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Abstract: The validity of quantum-mechanical predictions has been confirmed with a high degree
of accuracy in a wide range of experiments. Although the statistics of the outcomes of a measuring
apparatus have been studied intensively, little has been explored and is known regarding the
accessibility of quantum dynamics. For these sorts of fundamental studies of quantum mechanics,
interferometry using neutron matter-waves in particular, provides almost ideal experimental
circumstances. In this device quantum interference between spatially separated beams occurs on
a macroscopic scale. Recently, the full determination of weak-values of neutrons 1/2 - spin adds a
new aspect to the study of quantum dynamics. Moreover, a new counter-intuitive phenomenon,
called quantum Cheshire Cat, is observed in an interference experiment. In this article, we present an
overview of these experiments.
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1. Introduction

Double-slit experiments, in particular with massive particles, demonstrate a major peculiarity
of quantum mechanics. Interference fringes, typical consequences of the wave-nature of quantum
mechanics, appear when a screen is placed after the slits in an appropriate distance. However, at
the same time, only one of the two detectors, which are put just behind the slits, clicks and not
both simultaneously, because of the particle-nature of quantum mechanics. This remarkable duality
is known as wave-particle duality in quantum mechanics. If one takes a look at the interference
fringes in more detail, one notices a significant difference between interference outcomes due to
classical and quantum consequences. That is, in the former, interference fringes are immediately
visible. In contrast to that, in the latter, only statistically distributed detection-spots appear at the first
stage, and interference fringes can be recognized only after an accumulation of enough particles or
rather detection-signals [1]. These are the reasons why the double-slit experiment has been one of the
best examples demonstrating the central mystery in quantum mechanics from the early stage of the
development of quantum theory [2].

In classical physics, since each particle can go through only either one of the slits, the distribution
at the screen behind the two opening slits is given by the sum of two single-slit distributions, which can
be obtained separately. In contrast to that, in quantum physics when particles like neutrons, electrons,
molecules and so forth are sent through a double-slit setup, one obtains a final distribution at the
screen, which has dark and bright areas due to constructive and destructive interference. It differs from
the distribution one would get by simply taking the sum of the single-slit distributions mentioned
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above [3,4]. This may be counter-intuitively understood if one accepts a situation in which the particle
(which cannot be divided into pieces, in principle) hits both slits simultaneously and influences from
both opening slits arrive at the screen, causing the final interference fringes to build up. It is worth
noting that the non-local effect mentioned here, results from quantum dynamics and is described by
quantum mechanically equations of motion [5]. It is another sort of non-locality, which originates in
quantum kinematics and emerges in the correlation measurement [6].

Optical experiments with massive particles such as neutrons, electrons, atoms and molecules play
a significant role while testing peculiar phenomena predicted by quantum theory. In interferometer
experiments, separated coherent beams are produced typically by a wave-front division, e.g., in
the Young type, or by an amplitude division, e.g., in the Mach–Zehnder type. These beams are
recombined and superposed coherently after propagating through a region of space, where phase as
well as amplitude can be manipulated by various interactions. In neutron optics, different kinds of
interferometer configurations have been tested [7–9]. Among them, the advent of the Mach–Zehnder
type interferometer in 1974 made of Si perfect-crystal with a monolithic structure opened up a new era
of fundamental studies of quantum mechanics with matter-waves [10]. The coherent beam splitting
obtained by amplitude division due to dynamical diffraction at the perfect crystal slabs makes a large
beam separation possible. It is typically on the order of several centimeters and offers a large work
area where optical elements such as a phase shifter, a spin rotator, and a beam attenuator can be
inserted. The monolithic structure allows an alignment-free construction and provides a highly stable
apparatus.The typical beam separation of several centimeters makes quantum mechanical studies
on a macroscopic scale possible. It has to be stressed that all perfect-crystal neutron interferometer
experiments up to now are self-interference experiments. Only one neutron traveling through the
split beam paths, is inside the interferometer at a given time. The next neutron that will pass through
the interferometer is still part of the nuclear fuel or spallation target inside the neutron source.
Consequently, interference fringes can only be observed after an entire ensemble of neutrons has
been detected.

The purpose of the present article is to give an overview of neutron interferometer experiments.
Among many, two were selected, which will be presented in detail: one is the determination of
spin weak-values by the use of neutron interferometry and the other is the demonstration of the so
called quantum Cheshire Cat effect. Before those two experiments are described in detail, historically
important neutron interferometer experiments are explained. This paper is organized as follows:
Section 2 illustrates noteworthy neutron interferometer experiments in the past. Section 3 is dedicated
to the full determination of spin weak-values of neutrons. Section 4 deals with an experiment
concerning the separation of a neutron and its spin (quantum Cheshire Cat phenomenon). Conclusions
and an outlook are offered in Section 5.

2. Neutron Interferometer Experiments in History

Neutron interferometry is one of the most fruitful approaches to study the foundations of quantum
mechanics. One of the experiments on this topic was performed to study the 4π-symmetry of spinor
wave function Although the 4π-symmetry of this kind was derived and known already at the early
stage of the development of quantum theory, the phase factor exp(iπ) was regarded as a theoretical
convenience and considered as somehow artificial and inaccessible: in an intensity measurement, this
phase factor is irrelevant. Only an interference experiment with a reference beam can reveal it. Neutron
interferometry made it possible to create exactly such an experiment, and the obtained results agree
well with theoretical predictions [11,12]. There are other approaches to access the 4π-symmetry with
neutrons using Fresnel diffraction at ferromagnetic domains [13] or RF flippers [14]. Another notable
experiment that was performed in the early stage of neutron interferometry, is the measurement of an
gravitationally-induced phase shift [15]. In this experiment, the neutron’s mass plays a crucial role.
The gravitationally induced phase is a purely quantum mechanical consequence since interference
fringes disappear as h̄ → 0 [16]. In 1975, the first experimental demonstration of a gravitationally
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induced phase was reported. The experimentally obtained phase shift deviated by about 10% from
theoretical predictions. A deformation of the interferometer crystal caused by bending during its
rotation around the beam axis was responsible for the large deviation from the theoretically predicted
value. The discrepancy is minimized by taking the deformation of the crystal into account in the
data analysis. The results of the most recent experiment differ by about 1% from the theoretical
prediction [17]. Another approach to precisely measure the gravitation-induced quantum phase with
neutrons is realized by the use of a grating interferometer for very cold neutrons (VCN). The advantage
of this approach is larger phase shifts due to a longer wavelength of the beam and lower sensitivity of
the setup due to the thin almost weightless gratings [18]. The results of this measurement still have
about 1% inaccuracy due to broad spectrum of the incident beam. A completely different approach
is offered by the concept of neutron polarimetry [19]. This makes gravitational phase measurements
with the spin-echo spectrometer possible, where much longer path lengths and a white beam with a
high intensity are available [20].

In the past decade, lots of attempts were made to develop a new technology known as quantum
computation and information technology [21]. This technology makes use of quantum superposition
and quantum state entanglement, where non-local correlation are utilized (e.g., quantum key
distribution). In parallel to the derivation of the Bell’s inequality [22], where a statistical violation with
several expectation values due to local assumption is presented, Kochen and Specker derived another
powerful argument, which shows that logical contradictions occur if non-contextual assumption
are made [23]. In this theorem, predictions of quantum mechanics are shown to be incompatible
with the assumptions including: (i) a definite value of the measurements, i.e., observables A and B
have predefined values v(A) and v(B); and (ii) non-contextuality, i.e., properties of the system exist
independently of any measurement context. Studies of quantum contextuality were carried out with
perfect-crystal neutron interferometers by entangling the neutron’s different degrees of freedom (DOF),
instead of using entangled pairs of neutrons. The first experiment of this kind is the demonstration of
the violation of a Bell-like inequality [24]. An entanglement between the spin and path DOF allows for
generating a so-called Bell-like state and the appropriate combination of observables of spin-path joint
measurements are performed. The obtained results of the measurements clearly show a violation of
the Bell-like inequality. Afterwards, newly developed spin-rotators made it possible to obtain data
with higher accuracy, which, in turn, offered a larger violation of the inequality [25]. In addition to
that, a test of the Kochen–Specker theorem is carried out [26]. In this experiment, a combination of
six observables is evaluated [27,28]. To be precise, three products of observables are measured and
if the six measurement-observables, of which these products are built, had predetermined values
independent of their combinations, one would immediately obtain contradicting results for three joint
measurements. The contradiction due to quantum contextuality predicted by the Kochen–Specker
theorem is clearly demonstrated. Not only two DOF but also three DOF of neutrons can be entangled:
the (total) energy degree of freedom, in addition to the spin and path DOF, was used to generate
tri-partite entangled states like the so-called GHZ state [29,30] which was generated in the neutron
interferometer as well. With a radio-frequency spin-flipper in one path of the interferometer one can
manipulate the neutrons’ total energy, thereby realizing a triple entanglement between the path, spin,
and energy DOF [31]. The experimental results displayed once again the inconsistency between the
quantum mechanical predictions and a non-contextual model. Beside the GHZ-state, generation of
so-called tri-partite W-states is achieved [32].

It is worth emphasizing here that neutrons are sensitive to all four fundamental interactions, i.e.,
gravitational, weak, electromagnetic, and strong. Therefore any dynamical effects caused by those
interactions during the evolution of the neutron’s wavefunction can be investigated in our experiments.
Although they are not mentioned in detail here, there are many other neutron interferometric studies,
e.g., on time-independent/dependent spin-superposition, stochastic/deterministic absorption of the
beam, topological phases, the Aharonov–Casher (AC) effect, scalar Aharonov–Bohm (AB) effects,
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geometric/dynamical phases and so on. An overview of these neutron optical experiments is given in
a textbook [10] and another review article [19].

3. Spin Weak Measurements

What can be said about the value of an observable during the time interval between
two (successive) measurements ? A possible answer to this question has been given by Aharonov,
Albert and Vaidman (AAV) in [33]. In their seminal paper “a new kind of value for a quantum variable”
the so-called weak value is introduced, again demonstrating that quantum mechanics predicts striking
and astonishing counter-intuitive phenomena. The weak value is obtain via a procedure, referred
to as weak measurement [33–35], where the probed quantum system is left minimally disturbed and
pursues its evolution from an initial state towards its final state. The weak value of a variable may
differ significantly from the eigenvalues of an associated operator in that sense, that weak values may
lie far outside the eigenvalue range of the operator.

3.1. Theoretical Framework

The weak value of an observable depends on both a pre- and a post-selected state vector denoted
as |ψi〉 and |ψf〉, respectively [36]. The former represents the state in which the quantum system was
initially prepared, whereas the latter insures that the detector only clicks if the system is measured
to be in a chosen final state. The weak measurement procedure involves three steps: (i) quantum
state preparation of the initial state |ψi〉 (pre-selection); (ii) a weak perturbation, i.e., a measurement
of an observable Â that disturbs the system only minimally. This is achieved by weakly coupling
the quantum system to a measuring device, acting as a probe system, via a Hamiltonian containing
operators from both the measured quantum system and the probe system; (iii) post-selection of an
eigenstates of an observable B̂ of the final quantum state |ψf〉. Finally the difference of the probe
system’s initial and final state is evaluated, from which the value of the observable Â is inferred
(pointer read out). Then, the eigenvalue of the measured observable is no longer the relevant quantity,
since the measuring device consistently indicates the weak value given by

Âw =
〈ψf|Â|ψi〉
〈ψf|ψi〉

, (1)

where Â, |ψi〉 and |ψf〉 are the operators to be measured, the initial (pre-selected) state, and the final
(post-selected) state, respectively. A peculiarity of the weak values is that it is in general a complex
number. The real part corresponds to a shift of the device system’s pointer value, i.e., a shift of the
center of a Gaussian in p-space and is not bounded. On the other hand, the imaginary part contains
information on back-action of the measuring device on the system and is obtained from the shift of the
center of the probe system’s Gaussian in q-space (since q occurs in the coupling Hamiltonian).

The original experiment proposed by AAV in [33] involves a beam of massive spin 1/2-particles.
Here, the observed quantum system is represented by the spin of a particle, while the probe system is
formed by the particle’s spatial wavefunction, A schematic illustration of the measurement apparatus
from the AAV gedanken experiments is given in Figure 1. A beam of particles, initially polarized in
~ξ-direction, where ~ξ is chosen to lie in the xz-plane with an angle α in respect to the x-axis. Consistent
with terminology used before the “quantum system”, corresponding to the particle’s spin state is
denoted as state |ψ〉, while the probe system, provided by the particle’s spatial wave function and
assumed to be of gaussian form, is given by |φ〉. The prepared beam, with spin pointing in direction ~ξ,
passes through a weak magnetic field gradient, with the field pointing pointing in z-direction (non-ideal
Stern–Gerlach apparatus). Here, “weakly” means that the beams are still overlapping, hence one cannot
get complete information of the spin direction. In contrast, for a strong measurement, they are clearly
separated. The weak interaction causes a coupling of the spin with the two slightly shifted partial
spatial wave functions correlated to the two values of σ̂z and creates a spin-momentum entanglement.
Next, the beam passes another (standard) Stern-Gerlach apparatus, splitting it into two spatially
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separated sub-beams corresponding to ± σ̂x. The weak value of σ̂z is determined from the postselected
+σ̂x spin component, via the deflection of the spot on the screen in z-direction. The z-distribution of
the spatial wave function |φfin〉 is detected via counts observed on the distant screen and directly
reflects the distribution of p’s (momentum distribution) in the final beam.

Figure 1. Original setup for weak spin measurement of spin 1/2-particles, proposed by AAV. After the
weak interaction, the sub beams belonging to σ̂±z are still overlapping by a large extent.

The first experimental realization of the procedure proposed by AAV was performed using an
optical setup [37], following a proposed scheme given in [38]. The fact that the weak value may
lie far outside the range of an observable’s eigenvalues has been found to be useful as a technique
aimed at amplifying weak signal [39–45]. A review focusing on significant amplification of the pointer
deflection is given in [46], where in addition a non-perturbative theory of weak pre- and post-selected
measurements is presented. The weak value’s property of allowing information to be extracted
from a quantum system with minimal disturbance is applied as a new method for estimation of
quantum states [47–50] (see [51] for a recent review). This particular property of the weak value is
also utilized in experimental tests of a reformulation of Heisenberg’s uncertainty principle [52–55]
(an overview of different viewpoints of that topic can be found in [56]). In addition, the weak value
and weak measurements have been successfully applied to quantum paradoxes such as the three-box
problem [57] and Hardy’s paradox [58–60].

Though considered a quantum mechanical property, classical models of the weak value can
explain quite well results of photonic measurement of weak values. For instance, measurements of
average trajectories of single photons in a two-slit interferometer [47], are interpreted as measurements
of the Poynting vector in an optical field [61] or a classical field approach of quantum weak
measurements, in terms of an effective classical background field being probed [62].

3.2. Neutron Optical Approach

Our experiment [63] makes use of a beam of neutrons—-massive spin-1/2 particles—as originally
proposed by AAV in [33]. A direct implementation of the setup from Figure 1 is not a trivial issue due
to the fact that the coherence length of the matter-wave beam is of the same order, or even less, than
the resolution of available position sensitive detectors. This circumstances call for a different approach.
The idea is to couple the spin (system S) that shall be measured weakly to another two-level system
as a probe system rather than using a probe system which is gaussian distributed in the canonical
variables, which has already been discussed in [64]. Our two-level probe system P (measurement
device) is formed by the two paths of a triple Laue neutron interferometer, denoted as path I and II, to
which the z-component of the neutron’s spin is weakly coupled, which is schematically illustrated in
Figure 2. The experiment was carried out at the neutron interferometer instrument S18 at the high-flux
reactor of the Institute Laue-Langevin (ILL) in Grenoble, France.
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Figure 2. Schematic illustration of a triple Laue (LLL) neutron interferometer experiment for a weak
measurement of the spin operator σ̂z. The setup consists of three stages: (i) pre-selection (green) using
a magnetic field prism for polarisation and a π/2-spinrotator the initial state|ψi〉 = |Sx;+〉 is prepared;
(ii) weak interaction (blue) in the interferometer a weak spin rotation by ± α is applied in arm I and II,
respectively; (iii) post-selection (brown) a combination of a spin-rotator and analysing supermirrow is
used to post-select on the final state |ψf(θ, φ)〉, before count rate detection.

(i) Pre-selection: A monochromatic beam with mean wavelength λ0 = 1.91 Å (λ/λ0 ∼ 0.02 Å)
and 5 × 5 mm2 beam cross section crosses a birefringent magnetic prism, which produces a field
in +z-direction. Due to the spin-dependent birefringence (a few seconds of arc between the
parallel and anti-parallel spin state), only the spin-up component fulfils the Bragg condition at the
first interferometer plate (beam splitter), resulting in an initial polarization in +z-direction. Next, the
beam enters a static magnetic guide field (also pointing in the +z-direction), which covers the entire
setup and prevents depolarization. Before the neutron beam enters the interferometer, the neutron’s
spin is rotated into the x-direction by a π/2 spin-turner, which is a DC coil producing a magnetic field
By pointing in y-direction. Inside the coil, the spin precesses about the y-axis, due to Larmor precession.
The magnetic field is adjusted such that it induces a π/2 spin rotation, thereby preparing the initial spin
state denoted as |ψi〉 = |Sx;+〉. Behind the first plate of the interferometer (IFM), the neutron’s spatial
wavefunction is found in a coherent superposition of the two sub-beams belonging to path I and path
II. Inside the IFM, the total wavefunction, consisting of spin and spatial part of the neutron, is denoted
as |ΨIFM〉 = |ψ〉|ϕ〉: the spatial wavefunctions is spanned by the path I and path II eigenstate basis and
given by |ϕ〉 ∈ {|I〉, |II〉}. After the first plate of the interferometer, the total wavefunction, composed
of the system (spin) state and the pointer (path) state, is prepared in

|ΨIFM〉 = |ψi〉 |ϕi〉 = |Sx;+〉 1√
2

(
|I〉+ |II〉

)
, (2)

where the initial pointer state of the probe system P, is given by |ϕi〉 = 1/
√

2 (|I〉+ |II〉).
(ii) Weak interaction: Small spin rotations of α = ±15 deg are introduced by local modification

of the static guide field. This is achieved by small coils aligned in a Helmholtz configuration and
placed in boxes which are completely flooded with temperature controlled water [25]. As a result, the
Larmor frequency is increased in path I and decreased in path II, leading to the different spin rotations
of ± α in path I and in path II, respectively. The coupling of spin and path DOF is expressed by the
interaction Hamiltonian
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Ĥint = −µσ̂z(BzΠ̂I − BzΠ̂II), (3)

where µ is the neutron’s magnetic moment and Π̂I and Π̂II are projection operators to paths I and
II, given by Π̂j = |j〉〈j|, with j = I, II, restricting the interaction to the jth arm of the interferometer.
Before the two sub-beams are recombined at the third plate, an adjustable relative phase factor e±iχ/2

is induced by a phase shifter plate. The phase shift is given by χ = NpsbcλD with atom density Nps in
the phase shifter plate of thickness D, the coherent scattering length bc and the neutron wavelength
λ. By rotating the phase shifter plate, χ can be tuned systematically due to the change of the relative
optical path length in path I and path II.

(iii) Post-selection: The spin is rotated by a polar angle θ inside a dc spin turner coil, which is
mounted on a translation stage. The polar angle θ can be set by adjusting the coil’s static magnetic
field Bθ

y. Depending on the position Tφ
x of the translation stage, the azimuthal angle φ is tuned due to

Larmor precession in the static magnetic guide field. The spin is finally selected by a spin-dependent
reflection from a bent Co-Ti supermirror array. These apparatuses make it possible to post-select an
arbitrary final spin state

|ψf(θ, φ)〉 = cos
θ

2
|Sz;+〉+ sin

θ

2
eiφ|Sz;−〉. (4)

The outgoing beam is measured using a 3He-detector, with an efficiency over 99 %.
The real component and modulus of the weak value 〈σ̂z〉w can be determined from the intensities

I±y and I±x, with phase shifts χ = 0, π and χ = ±π/2. At this point, the remaining step is to extract
the weak value from the probe system P. This can be done by evaluating the probe signals (observed
intensities) in the O-beam, at appropriate phase shifter positions. Thus, the purpose of the phase
shifter is to tune the final pointer state of the probe-system, before a read-out via a count rate detection.
Using intensities with phase shift χ = ±π/2, denoted as I±y, the real part of the weak value is given by

Re〈σ̂z〉w =
1
α

arcsin
(

I+y − I−y

I+y + I−y

)
. (5)

Similarly, using I±x ≡ I(0, [π]) the modulus of the weak value of σ̂z yields

|〈σ̂z〉w| =
1
α

arccos
(

I+x − I−x

I+x + I−x

)
. (6)

In order to determine the imaginary part of 〈σ̂z〉w the intensities I±z have to be measured.
These are the intensities of the individual beams in path I and path II, which have to be measured
separately without interference effects. This is achieved by inserting a beam stopper between the
second plate of the IFM and the phase-shifter (see Figure 2) in one of the paths of the interferometer
which consequently blocks the respective sub-beam. This yields the intensities I±z, from which the
imaginary part of 〈σ̂z〉w is determined as

Im 〈σ̂z〉w =
1
α

arctanh
(

I+z − I−z

I+z + I−z

)
. (7)

A detailed derivation for the intensities I±x, I±y and I±z is given in [63].

3.3. Experimental Results

The final results of the weak value determination of the Pauli spin operator σ̂z are plotted in
Figure 3, together with the theoretical predictions of the weak value of the spin operator given by

〈σ̂z〉w =
cos θ

1 + sin θ cos φ
− i

sin φ sin θ

1 + sin θ cos φ
, (8)
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for initial state |ψi〉 = |Sx;+〉 and an arbitrary final state |ψf〉, as defined in Equation (4). For φ = 0,
plotted in Figure 3a, no imaginary contributions of the weak value of σ̂z are expected: the real part of
〈σ̂z〉w exhibits values lying outside the usual range of spin eigenvalues, i.e., ±1, ranging from −3.2
to 3.4, while the imaginary parts remains zero. For θ = π/2 and φ = 0 the initial and final state
coincide. Thus, the weak value reduces to the expectation value 〈Sx;+|σ̂z|Sx;+〉, which yields zero
and is marked by the red arrow in Figure 3a top panel. For φ = π/2 in Figure 3b, real and imaginary
component of 〈σ̂z〉w oscillate in quadrature yielding a constant value of |〈σ̂z〉w| irrespective of the
polar angle θ of the post-selected state |ψf(θ, π/2)〉. A good agreement of the measured data with the
theoretical prediction is obtained.

We want to emphasize that the presented weak measurements are realized in a purely quantum
mechanical system of massive particles, since the spin of the neutron is a genuine quantum property
and has no correspondence in terms of a classical variable, unlike the polarization of light.

Figure 3. Experimentally determined real (top panel) and modulus (bottom panel) and a direct
measurement of the imaginary component (central panel), of the weak value of σ̂z, together with the
theoretical predictions (blue line). Bloch-sphere representations are given for pre- and post-selected
spin state (a) φ = 0; and (b) φ = π/2. For φ = 0 and θ = π/2 the weak value of σ̂z equals the expectation
value of σ̂z (red arrow).

4. The Quantum Cheshire-Cat

“Well! I’ve often seen a cat without a grin,” thought Alice; “but a grin without a cat! It’s the most curious
thing I ever saw in all my life!”, these are Alice’s famous words after finding a passage to a surreal world
in a rabbit hole, where she meets a cat that leaves her wondering. Such a phenomenon, which at first
seems absurd, is actually possible in a quantum mechanical sense for the quantum Cheshire Cat in a
Mach–Zehnder interferometer, where the cat itself is located in one beam path, while its grin is located
in the other [65]. An artistic depiction of this behavior can be seen in Figure 4.
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Path I

Path II

Figure 4. Artistic depiction of the quantum Cheshire Cat. Inside the interferometer, the Cat goes
through the upper beam path, while its grin travels along the lower beam path. Figure courtesy of
Leon Filter.

4.1. Theory

In our realization of the quantum Cheshire Cat, the neutron plays the role of the cat and the cat’s
grin is represented by the neutron’s spin component along the z-direction, applying the setup depicted
in Figure 4. The system is initially prepared in such a way that after entering the beam splitter its
quantum state is given by

|Ψi〉 =
1√
2

(
|Sx;+〉|I〉+ |Sx;−〉|II〉

)
, (9)

where I (II) represents the spatial part of the neutron’s wavefunction in path I (path II) of the
interferometer, and |Sx;±〉 denotes the spin state along ±x-direction. For an observation of the
quantum Cheshire Cat, after pre-selection of an ensemble, a weak measurement of the neutrons’
population in a given path on the one hand and of the value of the spin in a given path on the other is
performed. Subsequently, the ensemble is post-selected in the final state given by

|Ψf〉 =
1√
2
|Sx;−〉

(
|I〉+ |II〉

)
. (10)

Using the definition of the weak value given in Equation (1) together with initial and final state
from Equations (9) and (10), the weak values of the projection operators on the neutron path eigenstates
Π̂j = |j〉〈j|, with j = I and II yield 〈Π̂I〉w = 0 and 〈Π̂II〉w = 1. The first expression indicates that a
weak interaction coupling the spatial wavefunction to a probe localized on path I, has no effect on
the probe on average—the system behaves as if there was no neutron travelling on path I. The weak
value of the spin component along each path j suggests the location of the neutrons’ spin component.
The appropriate observable of neutrons’ spin component on path j is given by 〈σ̂zΠ̂j〉w, which yields
〈σ̂zΠ̂I〉w = 1 and 〈σ̂zΠ̂II〉w = 0, for path I and II, respectively.

4.2. Experiment

The experiment was carried out at the S18 interferometer beam line at the research reactor of the
ILL in Grenoble, France. Apart from small modification, the same setup and same beam parameters as
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in Section 3 were applied. Here, the small spin rotators are used to prepare the initial state |Ψi〉 given
in Equation (9).

To determine the neutrons’ population in the interferometer’s paths, 〈Π̂j〉w are measured by
inserting an absorber, with transmissivity T = 0.79(1), into the respective path j of the interferometer.
First, a reference measurement is performed, where the orthogonal spin states show no interference
when rotating the phase shifter, as expected. Next, the absorber is inserted into path I and the phase
shifter scan is repeated, where again no effect is observed. However, if the very same absorber were
put in path II, the intensity decreases, suggesting that the neutrons’ population in the interferometer is
obviously higher in path II than in path I. The observed intensities for measurements with absorber in
path I and II as well as the reference measurement are depicted in Figure 5.

a) b) c)

Figure 5. Measurement of 〈Π̂I〉w and 〈Π̂II〉w using an absorber. The intensity is plotted as a function
of the relative phase χ. The solid lines represent least-square fits to the data and the error bars
represent one standard deviation (a) an absorber in path I; no significant loss in intensity is recorded;
(b) a reference measurement without any absorber; (c) an absorber in path II: the intensity decreases.
These results suggest that for the successfully post-selected ensemble, the neutrons behave as going
through path II.

The weak measurements of the neutrons’ spin component in each path are achieved by applying
an additional weak magnetic field in one or the other beam path, causing small spin rotations, which
allows to probe the presence of the neutrons’ magnetic moment in the respective path. The condition
of a weak measurement is fulfilled by tuning the magnetic field small enough. In this experiment, spin
rotations of 20 deg were used, which corresponds to a wavefunction overlap of 98.5 %. An additional
magnetic field in path I leads to emergence of interference fringes showing a contrast of 28.1 %,
indicating the presence of a magnetic moment. On the other hand, the same field applied in path II
causes no significant change in the intensity modulation. The measured intensities can be seen in
Figure 6. This behavior can be quantified by calculating the weak values using the recorded intensities.
Details of this calculation are presented in detail in the Methods of [66]. The final results for the weak
values of the populations and magnetic moment are summarized in Table 1.

Table 1. Final results of weak values.

Population Magnetic Moment

〈Π̂I〉w = 0.14(4) |〈σ̂zΠ̂I〉w|2 = 1.07(25)
〈Π̂I〉w = 0.96(6) |〈σ̂zΠ̂II〉w|2 = 0.02(24)
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a) b) c)

Figure 6. Measurement of 〈σ̂zΠ̂I〉w and 〈σ̂zΠ̂II〉w applying small additional magnetic fields.
The intensity is plotted as a function of the relative phase χ. The solid lines represent least-square fits to
the data and the error bars represent one s.d. (a) a magnetic field in path I; interference fringes appear;
(b) a reference measurement without any additional magnetic fields, where due to the orthogonal
spin states no interference fringes are observed; (c) a magnetic field in path II; interference pattens do
not differ significantly from reference measurement, suggesting the neutrons’ spin component travels
along path I.

Our results show that weak measurements combined with neutron interferometry allows to
demonstrate the quantum Cheshire Cat, where (for pre- and post-elected ensembles) a property of
a quantum system can behave as being spatially separated from the place of the particle’s presence.
It has to be noted here, that quantum mechanics can give definite answers only for ensembles, no
definite assertions about a single particle can be made. We want to emphasize that the Cheshire
Cat phenomenon can be applied to any quantum system, opening doors for future applications in
high-precision metrology and quantum information technology [39,51].

5. Conclusions

One cannot emphasize the importance of studies of quantum dynamics enough. The evolution
of a quantum system cannot simply be described by classical trajectories given by equations of
motion. In our neutron interferometer experiment, phase shifts caused by various interactions are
directly accessible. Two recent experiments are described in this article, where fundamental features
of quantum dynamics are made evident. The theoretical framework of our experiments is based on
weak values, a new kind of quantum variable introduced by Aharonov and his co-workers [33]. In the
first experiment, a neutron interferometric measurement is realized, making it possible to determine
all aspects of the weak value of the neutron’s Pauli spin operator σ̂z, i.e., its real component and the
modulus, as well as the imaginary component. Our results clearly show that the determined weak
values are of quantum-mechanical origin, no classical (wave) theory can describe the weak values
observed in our experiment. A full determination of the weak value can be used to characterize the
evolution of the neutron’s wave-function inside an interferometer, just like in a report of a photonic
double-slit experiment [53]. Moreover, our measurement scheme with a neutron interferometer is
applied to demonstrate a fundamental phenomenon of quantum mechanics, namely the quantum
Cheshire Cat. At the level of a pre- and post-selected ensemble, a property of a quantum system, in
our case the neutron’s spin, can behave as being spatially separated from the site where one is certain
to probe the particle’s presence. This behavior could be utilized in high-precision metrology and
quantum information technology, for example in situations where the magnetic moment of a particle
overshadows another of the particle’s properties, which shall be measured very precisely. We are
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planning to perform neutron interferometer experiments to demonstrate the non-classical nature of
the correlations in the quantum pigeonhole effect [67] and a multi-path measurement reported in a
nested interferometer configuration [68].
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The following abbreviations are used in this manuscript:

AAV Aharonov, Albert and Vaidman
AB Aharonov-Bohm
AC Aharonov-Casher
DC direct current
DOF degrees of freedom
GHZ Greenberger-Horne-Zeilinger
ILL Institute Laue-Langevin
IFM interferometer
LLL triple Laue
RF radio frequency
VCN very cold neutrons
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