difficulty of Dense-Plasma Atomic Modeling

All models of pressure-ionized plasma that are described in the previous paragraphs
focus on the description of the electronic structure of a particular ion, postulating that the
surrounding ions will either restrict its spatial extension to a WS cell or will interact with
it as a spread-out uniform medium, not entering the WS sphere. In these models, a key
function is the inhomogeneous density n(r) of the electron cloud associated with the ion.
Of course such spatial inhomogeneity of the electron density around a nucleus is in fact
referring to correlations among the positions of nuclei and electrons.

For an M-component classical fluid of particles interacting through pair potentials,
obtaining the M(M + 1)/2 pair distribution functions gives access to all statistical averages
(see, for instance, [49]). The link relating the pair distribution functions to densities of
fictitious systems with a particular particle placed at the origin is the Percus picture [47].
With such a link, one can use models of 1-particle densities to address pair distribution
functions.

However, to correctly describe the electronic structure of an ion, one has to resort to
quantum mechanics. It turns out that Percus’ method is not applicable in the quantum-
mechanical context. This may be seen as a consequence of the impossibility of separating
the kinetic part of the partition function from its configurational (or interaction) part. For
this reason, a practical approach to the correlation functions in quantum mechanics remains
a long-standing, open problem (see, for instance, [118]).

In order to circumvent this problem, an idea is to keep the framework of classical
statistical mechanics and include approximate accounting for the quantum behavior in the
interaction potentials [119], or resorting to an effective temperature [120,121]. Approaches
of this kind eventually led to the classical-mapping approach to quantum systems [122,123].

Another kind of approach aims to extend Percus’ trick (see, for instance, [124]). Among
the goals of such an effort is the quantum generalization of the hypernetted chain model,
which may be derived in the classical framework using the Percus picture and the classical
DFT (see, for instance, [125]). As was pointed out by Chihara [126], if one assumes that
nuclei behave as classical particles, it is possible to partially apply the Percus trick. This
requires one to supplement the model with assumptions about some of the correlation
functions. This approach led to the “quantum hypernetted chain” (QHNC) model.

However, the DFT-based reasoning for deriving the HNC equations resorts to a
functional Taylor expansion around a reference homogeneous medium at a given density.
Even if this derivation leads to the HNC equations, it does not give access to the HNC
free energy of the homogeneous system (see, for instance, [127] and [51] appendix). This is
an issue for the modeling of the thermodynamic equilibrium of a plasma, which includes
the determination of the free-electron density. For that reason, the QHNC approach was
first used in the modeling of electrons in metals [128], considering given free-electron
densities. The QHNC was also applied to the modeling of dense plasmas [129–132], in
order to account for the ion–ion correlations. However, in this case it requires an additional
assumption to set the density of free electrons.

4.5. VAMPIRES Model

A way towards an improved modeling of pressure-ionized plasma is to couple an
atomic model of plasma to a classical model of fluid through its interaction potentials,
without resorting to the point-like-ion hypothesis to split the problem.

In such a model, one should account for the impact of the ion–fluid structure on the
electronic structure of ions but also for the effect of the electronic structure on the interaction
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potentials in the ion fluid. The interaction potentials are then to be determined self-
consistently with the electronic structure. Ideally, they should be seen as thermodynamic
averages, obtained from the minimization of the total free energy.

For these reasons, an essential building block for such a model is a generalized free-
energy functional related to a statistical model of a simple fluid, for an arbitrary interaction
potential. A free-energy functional of the interaction potential has been available since the
early 1960s for the HNC model [133,134]. The equivalent for the Debye–Hückel model was
developed more recently [51,135,136].

Moreover, such free energy functionals can be formulated as minima of the related
generalized free energy functionals of the pair distribution function. This offers an ele-
gant way of deriving the integral equations of the corresponding fluid model, through a
minimization with respect to the pair distribution function.

A preliminary work on a model accounting for both the bound electrons of an ion
and the ion fluid structure was described in [137]. In this model, continuum electrons are
excluded from the ion electronic structure, as in an isolated-ion model, and participate in
a species of a classical fluid. This classical fluid may be treated either through the Debye–
Hückel model (thus avoiding the Coulomb collapse) or by neglecting the polarization of
the electrons as in an OCP. Applicability of this model has obvious limitations, due to its
crude treatment of continuum electrons. However, this model formally introduces the
screening of the effective potential in the electronic structure. In the DH case, when bound
electrons are localized in a small region compared to the Debye length, this model yields
the point-like DH correction of Equation (65).

The variational atomic model of plasma with ion radial correlations and electronic
structure (VAMPIRES) [138] is both an atom-in-jellium model of the ion electronic structure
and a statistical model of ion fluid. In this model, the continuum electrons are treated
quantum-mechanically, as a part of the electronic structure partially shared among ions.
This model stems from the minimization of an approximate free energy, and it was shown
to be fulfilling the virial theorem.

Let us consider the free energy of Ni nuclei of atomic number Z and NiZ electrons,
in a large volume V and at a fixed temperature T. The nuclei are approximated by indis-
tinguishable classical particles, which allows us to write (see [139,140], and [138] for the
present generalized form):

Feq(Ni, V, T)

= Min
w

∫∫
V

d3R1...d3PNi

Ni!h3Ni

{
w(R1...PNi)

(
Ni

∑
j=1

P2
j

2mi
+ Fe

eq(R1...RNi ; Ni, V, T) +
1
β

log
(
w(R1...PNi)

))}

s. t.
∫∫

V

d3R1...d3PNi

Ni!h3Ni

{
w(R1...PNi)

}
= 1 (126)

where w(R1...PNi) denotes the probability distribution of the nuclei classical many-body
states (R1...PNi), and where Fe

eq is the equilibrium free energy of a system of electron with
a fixed configuration (R1...RNi) of the nuclei, plus the nucleus–nucleus interaction energy.
The constraint simply enforces the correct normalization of the probability.

Electrons are modeled quantum-mechanically, using a finite-temperature density-
functional formalism [41–43]. That is, we obtain Fe

eq from the following minimization:

Fe
eq(R1...RNi ; Ni, V, T) =Min

n

[
F0{n; V, T}+ Wdirect

{
n; R1...RNi ; Ni

}
+ Fxc{n; V, T}

]
s. t.

∫
V

d3r{n(r)} = ZNi (127)

n(r) is the electron density; F0 denotes the kinetic-entropic contribution to the free energy
of a non-interacting electrons gas of density n(r); and Wdirect denotes the total direct-
interaction energy, which includes the nucleus–nucleus contribution. Fxc is the contribution
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of exchange and correlations. The constraint corresponds to the neutrality condition of the
nuclei-electron system.

Like in the VAAQP model, we assume that the equilibrium electron density
n(R1...RNi ; r) for a system of Ni nuclei is correctly described using a first-order cluster ex-
pansion (see Equation (114)). This leads us to the following Ansatz for the electron density:

n(R1...RNi ; r) ≈ ne +
Ni

∑
j=1

q(|r − Rj|) (128)

The system is seen as a set of ions, that is: nuclei, each with its spherical cloud of displaced
electrons, sharing a common uniform background of free electrons. The minimization with
respect to the electron density n(r) is thus performed within a particular class of functions
and consists of minimization with respect to the two parameters of the Ansatz, namely, ne
and the function q(r).

The neutrality condition of Equation (127) can be rewritten using Equation (128), as:

ne

ni
+
∫

V
d3r{q(r)} = Z (129)

Using Equation (128), Wdirect can be written as:

Wdirect =
1
2

Ni

∑
i=1

Ni

∑
j=1
j ̸=i

vii

{
q; |Ri − Rj|

}
+ Ni Wintra

{
q; V

}
+ Ni Wbg

{
q, ne; V

}
(130)

with the definitions:

vii

{
q; R, V

}
=

Z2e2

R
− 2Ze2

∫
V

d3r
{

q(r)
|r − R|

}
+ e2

∫
V

d3rd3r′
{

q(r)q(r′)
|r − r′ + R|

}
Wintra

{
q; V

}
= −Ze2

∫
V

d3r
{

q(r)
r

}
+

e2

2

∫
V

d3rd3r′
{

q(r)q(r′)
|r − r′|

}
Wbg

{
q, ne; V

}
= nee

2
∫

V
d3rd3r′

{
q(r)

|r − r′|

}
+ e2

(
n2

e
2ni

− neZ
) ∫

V
d3r
{

1
r

}
(131)

vii plays the role of an ion–ion interaction potential, Wintra corresponds to an intra-ion
interaction energy, and Wbg gathers all terms related to interactions with the electron homo-
geneous background. Contrary to what was done in VAAQP, the electrostatic interaction
term pertaining to an ion is not the object of a specific hypothesis like Equation (119). In
the VAMPIRES model, the interaction terms just follows from the cluster expansion of the
electron density and the statistical treatment of the ion fluid.

Electron terms F0 and Fxc are approximated using a first-order cluster expansion, as
in VAAQP:

F•
{

n(r) = ne +
Ni

∑
i=1

q(|r − Ri|); V, T

}
= F•{n(r) = ne; V, T}+

Ni

∑
i=1

∆F•
1

{
q, ne, Ri; V, T

}
(132)

∆F•
1

{
q, ne, R; V, T

}
=F•{n(r) = ne + q(|r − R|); V, T} − F•{n(r) = ne; V, T} = ∆F•

1

{
q, ne; V, T

}
(133)

where the • symbol is to be replaced by either the 0 or the xc label. ∆F0
1

{
q, ne; V, T

}
is the

kinetic and entropic contribution to the free energy of non-interacting electrons in a trial
potential vtrial

{
q, ne; r; T

}
, which yields the electron density n(r) = ne + q(r), minus the

contribution of the homogeneous background (see Equation (117)). ∆Fxc
1

{
q, ne; V, T

}
is
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the exchange-correlation contribution to the free energy of a system of electrons having
density n(r) = ne + q(r), minus the contribution of the homogeneous background (see
Equation (118)).

At this point, the minimization of Equation (126) becomes

Feq(Ni, V, T) =Min
q,ne

[
F0{ne; V, T}+ Fxc{ne; V, T}

+Ni

(
∆F0

1

{
q, ne; V, T

}
+ ∆Fxc

1

{
q, ne; V, T

}
+ Wintra

{
q, V

}
+ Wbg(q, ne; V)

)
+Fi

eq

{
v(R) = vii

{
q; R, V

}
; Ni, V, T

}]
s. t.

ne

ni
+
∫

V
d3r{q(r)} = Z (134)

where Fi
eq{v; Ni, V, T} gathers the nuclei kinetic energy, entropy, and ion–ion interaction

terms, forming the free energy of a one-component classical fluid of ions, interacting
through the potential vii:

Fi
eq{v; Ni, V, T} =Min

w

∫
V

d3R1...d3PNi

Ni!h3Ni

w(R1...PNi)

 Ni

∑
j=1

P2
j

2mi
+

1
2

Ni

∑
i=1

Ni

∑
j=1
j ̸=i

v(|Ri − Rj|) +
1
β

log
(
w(R1...PNi)

)


s. t.
∫

V

d3R1...d3PNi

Ni!h3Ni

{
w(R1...PNi)

}
= 1 (135)

≡Min
w

Fi{w, v; Ni, V, T} s. t.
∫

V

d3R1...d3PNi

Ni!h3Ni

{
w(R1...PNi)

}
= 1 (136)

In the thermodynamic limit, the free energy per ion Ḟi = Fi/Ni of such a system has a
logarithmic divergence because vii has a Coulomb tail. However, as in a usual OCP model,
this divergence is cancelled by an opposite-sign divergence in Wbg. We therefore group
these terms together, which renormalizes the free energy. We use either the HNC or the
DH model to approximate the resulting divergence-free ion-fluid free energy per ion, as a
functional of the interaction potential v(r).

Ḟi
eq + Wbg ≈ Ḟid, i(ni, T) + Ḟapprox

ex, eq {v; ni, T} (137)

Ḟapprox
ex, eq is either the HNC or the DH excess free-energy per ion. Such approximate equilib-

rium free energy may be written as the minimum of a generalized free-energy functional of
the radial correlation function h(r) = g(r)− 1:

Ḟapprox
ex, eq {v; ni, T} = Min

h
Ḟapprox

ex {v, h; ni, T} (138)

with the minimum occuring for h(r) fulfilling the equations of the approximate model,
either HNC or DH. In the DH case, we have [51]:

ḞDH
ex =

ni

2β

∫
d3r{h(r)βv(r)}+ 1

2βni

∫ d3k
(2π)3 {nihk − log(1 + nihk)} (139)

whereas in the case of HNC, we have [133,134]:

ḞHNC
ex = ḞDH

ex +
ni

2β

∫
d3r
{
(h(r) + 1) log(h(r) + 1)− h(r)− h(r)2

2

}
(140)

Finally, the VAMPIRES model is based on the minimization of the following approxi-
mate free energy per ion Ḟ{h, q, ne}, with the neutrality constraint:
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Ḟ{h, q, ne; ni, T} =Ḟid,i(ni, T) + Ḟi approx
ex

{
h, v(R) = vii

{
q, R

}
; ni, T

}
+

f F
e (ne; T)

ni
+

fxc(ne; T)
ni

+ ∆F0
1

{
q, ne; T

}
+ ∆Fxc

1

{
q, ne; T

}
+ Wintra

{
q
}

(141)

Ḟeq(ni, T) =Min
h,q,ne

Ḟ{h, q, ne; ni, T} s. t.
ne

ni
+
∫

d3r{q(r)} = Z (142)

The minimization with respect to h(r) leads to the fluid integral equations, that
is, the Ornstein–Zernike relation with the closure relation corresponding to the chosen
approximate model:

h(r) = c(r) + ni

∫
d3r′

{
c(|r′ − r|)h(r′)

}
(143)

c(r) = −βvii(r)− log(h(r) + 1) + h(r) (HNC) (144)

c(r) = −βvii(r) (DH) (145)

The minimization with respect to q(r) includes that on ne, which is expressed as a
functional ne{q; ni} using the neutrality constraint. It yields:

0 =− vtrial

{
q, ne; r; T

}
+ µxc(ne + q(r), T)− µxc(ne, T) + vel

{
h, q; r

}
− ni

∫
d3r′

{
−vtrial

{
q, ne; r′; T

}
+µxc

(
ne + q(r′), T

)
− µxc(ne, T)

}
(146)

where we have defined:

vel

{
h, q; r

}
≡ vintra

{
q; r
}
+ ni

∫
d3r′

{
h(r′)vintra

{
q; |r′ − r|

}}
(147)

vintra

{
q; r
}
=

−Ze2

r
+ e2

∫
d3r′

{
q(r′)
|r − r′|

}
(148)

In order to solve Equation (146), we define the distribution ṽel such that:

vel(r) = ṽel{vel, r} − ni

∫
d3r′

{
ṽel
{

vel, r′
}}

(149)

We thus obtain from Equation (146) the following electron self-consistent equation:

vtrial

{
q, ne; r; T

}
= ṽel(r) + µxc(ne + q(r), T)− µxc(ne, T) (150)

where ṽel(r) is a shorthand notation for ṽel

{
vel

{
h, q
}

, r
}

. From Equation (149), ṽel may be
expressed in the Fourier space as:

ṽel,k =

{
vel,k = − 4πe2

k2 (Z − qk)(1 + nihk) if k ̸= 0
0 if k = 0

(151)

The difference between ṽel and vel only impacts on integrals of product of ṽel with a function
that is not regular at k = 0 in the Fourier space. For instance, we have:∫

d3r{ṽel(r)} = 0 ̸=
∫

d3r{vel(r)} = − βne

ni
(152)

where the last equality may be shown from the equations of the model.
Thermodynamic quantities are rigorously derived from the equilibrium free energy

Ḟeq. Especially, the pressure is given by the following expression:
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Pthermo(ni, T) =nikBT + n2
i

∂Ai approx

∂ni

∣∣∣∣
eq

+ ne
(
µ(ne, T) + µxc(ne, T)

)
− f0(ne, T)− fxc(ne, T) (153)

In this formula, the first two terms correspond to the pressure of the ion fluid (ideal-gas and
excess contributions), while the next four terms correspond to the pressure of the uniform
electron gas, as in the VAAQP model. This means that displaced electrons only contribute
to the pressure through the ion-fluid excess term. From the expression of the virial pressure,
it can also be shown that the virial theorem is fulfilled in the VAMPIRES model.

Figure 15 presents results from the VAMPIRES model for lithium at 10 eV temperature.
First, one sees from Figure 15e, which displays the mean ionzation as a function of density,
that the accounting for ion–ion correlations in the model yields the qualitative behavior of
pressure ionization.
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Figure 15. Results from the VAMPIRES model for lithium at 10 eV temperature. Pair correlation
function h(r), electron density 4πq(r)/Z, and electrostatic potential r vel(r)/Z, for various matter
densities (a–c). Mean ionization Z∗ (e) and effective coupling parameter Γeff (d) as functions of the
matter density.

In order to quantify ion–ion coupling in this model, the usual coupling parameter
Γ = βZ∗ 2e2/RWS is not relevant. The ion–ion potential is not purely Coulombic, and ion
charge Z∗ corresponds to an asymptotic limit, which, in general, is not relevant to the WS
radius. Consequently, we use an effective coupling parameter Γeff = −βU̇approx

ex , which
really corresponds to the ratio of the ion-fluid interaction energy to the thermal energy.

Figure 15a–c present the ion–ion pair correlation function h(r), electron-cloud density
q(r), and ion effective electrostatic potential vel(r), for three values of matter densities
corresponding to weak, moderate, and strong coupling, respectively. In each case, close to
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the central nucleus, one sees a sharp peak in the electron linear density, which corresponds
to the bound electronic structure of the ion.

For a weakly coupled plasma (case of Figure 15a), one can see that the range of the
potential vel felt by the electrons extends way beyond the WS sphere. vel variations may
be decomposed into two regions. Close to the nucleus, the steep variation is related to the
“internal” screening by the bound electronic structure. Far from the nucleus, the longer-
range decay is related to both a tail of weakly displaced electrons and the DH-like decay of
the ion–ion correlation function.

Moreover, one can see in Figure 15e that the mean ionization in these cases is lower
than in INFERNO or VAAQP. However, in VAMPIRES, some of the electrons that do not
participate in the background density ne, which defines Z∗, may in fact be weakly displaced
and play a role similar to the background electrons in an observable quantity. Especially,
these electrons may interact significantly with the surrounding ions.

For a moderately coupled plasma (in the case of Figure 15b), the ion–ion pair correla-
tion function has the shape of a cavity, resembling the WS cavity assumed in VAAQP. In
such situations, results from the VAMPIRES model are indeed close to those of VAAQP
and of INFERNO. One may check in the figure that the range of vel is close to RWS.

For a strongly coupled plasma (case of Figure 15c), the ion–ion pair correlation func-
tion exhibits oscillations beyond the WS radius, which is typical of liquid-like behavior.
According to the model equation Equation (147), the correlation peaks of h(r) draw some
electrons. They are also “dressed” with the ion electron cloud density. This generates
repulsive features between the central nucleus and the first correlation peak and between
the correlations peaks because of the potential overlap of electron clouds. Consistently,
electrons are displaced away from these regions of potential overlap. As a consequence, vel
has a zero inside the WS sphere, and its effective range is thus shorter than RWS.

In this model, it seems that the pressure ionization phenomenon goes along with the
switching to the liquid-like regime. This is illustrated in Figure 15d,e. The increase in
the mean ionization is connected to a sharp increase in the coupling parameter. Across
the pressure ionization edge, the plasma switches from a moderate-coupling to a strong-
coupling regime, with the related feedback on the range of vel. In addition to decreasing
the value of RWS, the range of vel switches from longer than RWS to shorter than RWS. This
explains why pressure ionization leads to a steeper increase in the mean ionization in this
model than in VAAQP or INFERNO.

In the VAMPIRES model, the pressure-ionization phenomenon, as well as the switch-
ing from the Debye–Huckel-scale to the WS-scale decay, stems from a first-principle ac-
counting for the structure of the ion fluid. At the same time, at each thermodynamic
condition, the ionization state of the plasma is obtained from the condition of thermody-
namic equilibrium.

One of the known modeling issues for such a model is that the electrons of an ion
feel the surrounding ions through their average distribution, given by the pair correlation
function. Among the possible outcomes of such a modeling effort could be that this static
picture breaks down at some thermodynamic conditions.

Work on the VAMPIRES model is still in progress, and applicational studies are still
to be performed. Therefore, the following sections will only focus on applications of
cavity-based models, which may, however, give relevant information.

5. Radiative Processes and Photoabsorption in Dense Plasmas

From the electrodynamics of continuous media, we can relate the photoabsorption
cross-section per ion σabs to the plasma dielectric function ϵω as follows [141]:
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σabs(ω) =
ωRe(nref

ω )

niϵ0c
Im(ϵω) (154)

Re(nref
ω ) =

(
Re(ϵω) + |ϵω |

2ϵ0

)1/2

(155)

where nref
ω corresponds to the refraction index of the plasma.

One then decomposes the dielectric function of the plasma into contributions from the
various ions. Of course, such a decomposition depends on the considered atomic model. In
the case of an ideal plasma of isolated ions, the response of the plasma is directly the sum
of the responses of each isolated ion. In the case of an ion-cell model, one sees the response
of the plasma as the sum of the responses of each ion cell. For an atom-in-jellium model
such as VAAQP, the cluster expansion [115], which is used for the free energy, is extended
to the plasma susceptibility [142–144].

In the dipole approximation, valid for wavelengths large compared to the typical
atomic radius, we may write, limiting ourselves to the average-atom framework:

Im(ϵω) = 4πϵ0
nie

2

h̄
Im
∫

d3rd3r′
{

zz′DR
ω(r, r′)

}
(156)

where DR
ω is the atomic retarded susceptibility of the average atom, which can be written,

at finite temperature, as (see, for instance, [145]):

DR
ω(r, r′) = − i

h̄

∫ +∞

−∞
dτ
{

Tr
(

ϱ̂
[
n̂H

r (τ), n̂H
r′ (0)

])
θ(τ)eiωτ

}
(157)

In the framework of the time-dependent density-functional theory [146–150], one can prop-
erly relate the density susceptibility to the response of the electron density to a frequency-
dependent external potential:

δnω(r) =
∫

d3r′
{
DR

ω(r, r′)δvext,ω(r′)
}

(158)

where δvext,ω(r′) is the frequency-dependent perturbation of the potential, and δnω(r) is
the resulting perturbation in the frequency-dependent density.

5.1. Independent Particle Approximation and the Effect of Screening

The simplest approximate approach to the retarded susceptibility is to use the retarded
susceptibility of a system of independent particles. The latter susceptibility is obtained
directly from the dynamic perturbation theory, which yields:

DR
ω(r, r′) ≈ DR,0

ω (r, r′) = ∑
ξ,ζ

(
pF(µ, T, εξ)− pF(µ, T, εζ)

) φ∗
ξ (r)φξ(r′)φζ(r)φ∗

ζ (r
′)

εζ − εξ − h̄ω
(159)

where ξ, ζ label Kohn–Sham orbitals, and where the sums run over both the discrete and
the continuum part of the 1-electron spectrum.

This approach notably disregards collective phenomena such as plasma oscillations,
which stem from the feedback of the electrons on the potential (potential induced by the
density perturbation).

In the average-atom approach, the independent-particle approximation leads to the
average-atom Kubo–Greenwood formula:

Im(ϵω) = 4πϵ0nie
2 π

3 ∑
ξ,ζ

(
pF(µ, T, εξ)− pF(µ, T, εζ)

)∣∣⟨φξ

∣∣R∣∣φζ⟩
∣∣2δ(h̄ω − h̄ωζ,ξ) (160)
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where h̄ωζ,ξ = εζ − εξ . Within this approximation, the photoabsorption can be decom-
posed into bound–bound, bound–continuum, and continuum–continuum contributions.
Although we use the average-atom context here as an example for the discussion, a similar
treatment can be performed in the case of a more detailed model yielding the contributions
of the various excited states to the plasma dielectric function.

The oscillator strengths are the numbers defined as follows:

fξ,ζ =
2
3

me

h̄2 h̄ωζ,ξ
∣∣⟨φξ

∣∣R∣∣φζ⟩
∣∣2 (161)

when ξ, ζ belong to the discrete part of the spectrum. In the case where either ξ or ζ belongs
to the continuum, this expression is to be understood as a density of oscillator strength,
also called a differential oscillator strength.

Furthermore, in the case of both ξ and ζ belonging to the continuum, the dipole matrix
elements are conditionally convergent integrals. In practice, in the independent-particle
approximation, one can use the Ehrenfest theorem in order to recast the dipole matrix
elements into their acceleration form [151]:

∣∣⟨φξ

∣∣R∣∣φζ⟩
∣∣ = 1

meω2
ζ,ξ

∣∣∣∣∫ d3r
{
⟨φξ |r⟩∇rveff(r)⟨r|φζ⟩

}∣∣∣∣ (162)

where veff(r) is the effective potential associated with the orbitals {φξ}. The role of dipole
matrix elements involving two continuum orbitals is rather specific to plasma physics
because it implies non-zero populations for the continuum orbitals.

An example of the continuum–continuum contribution to the opacity of a plasma
is given in Figure 16, corresponding to silicon at 2.36 g·cm−3 matter density and 5 eV
temperature. In the presented calculation, the double sum, or more precisely the double
integral, of Equation (160) was performed using continuum wave functions obtained from
the VAAQP model. Approximate methods allowing one to avoid the double summation
exist (see, for instance, [152]). One can see in this figure that, at high frequency, one
recovers the Kramers classical result [153,154] involving the bare-nucleus charge, and not
an effective ion charge. This is expected since the atomic response at high frequencies
essentially involves the electrons located in the vicinity of the nucleus.
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Figure 16. Continuum–continuum contribution to the opacity of a silicon plasma at 5 eV temperature
and 2.36 g·cm−3 matter denisty. Calculation using orbitals from the VAAQP model, and comparison
with the Kramers formula and the opacity corrected using the gDrude function of Equation (167).

When the effective potential defining the orbitals is screened, the oscillator strengths
have a behavior that is qualitatively different from those of an isolated ion. The underlying
reasons are closely related to the limitation of the number of bound states.
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For a potential having a Coulomb-tail (pure Coulomb potential or potential stem-
ming from an isolated-ion model), the continuity of the cross section across the ionization
threshold may easily be expressed through the matching of the two quantities:

fξ,ζ
1

dεξ/dnξ

∣∣∣∣
εξ→0−

= fξ,ζ
n3

ξ

Z∗ 2

∣∣∣∣∣
εξ→0−

=
d fℓξ ,ζ(ε)

dε

∣∣∣∣∣
ε→0+

(163)

where nξ , ℓξ are the principal and orbital quantum numbers of orbital ξ, respectively, and
where (dεξ /dnξ)

−1 gives the density of states of the quasi-continuum of infinitely close
discrete states in the n → ∞ limit, for a Coulomb-tail potential.

For Coulomb-tail potential, we have a finite value of the differential oscillator strength
at the threshold. With screening, the behavior of radial wave functions at infinity is changed:
the radial wave functions tend to Bessel functions instead of Coulomb functions in the
case of Coulomb potential. Due to the related change in the normalization coefficient, the
differential oscillator strength smoothly goes to zero [155]. This change in the behavior of
oscillator strengths becomes more pronounced as density is increased since the potential is
screened over shorter distances.

Figure 17 shows an illustration of this oscillator-strength drop near the photo-ionization
threshold in the case of silicon at 5-eV temperature and matter densities of 10−3 and
10−2 g·cm−3. In this figures, oscillator strengths are multiplied by the (dεξ /dnξ)

−1 term of
Equation (163), in order to emphasize the continuity with differential oscillator strengths.
The results from the VAAQP model (or INFERNO, with both models being in agreement)
are compared to those of an isolated ion with an average configuration fixed to the VAAQP
average configuration, as well as to results from a Coulomb potential with a charge fixed
to the VAAQP mean ionization. For both the Coulomb potential and the isolated-ion, in
principle, the set of bound states is infinite, as well as the series of oscillator strengths. At
the low density of 10−3 g·cm−3, one can see that despite the qualitatively different behavior
of oscillator strengths near the photo-ionization threshold, a quantitative agreement is
obtained between the VAAQP model and the isolated-ion. On the contrary, at the higher
density of 10−2 g·cm−3, the change of behavior has a larger quantitative impact.
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Figure 17. Differential oscillator strengths for the 4s − p (continuous solid lines) and oscillator
strengths for the discrete 4s − np transitions (crosses connected by dashed lines, with values be-
ing multiplied by the (dεξ /dnξ)

−1 term of Equation (163)), for a silicon plasma at 5-eV temper-
ature and matter densities of 10−3 (a) and 10−2 g·cm−3 (b). Comparison between results from
VAAQP/INFERNO (in blue, same results at these conditions), from an isolated ion having the av-
erage configuration taken from VAAQP/INFERNO (in green) and from a Coulomb potential with
charge Z∗ taken from VAAQP/INFERNO (in black).
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Using a model such as INFERNO or VAAQP, one accounts for both the decrease in the
oscillator strength and the appearance of a resonance when a bound state disappears. Using
an isolated ion with continuum lowering in order to suppress subshells does not account
for either of these phenomena. Figure 18 shows the oscillator strengths at two matter
densities between which the 5p subshell gets pressure-ionized. One can easily see how the
discrete oscillator strength is replaced by an equivalent contribution from a resonance in
the differential oscillator strength. Thus, the corresponding bound–bound channel does
not disappear but is replaced by a contribution to the bound–continuum channels. For
the sake of comparison, the energy of the photoionization threshold obtained from the
average-atom of an isolated ion with Stewart–Pyatt IPD is also shown. The location of
the threshold is in good agreement with VAAQP in this case of relatively low density, but
the cross-section of an isolated-ion model would be different. Moreover, obtaining a fully
continuous variation of the opacity with density requires correct and consistent accounting
for the resonances in the bound–continuum and continuum–continuum contributions to
the opacity.
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Figure 18. Differential oscillator strengths for the 4s-p (continuous solid lines) and oscillator strengths
for the 4s-np transitions (crosses connected by dashed lines, values multiplied by the (dεξ /dnξ)

−1

term of Equation (163)), for a silicon plasma at 5-eV temperature and matter densities of 1.1 10−2

and 1.2 10−2 g·cm−3. Results are taken from VAAQP/INFERNO (same results at these conditions).
Between the two matter densities considered, the 5p subshell disappears and is replaced by the
corresponding resonance in the p continuous spectrum. The vertical dotted line in green indicates
the position of the 4s photo-ionization threshold obtained from the Stewart–Pyatt formula [45].

5.2. Fluctuations around the Average Atomic State and the Need for Detailed Modeling

Whereas the average microstate of a whole macroscopic plasma may virtually sample
many atomic excited states, the average-atom approach is based on the average atomic state
of the plasma.

In terms of detailed atomic modeling, spectral quantities such as the opacity or emis-
sivity may reveal the contributions of the various species that have significant populations
because different atomic states usually contribute at distinct frequencies. Even when
the various spectral features are unresolved due to physical broadening, the statistical
distribution among the various species yields a statistical broadening of the unresolved
feature.

For that reason, detailed modeling of plasma is somehow mandatory in order to calcu-
late realistic estimates of spectral quantities. The physical pictures underlying average-atom
models can often be extended to more detailed modeling. For instance, the models [27,156]
rely on various extensions of the ion-cell model to detailed configuration or superconfigu-
ration accounting.

The variational approach leading to the VAAQP model can be formally generalized
to configurations or superconfigurations [112]. This approach was notably used to build
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an approximate DCA model resorting only to results from the VAAQP model (VAAQP-
DCA, [58]).

From an average-atom standpoint, the populations of the various levels may be
obtained from the analysis of fluctuations around the average atomic state [157]. Starting
from an approximate detailed model that resorts to the average-atom energies and orbitals,
models of fluctuations can be used to perform a statistical approach. An example of such
an approach is the Gaussian approximation [25], which was applied to the VAAQP-DCA
model in [58]. In this context, the independent particle approximation [158–160] to the
fluctuations of orbital populations leads to an overestimation of the statistical broadening,
whereas correlated fluctuations [25] yield more realistic estimates.

As an illustration of the need for detailed modeling, Figure 19b displays the ion
charge state distributions for silicon at 60 eV temperature and 45 mg·cm−3 matter density
resulting from two detailed models: the DCA model from [58] and the STA model of [27].
In Figure 19a the corresponding transimission spectra is shown, compared to the measured
spectrum from [161] (areal density of 80µg·cm−2). The measure was in fact performed on a
plasma of SiO2. However, the ionization competition between oxygen and silicon in the
mixture was studied using an isolated-ion detailed model with Stewart–Pyatt continuum
lowering [162]. Its effect on the populations of silicon was shown to be rather weak. In
Figure 19a, one can easily identify the contributions from the various charge states. One
may note a slight shift in the positions of some spectral features obtained from the DCA
model of [58]. This is due to the lack of orbital relaxation in this approach, whereas it is
accounted for in the STA model of [27]. Let us, however, mention that it is possible to
account for orbital relaxation even when starting from an average-atom description, by
using the static linear response [163,164].
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Figure 19. Transmission of a silicon plasma from [161], at areal density of 80 µg·cm−2. Estimated
plasma conditions are 60 eV temperature and 45 mg·cm−3 matter density. Comparison between
results from a DCA approach based on the VAAQP model [58], from the SCO approach [27], and
measured transmission spectrum from [161]. In the calculations, an arbitrary line width of 4 eV was
added to the statistical width to mimic the physical broadening and instrumental resolution.

Even resorting to known models, the detailed modeling of plasma still remains an
implementation challenge. For elements of moderate or high atomic numbers, especially
at high temperatures, the number of excited states that contribute to radiative properties
may be enormous. Statistical approaches are available to reduce the number of species,
leading to various levels of detail in the spectra. However, one often has to make a tradeoff
between the level of detail and the completeness of the approach. Detailed modeling is also
used in the collisional-radiative modeling of non-equilibrium plasmas [7]. In this context,
the number of states or statistical objects that may be accounted for is limited by the rank
of the subsequent collisional-radiative matrix. The issue of choosing a relevant tradeoff is
even more important in this context (see, especially, chapter 1 of [7]).
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In the specific case of pressure ionization, the removal of some orbitals from the
discrete 1-electron spectrum results in the removal of any configuration having non-zero
population of these orbitals. This ultimately leads to a truncation of the charge state
distribution, pushing it towards higher charge states.

Figure 20 shows the charge state distributions obtained for iron at 40 eV temperature,
at various matter densities. The case of 15.6 g·cm−3 (2-fold compression) illustrates the
pressure ionization of the 3d subshell, whereas the case of 78 g·cm−3 (10-fold compression)
illustrates the pressure ionization of the 3p subshell. In these cases, the results of both the
reconstructed DCA model of [58] and an approximate, statistical treatment of the model
through the Gaussian approximation are displayed. One can see how the charge state
distribution of the DCA model is pushed towards higher ionization stages as available
configurations for the lowest ionization stages are removed. On the other hand, the
Gaussian approximation of fluctuations does not account properly for this cut-off but still
yields the same qualitative trend of a narrow peak on the average charge state.
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Figure 20. Charge state distributions of an iron plasma at 40-eV temperature, for various matter
densities ranging from 1/100th (a) to 10 times (e) solid density. Comparison between a DCA approach
reconstructed from the VAAQP model (VAAQP-DCA) [58] and an approximate treatment of this
model using the Gaussian approximation [25,58] (VAAQP-GA).

5.3. Collective Phenomena

One may expect collective phenomena to play a significant role when the frequency of
the perturbing potential is lower or of the order of the plasma frequency ωP.

ωP =

√
4πnee2

me
(164)

Close to the plasma frequency, the perturbing field is resonant with the natural frequency
of the free-electron gas, and its feedback may have a large impact on the plasma response.
At frequencies much lower than the plasma frequency, the static collective behavior of
the plasma, i.e. the screening, prevents the electromagnetic field from propagating in the
plasma. The plasma behaves as a conductor, and its conductivity is limited by the collisions
of the electrons on the ions. Indeed, below the plasma frequency, speaking in terms of
dynamic conductivity would be more relevant than in terms of opacity. As is clear from
Equation (164), collective effects have an impact on a frequency range that extends farther
as density is increased. They thus have a specific importance for dense plasmas.

The continuum–continuum opacity obtained from the independent-particle approxi-
mation exhibits an unphysical divergence at zero frequency. On the other hand, the Drude
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model, which accounts for collisions, yields a finite value of the direct-current conductivity,
as well as of the corresponding opacity.

In [152], a very simple, heuristic approach is proposed in order to recover the Drude-
like collective behavior at low frequency (very similar approaches are also described
in [165–167]).

From the Boltzmann equation in the relaxation-time approximation, one may derive
Ziman’s static conductivity [168]:

γZiman =
−2neq2

e
(2π)3m2

e

1
3

∫
d3k

{
k2

ωcol(k)
∂ f0(ε)

∂ε

∣∣∣∣
εk

}
(165)

where f0 is the free-electron energy distribution, and ωcol is the collision frequency.
In the quantum-mechanical framework, the collision frequency ωcol(k) of electrons

corresponds to the net rate of elastic scattering out of the momentum k. We may estimate
the latter by summing the electron–ion elastic-scattering cross section, which may be
estimated in the limit of weak scattering [10]. One obtains:

ωcol(k) =
4πni
mek ∑

ℓ

(ℓ+ 1) sin2(∆k,ℓ+1 − ∆k,ℓ) (166)

The heuristical method of correction [152] for the opacity is as follows. One first writes
the continuum–continuum photoabsorption cross-section in the low-frequency limit in
terms of the scattering cross-section (the method is given in [169,170]). Then, by analogy with
Ziman’s formula Equation (165) and by resorting to the collision frequency of Equation (166),
one identifies the correcting factor that allows one to recover Ziman’s result.

gDrude(k, ω) =
ω2

ω2 + ω2
col(k)

(167)

This factor introduces a Drude-like behavior in the low-frequency part of the spectral
opacity. Figure 16 shows the effect of the correcting function gDrude in the case of silicon
at 5 eV temperature and 2.36 g·cm−3 matter density. As may be seen from the figure, this
correction has a strong impact below the plasma frequency.

At low frequencies, the complex refraction index may also have a significant imaginary
part. The assumption nref

ω = 1, often used in the dielectric regime (ω >> ωP), is no longer
valid, and a more realistic estimate is required. In [152], a simple estimate obtained from
the Drude formula is used. However, since Im(ϵω) is known, one can also use the Kramers–
Kronig relations to obtain Re(ϵω):

Re(ϵω) = ϵ0 +
1
π
PP

∫ +∞

−∞
dω′

{
Im(ϵω)

ω′ − ω

}
(168)

Then, one uses Equations (155) and (154) to obtain the opacity.
Figure 21 displays the results of the present approach [117], using the heuristic coeffi-

cient gDrude and the refraction index obtained from the Kramers–Kronig relation, for the
case of silicon at solid density and 2.5 eV temperature, using the VAAQP and INFERNO
models. Rather good agreement is found with measurements performed on cold solid
silicon [171]. In fact, with cold solid silicon being a metal, it is not so surprising that plasma
models can give a reasonable description of it.

The method of [152,165–167] enables a smooth transition to the static collective be-
havior of the plasma, accounting for electron–ion collisions, but does not account for the
dynamic screening by electron, which notably yields the collective plasma oscillations. In
an approach based on an effective system of independent particles, a description of the
collective behavior is accounted for through the self-consistency of the effective potential.
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Whereas the static atomic potential is calculated self-consistently, the frequency-dependent
perturbation of the potential is not, when using the independent-particle linear response.
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Figure 21. Opacity of cold silicon at solid density (2.36 g·cm−3) in the visible-to-XUV range, typical
of the L and M edges. Comparison between results from INFERNO and VAAQP at a temperature of
2.5 eV, using the heuristic accounting for collective effects, and measurements of the opacity of cold
silicon [171].

5.4. Self-Consistent Linear Response

Using a time-dependent density functional formalism [146–150] to calculate the linear
response leads to a self-consistent scheme for the frequency-dependent density perturbation
and induced potential:

δnω(r) =
∫

d3r′
{
DR

ω(r, r′)δvext,ω(r′)
}
=
∫

d3r′
{
DR

0,ω(r, r′)
(
δvext,ω(r′) + δvind,ω(r

′)
)}

(169)

δvind,ω(r) = e2
∫

d3r′
{

δnω(r′)
|r − r′|

}
+

∂µxc(n)
∂n

∣∣∣∣
n(r)

δnω(r) (170)

where we limit ourselves to the adiabatic local density approximation of the exchange-
correlation term.

These equations are solved in [147] to obtain photoabsorption cross-sections of neutral
rare gases, which do not involve continuum–continuum channels. However, in these calcu-
lations, the accounting for channel mixing between bound–bound and bound–continuum
contributions has a significant impact on the photoabsorption cross-section, especially near
the photo-ionization edge. Figure 22 displays the result of a self-consistent dynamic linear
response calculation using the same model as [147], on one of their cases of application. The
results are in close agreement both with those of [147] and with the measurement of [172]
on liquid xenon and exhibit the significant impact of channel mixing.

In the case of a plasma, the contribution of continuum–continuum transitions causes
difficulties since they involve non-localized wave functions. The cluster expansion, on
which the VAAQP model is based, is an efficient method to substract the non-integrable
contribution of the homogeneous medium. From the corresponding self-consistent linear-
response formalism, a sum rule for the atomic dipole was derived in [173]:

∫
d3r{zδnω(r)} =

1

meω2
(

1 − ω2
P

ω2

)(− ∫ d3r
{

δnω(r)
∂vtrial(r)

∂z

}
+
∫

d3r
{

δvind,ω(r)
∂n(r)

∂z

})
(171)
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Formally, this relation plays the same role as the switching between the length and accel-
eration form of the dipole matrix element, but in the context of the self-consistent linear
response. More precisely, the factor in front of the right-hand side stems from the contribu-
tion of the homogeneous medium and causes a singularity at the plasma frequency. This is
due to the accounting for the induced field in the homogeneous plasma response, while
disregarding collisions, which would saturate this resonant behavior. If one takes the factor
in the ω >> ωP limit, then the first term on the right-hand side of Equation (171) may be
recovered from Equation (162). The second term is purely due to the accounting for the
induced potential, that is, for self-consistency in the dynamic behavior of the displaced-
electron density. These effects potentially include the coupling with plasmons or the mixing
among the various particle–hole channels.

The implementation of Equation (171) was achieved in the TF model [87,174]. The TF
model is a relevant first-step because the VAAQP model is rigorously equivalent to the
usual TF model when the electron density is taken in the TF approximation [98]. However,
the TF model leads to unphysical results for the radiative properties, especially at high
frequencies [86]. It is therefore of limited practical use.

In the quantum version of the VAAQP model, although progress was achieved in the
understanding of the problem, the application of the self-consistent linear-response approach
still leads to inconclusive results [175]. In particular, the direct check of Equation (171) from
an implementation of the self-consistent linear response using standard methods described
in [147,176] failed. The self-consistent linear response in the context of dense plasmas thus
remains an open problem, at least from an implementation standpoint.
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Figure 22. Photoabsorption cross section of neutral Xe in the XUV region typical of the N-edge. Com-
parison between the self-consistent linear response of the DFT atom, using Gunnarsson–Lundqvist
exchange-correlation term (same model as in [147]), the independent-particle approximation, and
measurements from [172].

6. Some Words on Collisional Processes

In the heuristic bridging to the Ziman formula (see Section 5.3), we obtained the colli-
sional frequency considering the net rate of electron–ion elastic-scattering out of momentum
k. In this context, we used the electron–ion elastic-scattering cross-section stemming from
the limit of weak collisions. The latter only depends on the wave functions through the
phase shifts (see, for instance, [10]):

σscatter(εk) = a2
0

4π

k2 ∑
ℓ

(2ℓ+ 1) sin2(∆k,ℓ) (172)

The elastic scattering of electrons by ions may be categorized as an elementary collisional
atomic process, even if it does not change the ion electronic state. Figure 23a displays the
total electron–ion elastic-scattering cross section for a silicon plasma at a temperature of 5
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eV, for various values of the matter density. Below matter density of 1 g·cm−3, the results
from the INFERNO and VAAQP models agree well.

The distorted-wave approximation (see, for instance, [10]) is widely used for the calcu-
lation of cross sections of collisional processes for isolated ions [177,178]. A straightforward
approach to collisional ionization in dense plasmas consists of extending heuristically
this method to models of pressure-ionized plasmas. For example, one may calculate the
collisional-excitation cross section by generalizing the configuration-averaged collision
strength [178] to the orbitals and fractional occupation numbers given by an average-atom
model such as INFERNO or VAAQP.

As an illustration, in Figure 23b we display the 2p→3s collisional-excitation cross
section, obtained using the distorted-wave approach using the INFERNO and VAAQP
models, respectively. The chosen case is a silicon plasma at 5 eV temperature, for matter
densities of 10−3, 10−1, and 2.36 g·cm−3. At high energies, the Born behavior (plane-wave
incoming and outgoing electrons) is recovered. At matter density of 10−3 g·cm−3, the 7d
bound orbital is delocalized, but still contributes a sharp resonance in the continuum. At
matter density of 10−1 g·cm−3, the same occurs for the 3d bound orbital.
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Figure 23. Total electron–ion elastic-scattering cross section (a) and 2p→3s collisional-excitation cross
section (b) for a silicon plasma at a temperature of 5 eV, for various values of the matter density.
Comparison between results from the INFERNO and VAAQP models, which are in close agreement
up to matter density of 0.1 g·cm−3.

As a direct consequence of these resonances, we obtain sharp, quasi-discrete features
in the corresponding cross-sections. These near-threshold sharp features may be seen as
the remnants of the correponding dielectronic recombination channels, namely, 2p→3s,7d,
and 2p→3s,3d.

One thus can see how, prior to effectively removing them, screening of the potential
may redispatch the collisional channels. Part of the dielectronic recombination channels
then becomes collisional excitation.

However, the application of the usual distorted-wave method to dense plasma may be
questionable in the context of dense plasmas. For instance, the effect of transient spatial
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localization of electrons was pointed as a potentially relevant effect, lacking in the usual
distorted-wave approach [179].

More generally, one may question the usual approach to the collisional process in
the context of dense-plasma models. In fact, collisional processes are introduced as a
perturbative accounting for continuum electrons, supplementing an ion Hamiltonian that
disregards them (see, for instance, [10]). Yet, models of pressure-ionized plasma account
for the continuum electron as part of the ion electronic structure. In this framework, one
should probably adapt, re-interpret, or redefine the whole approach to collisional processes.
To the best of the author’s knowledge, such a rigorous approach to collisional processes in
pressure-ionized plasma is an open question.

Finally, let us mention that measures of a collisional-ionization cross-section in a dense
plasma were recently performed and showed significant impact of density effects [180].

7. Conclusions

Atomic models of dense plasmas in themselves are still an active field of research,
facing open questions as regards their theoretical foundations. The main shortfalls of
models based on the notion of continuum lowering are rather well identified. However,
models used in order to go beyond the continuum lowering picture are still mostly based
on the picture of a Wigner–Seitz cavity. This picture may be seen as a practical, heuristic
way of introducing the pressure ionization in the models but seems poorly motivated,
especially for weakly and strongly coupled plasmas.

Progress is still ongoing towards achieving a better modeling of pressure ionization,
closer to the first principles. That means obtaining pressure ionization directly as a conse-
quence of the plasma structure. Recent research efforts were carried out in this direction
with the models based on the QHNC approach and the VAMPIRES model. These models
may be viewed as steps in the understanding of the problem but, for sure, they do not
exhaust the theoretical challenge of the consistent modeling of nucleus–electron plasmas.

It is to be expected that defining a relevant notion of ion may not be possible in all
plasma conditions. Defining the validity domain of atomic physics of plasma, if not of a
particular model, remains among the most challenging issues.

Finding a satisfactory model of ions in dense plasmas is the essential first step towards
applying many methods and notions from atomic physics. This notably includes the
calculation of radiative properties or atomic processes typically involved in collisional-
radiative modeling.

As regards radiative properties, most approaches are based on the independent-
particle approximation. In these methods, the high number of excited states in high-
temperature, mid-to-high-Z plasmas may still constitute an implementation challenge,
requiring a tradeoff between completeness and level of detail.

A self-consistent linear-response was successfully applied as regards bound electrons
and their related contribution to radiative properties since the 1980s [147,181,182]. How-
ever, despite a significant theoretical effort [87,173,175], the consistent treatment of the
continuum electron remains an issue in the quantum framework. Yet, this would constitute
an important step towards a first-principles approach to the collective effects on radiative
properties. Heuristic approaches to collective effects are known [152,165–167]. However, all
of them are in fact very similar, and a better-founded approach would be of great interest.

Addressing collisional processes is especially required for the collisional-radiative
modeling of dense plasmas. Work is in progress to study the collisional processes in
the framework of fully quantum models of screening in dense plasmas. From a direct
application of the distorted-wave approach, it appears that screening of the potential can
result in a different distribution of transitions among excitation, ionization, and dielectronic
channels. However, the theoretical justification for applying the distorted-wave approach
to models that account for continuum electrons deserves deeper investigation.

Some dense-plasma models, such as INFERNO, have now been studied and used for
many years, but experimental checks of their validity are scarce and do not really allow
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one to discriminate among the various models. Equation-of-state measurements often
have large experimental uncertainties and rarely access the temperature of the plasma.
On the other hand, measurements of radiative properties are most often performed on
diluted plasma (see, for instance, [183–187]), addressing regimes in which differences
among models are not pronounced. Direct-current conductivity measurements [188,189] or
X-ray Thomson scattering may address relevant regimes but usually requires one to take a
further step in the modeling in order to interpret the measurements [190,191].

Efforts to improve atomic models of dense plasmas are timely, in view of the growing
concern for understanding the warm-dense matter, with applications to stellar astrophysics
and planetology in mind. These efforts are also in sync with the recent advances in
experiments on warm and hot dense plasmas, enabled by the advent of new facilities
and experimental platforms. One may cite, for instance, the recent convergent-spherical
shockwave experiments at NIF [192,193], which give access to equation-of-state and X-ray
Thomson scattering data at Gbar pressures; the opacity measurements of compressed
plasma at OMEGA [194]; the measurement of spectral emission of dense, near-equilibrium
plasma using buried layers at ORION [103,195]; or the experiments on the photoionization
of metals using tunable X-ray free-electron laser at LCLS [196]. These recent improvements
in experimental techniques may allow one to better investigate the models’ limitations.
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Notes
1 In [94], this model is called “finite-temperature ion-sphere model”, whereas what we call in the present article “ion-sphere model”

is called “uniform electron gas model”.
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