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Abstract: Numerical implementation of the modified Faddeev Equation (MFE) is presented in some
detail. The Faddeev channel wave function displays unique properties of each and every open
channel, respectively. In particular, near resonant energies, the structures of the resonances are
beautifully displayed, from which, the life-time of the resonances can be determined by simply using
the uncertainty principle. The phase shift matrix, or the K-matrix, provides unique information for
each and every resonance. This information enables the identification of the physical formation
mechanism of the Gailitis resonances. A few of these resonances, previously known as the mysterious
shape resonances, have occurred in a number of different collision systems. The Gailitis resonances
are actually produced by a quantized Stark-effect within the various collision systems. Since the
Stark-effect is a universal phenomenon, the Gailitis resonances are expected to occur in much broader
classes of collision systems. We will present the results of a precision calculation using the MFE
method in sufficient detail for interested students who wish to explore the mysteries of nature with a
powerful theoretical tool.
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1. Introduction

The Faddeev-Merkuriev [1,2] or the modified Faddeev Equation (MFE) has existed since 1980.
Increasing demands to understand multichannel scattering systems resulted in the first numerical
development of MFE in 1992 [3].

In a three-body system with Coulomb interactions, the partial wave expansion of the wave
function can be achieved by using bipolar spherical harmonics. These functions are eigenstates of the
three-body total angular momentum operator.

The S-state projected MFE used in [3] has been used in a number of numerical tests, from
bound-states to low energy scattering systems [4–15]. A number of S-state calculations were carried out
using the integral modified Faddeev equation; one of these calculations is represented in Reference [16].

Calculation for differential cross sections needs at least contributions from 9–10 partial waves.
A new code capable of calculating all partial waves was developed in 1999 using the bipolar
spherical-harmonics expansion [2,17–19], more detail will be presented in Section 2.

In 2002, clear evidences of a new kind of resonance that enhances anti-hydrogen formation
in the process of anti-proton + Ps (n = 2) Ñ e + antihydrogen (n ¤ 2) had been presented in both
References [19] and [20].

This evidence became myth, since there was no known resonance in that energy region at that
time. It had to wait more than ten years for a supercomputer to solve the mystery.

In Section 3, the complete K-matrix and cross section matrix at (near) the three available
resonance locations will be presented. The K-matrix,

�
tan δij

�
, is simply related to the S-matrix

as S = (1 + iK)/(1 � iK). The K-matrix is real and symmetric. The K-matrix elements and the cross
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sections across the resonant energy region will be discussed. Last, but not the least, we consider the
role of the resonant wave functions which clearly display the resonant-wave packets formed at the
resonant-energies. These wave packets provide the key to unlock the decade-long mystery of Section 2.
Section 4, in conclusion, will make suggestions for further numerical improvements to enhance the
utility of MFE as a powerful tool to investigate multichannel quantum three-body scattering systems.

2. The Modified Faddeev Equation

The mass-scaled Jacobi vectors [
á
x α,

á
y α] in a general three-body system, with mass mα and its

position vector
á
γ α, α = 1, 2, 3, are defined as:

á
x α � τα

�
á
r β �

á
r γ

	
á
y α � µα

�
á
r α �

mβ
á

r β�mγ
á

r γ

mβ�mγ



,

τα �
b

2
mβmγ

mβ�mγ
,

µα �
b

2mα

�
1� mα

M
�
,

M � m1 �m2 �m3 and pα, β, νq � cyclic p1, 2, 3q

(1)

It is frequently necessary to transform between two sets of Jacobi coordinates. The orthogonal
transformation is: � á

x β
á
y β

�
�

�
Cβα Sβα

�Sβα Cβα

�� á
x α
á
y α

�
,

Cβα � �

�
mβmα

pM�mβqpM�mαq

� 1
2

,

Sβα � p�1qβ�α sgn pα� βq
�

1� C2
βα

	 1
2 ,

(2)

accordingly, the Coulomb potentials for the pair α is:

Vα pxαq � qα{xα

qα � zβzγτα
(3)

qα represents the mass-scaled charge, zβ, zγ are the physical charges (α, β, ν ) = cyclic (1, 2, 3).
In a configuration space, the Faddeev equation is a set of three coupled differential equations,

one for each pair of Jacobi coordinates. When collision energy is far below the three-body breakup
threshold, only two coupled equations are sufficient.

The original Faddeev equations lack mathematical compactness when the particles interact with
long-range forces. MFE [1] avoids this problem by carefully splitting the coulomb potentials into a
short-range part VpSq

α and a long-range part Vplq
α as follows:

VpSq
α pxα, yαq � Vα pxαq ζα pxα, yαq ,

Vplq
α pxα, yαq � Vα pxαq r1� ζα pxα, yαqs ,

ζ px, yq � 2
!

1� exp
�
px{x0q

ν

y{y0�1

�)�1

(4)

The function ζα (xα, yα) vanishes asymptotically within the three-body sector, where both
xα, yα Ñ8 and approaches one in the two-body cluster region, where xα ! yα Ñ8.

The parameters ν, x0, y0 must be chosen very carefully, more details are presented in Section 3.
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Let V3(x3) be repulsive, we can choose ζ3 (x3, y3) � 0. Such that the MFE is a set of two coupled
differential equations. The total wavefunction of the scattering system is ψ �

°2
α�1 ψα, α = 1, 2 are the

two Faddeev channels.

�
�∆xα � ∆yα �Vα �Vα � E

�
ψα

�
á
x α,

á
y α

	
� �VpSq

α ψβ

�
á
x β,

á
y β

	
, β � α

Vα � V3 �Vplq
β , α, β � 1, 2, . . . ,

(5)

are the two Faddeev channels.
For angular momentum conserving interactions, such as Coulomb force, the six-dimensional space

of Equation (5) can be reduced to a two-dimensional equation using the partial wave decomposition
via the bipolar representation of the wave functions ψα

�
á
x α,

á
y α

	

ψα

�
á
x α,

á
y α

	
�

1
xαyα

8̧

L�0

Ļ

M��L

¸
á

l �
á

λ

ψL
αlλ pxα, yαqYLM

lλ px̂α, ŷαq α � 1, 2 (6)

The two-dimensional L – partial wave projected coupled differential equations can be found in
References [17] and [2]. Thus, Equation (5) will be solved one partial wave at a time. The total wave
function, Equation (6), can be represented very well with nine partial waves for the calculations carried
out in References [17–19].

3. Numerical Method

The method is designed to represent the two dimensional pxα, yαq and α = 1, 2, coupled differential
equations as accurately as possible with available computer resources.

A Quintic-Hermite polynomial spline and collocation procedure is adopted for xα, yα pα � 1, 2q
coordinates. An explicit form of the splines can be found in References [12,21].

The continuous variables x or y are replaced by discrete grids called natural knots, for example:

ryis � ty0 � 0, y1, y2, . . . . . . . . . yn � ymaxu (7)

The quintic spline basis ϕim pyq, m = 0, 1, 2 are fifth degree Hermite polynomials. They are
constructed to be non-zero only on two adjacent intervals ryi�1, yis Y ryi, yi�1s and have continuous
values, first and second derivatives at the knot i. Namely they satisfy the conditions at yi:

B m1
y ϕim pyiq � δmm1 , m, m1 � 0, 1, 2 (8)

at y0 and ymax only the splines that satisfy the boundary conditions can be used.
It must be emphasized that knots do not have to be uniformly distributed. Although a uniform

grid for y coordinate works very well, the knots for the x-coordinate must be chosen to accurately
reproduce the wave functions and binding energies of all the two-body bound states involved in the
scattering system, which are anything but uniform.

Each interval provides three collocation coordinates according to the Gaussian rule. These simple
procedures reduce the differential equations into matrix equations, details in Section 4 of Reference [17].
The total angular momentum L partial wave projected coupled differential equation [17] can be
represented very accurately, even for very large ymax. Although earlier calculation [17] for ymax

was limited by computer resources, asymptotic dipole coupling was introduced. In Section 3 of
Reference [17], that part is no longer necessary with present (and future), powerful super computers.

The proper choice of the parameters in Equation (4) is essential to obtain accurate results. A
certain amount of numerical experimentation is necessary. It is observed that:
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a ν � 2.1 for both Faddeev channels produced the most stable solutions.
b Both x0, y0 depend on the respective Faddeev channels. Since x0 is proportional to the size of the

two-body bound states and y0 is related to the cutoff parameters, ymax.

At the present time, fine tuning of x0. and y0 to produce a symmetric K-matrix
�
tan δij

�
is

necessary. For example, some details of a calculation [22] that solved a set of N = 488,808 coupled
linear equations are presented below.

The S-partial wave e� � H scattering system has six-open channels, they are:

e+ + H (n = 1)
e+ + H (n = 2, l = 0)
e+ + H (n = 2, l = 1)

p + Ps (n = 1)
p + Ps (n = 2, l = 0)
p + Ps (n = 2, l = 1)

(9)

The first three channels belong to Faddeev channel one, the last three channels, 4, 5, and 6, belong
to Faddeev channel two. The two Faddeev channels have different parameter sets and grids for x, y
coordinates. They are listed in Table 1:

Table 1. Faddeev channel parameters [22], lengths in Bohr Radius.

Faddeev Channel α x0 y0 ν ymax xmax

One 7.0 50.0 2.1 500.0 57.5
Two 10.0 100.0 2.1 1000.0 81.0

The calculation [22] was carried out using much finer energy grids than that used in Reference [19].
Such that the first three resonances in channel 5 and 6 are clearly resolved in Figure 3 of Reference [22],
and K55 � tan pδ55q, K66 � tan pδ66q are plotted in Figure 1 of Reference [22]. The singularities of the
first two resonances are clearly displayed. They are distinctly different from that of Fesbach resonances.
Reference [22] concluded that the physical mechanism for these resonances are Stark-effects. Tables 2–5
display the K-matrix and cross section matrix near the three resonant energies from Reference [22] at
E1, E2, E3; ε1, ε2, ε3. These energies are measured from channel 1 and channel 6, respectively, the unit
is Ry.

Table 2. Properties of the first resonance.

E1 = 0.8748; ε1 = 0.34432 � 10�3

Cross Section Matrix

0.9998E�01 0.3191E�02 0.1913E�02 0.8951E�02 0.1399E�03 0.1611E�03
0.2230E�01 0.1046E+02 0.6338E+01 0.3918E+00 0.4924E+00 0.5676E+00
0.1336E�01 0.6338E+01 0.1258E+02 0.2602E+00 0.3274E+00 0.3774E+00
0.1044E�01 0.6538E�01 0.4343E�01 0.5063E+01 0.4397E�02 0.5068E�02
0.1778E+00 0.8958E+02 0.5957E+02 0.4794E+01 0.4710E+04 0.7676E+02
0.2048E+00 0.1032E+03 0.6866E+02 0.5524E+01 0.7676E+02 0.8756E+03

K-Matrix

�0.8299E�01 0.1070E+00 �0.4787E+00 0.1557E+01 �0.1148E+00 �0.6303E�01
0.1070E+00 0.8278E+00 �0.2225E+01 0.3038E+01 �0.3513E+00 �0.1929E+00
�0.4721E+00 �0.2229E+01 0.3336E+01 �0.9990E+01 0.1563E+01 0.8580E+00
0.1547E+01 0.3074E+01 �0.1004E+02 0.3559E+02 �0.2703E+01 �0.1484E+01
�0.1154E+00 �0.3560E+00 0.1563E+01 �0.2682E+01 0.2990E+01 0.5194E+00
�0.6331E�01 �0.1955E+00 0.8581E+00 �0.1472E+01 0.5193E+00 �0.3098E+00
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Table 3. Properties of the second resonance.

E2 = 0.87465; ε2 = 0.19436 � 10�3

Cross Section Matrix

0.9996E�01 0.3311E�02 0.1907E�02 0.8921E�02 0.1300E�03 0.1630E�03
0.2315E�01 0.1030E+02 0.6402E+01 0.4000E+00 0.4559E+00 0.5709E+00
0.1334E�01 0.6402E+01 0.1255E+02 0.2693E+00 0.3031E+00 0.3795E+00
0.1040E�01 0.6670E�01 0.4490E�01 0.5060E+01 0.4054E�02 0.5080E�02
0.2927E+00 0.1468E+03 0.9755E+02 0.7826E+01 0.8987E+04 0.8021E+02
0.3669E+00 0.1838E+03 0.1222E+03 0.9807E+01 0.8021E+02 0.5349E+03

K-Matrix

�0.8962E�01 0.8594E�01 �0.3864E+00 0.1402E+01 0.1345E+00 �0.2820E�01
0.8617E�01 0.7618E+00 �0.1940E+01 0.2553E+01 0.4102E+00 �0.8601E�01
�0.3795E+00 �0.1941E+01 0.2073E+01 �0.7834E+01 �0.1825E+01 0.3827E+00
0.1390E+01 0.2578E+01 �0.7863E+01 0.3194E+02 0.3164E+01 �0.6638E+00
0.1352E+00 0.4161E+00 �0.1826E+01 0.3140E+01 �0.3236E+01 �0.4327E+00
�0.2840E�01 �0.8727E�01 0.3829E+00 �0.6592E+00 �0.4327E+00 0.2335E+00

Table 4. Properties of the third resonance.

E3 = 0.87454; ε3 = 0.84344 � 10�4

Cross Section Matrix

0.1000E+00 0.2972E�02 0.1740E�02 0.8890E�02 0.2387E�03 0.2853E�03
0.2080E�011 0.9661E+01 0.5677E+01 0.3444E+00 0.8368E+00 0.1003E+01
0.1218E�01 0.5677E+01 0.1343E+02 0.2337E+00 0.5565E+00 0.6669E+00
0.1037E�01 0.5740E�01 0.3895E�01 0.5077E�01 0.7496E�02 0.8967E�02
0.1238E+01 0.6201E+03 0.4124E+03 0.3334E+02 0.1025E+04 0.2340E+03
0.1480E+01 0.7433E+03 0.4942E+03 0.3988E+02 0.2340E+03 0.1989E+05

K-Matrix

�0.6261E�01 0.1684E+00 �0.7479E+00 0.2029E+01 0.3930E�01 �0.4449E+00
0.1678E+00 0.1011E+01 �0.3037E+01 0.4451E+01 0.1193E+00 �0.1352E+01
�0.7426E+00 �0.3053E+01 0.6953E+01 �0.1628E+02 �0.5306E+00 0.6011E+01
0.2026E+01 0.4518E+01 �0.1637E+02 0.4669E+02 0.9248E+00 �0.1047E+02
0.3956E�01 0.1212E+00 �0.5312E+00 0.9195E+00 �0.1623E+00 0.2459E+00
�0.4471E+00 �0.1373E+01 0.6016E+01 �0.1040E+02 0.2460E+00 0.7620E+01

Table 5. Partition of the matrices.

Ch
Ch

1 2 3 4 5 6

1 e� � H pnq Ñ e� � H
�
n1
�

e� � H pnq Ñ p� Ps
�
n1
�

2 n � 1, 2, 3 n � 1, 2, 3

3 n1 � 1, 2, 3 n1 � 4, 5, 6

4 p� Ps pnq Ñ e� � H
�
n1
�

p� Ps pnq Ñ p� Ps
�
n1
�

5 n � 4, 5, 6 n � 4, 5, 6

6 n1 � 1, 2, 3 n1 � 4, 5, 6

Tables 2–5 show that:

a All Kmatrices are symmetric with an error less than 2%.
b All cross sections are small except that in resonant channels 5 and 6 that include all Hydrogen

(antihydrogen) formation cross sections.
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The total hydrogen formation cross sections from S-partial wave at the resonances are in Table 6:

Table 6. In units of πa2
0 .

σε1 σε2 σε3

321.51 551.13 2272.82

c. Comparison with 2002 calculation [19].
Reference [19] calculated a total of nine partial waves for a number of energies. The one that
is closest to E1 is at 0.8749 Ry. According to Reference [19], the total hydrogen formation cross
sections, including all nine partial waves, is 1670.02 πa2

0. The contribution from the S-partial wave
is 219.25 πa2

0. The calculation from Reference [19] used the first generation of super computers,
named Blue Horizon. The recent S-partial wave cross section at 0.8749 Ry is 276.77 πa2

0. This
calculation was carried out on a much more improved super computer, named Ranger. There is a
significant increase in S-partial wave cross section. Accordingly, the total hydrogen formation
cross section from the first resonance alone could be over 2000 πa2

0.

4. Conclusions

The numerical procedure described is suitable for accurate, in-depth calculation of multichannel
quantum three-body scattering systems below three-body break-up energy. The calculation of Hu
and Caballero [22] indicates that there are decades of hard work that remain, just to understand the
quantum three-body scattering systems.

a For the e�� H system, Reference [22] revealed only three S-state resonances above the Ps pn � 2q
formation threshold. They are named Gailitis resonances due to their unique formation
mechanism. The ymax should be doubled to ~2000 a0 to test the fine structure energy limit.
Near the fine structure energy, the Coulomb degeneracy of the target atom is removed. Without
the degeneracy, the incoming charged particle can not induce a first order electric dipole moment
in the target atom [23]. Such Gailitis resonances are supported by a higher order Stark effect.

b Higher angular momentum Gailitis resonances must be investigated thoroughly. Reference [19]
calculated nine partial wave cross sections near the first resonance, discussed in Section 3. About
70% of the contribution to the total cross comes from that of P and D partial waves.

c The MFE is able to provide wave amplitudes for each and every one of all the open channels. A
simple three dimensional plot at a constant angle between

á
x and

á
y reveals important physics.

For example [22], the structure of the wave amplitude along the x-axis reveals the bound states
characteristics. Normally, along the y axis, one finds that the de Broglie wave structure, with the
appropriate wave length, belongs to the channel plotted. If resonance exists in some channel
or channels, wave packets appear along the y-axis. For the resonances listed in Tables 2–4
y1 = 296.8 a0, y2 = 702.4 a0, and y3 = 1306 a0. In this case, the physical “size” of the resonances
are too large. In other cases [24], the energy widths are too wide. It will be a challenging task to
find them using traditional methods, which are designed for the more compact portion of the
Feshbach resonances. It is clear that the life-time of the wave packet formed along the y axis is
the same as the life-time of the resonance. The width of the wave packet, ∆y, can be measured
directly from the graph. The minimum uncertainty principle provides as good an estimate of the
energy width as any other method. In Hu and Papp [24], the width of all 2nd order Stark-effect
induced Gailitis resonances are obtained by searching the poles in the complex energy plane
using the integral equation version of MFE. In addition, the positions of the wave packets ym,

m is the quantum number of Gailitis resonances, which provided information to uncover the
physical mechanism and Stark effect for Gailitis resonances. However, both Gailitis resonances,
found above a threshold, and Feshbach resonances, found below a threshold, are induced by
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the same Coulomb field of the incoming charged particle. That is consistent with the Levinson
theorem. Clearly, larger calculations capable of locating all resonances are necessary for both
Feshbach and Gailitis resonances.

d For the case investigated in Reference [22], the width of the wave packets measured from the
plots can be approximated by the de Broglie wave length. Whether that can be generalized to
high partial wave resonances must be determined with further calculations.

In general, for each series of resonances, width = constant � λm, m = 1, 2, 3 . . . this is the case in
e� Ps pn � 1q where the constant is less than one [24].

Finally, Reference [22] revealed only the “tip of the iceberg” of the properties of the recently
named Gailitis resonances, they appeared as threshold cross sections oscillations in Reference [25].
All tools are ready for in-depth investigation of this intricate phenomenon. The mechanism for its
formation is universal; however, only the three-body multichannel calculations are able to provide the
complete properties of these resonances at the present time.
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to the research results reported within this paper.
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