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Abstract: Scattering of light on relativistic heavy ion beams is widely used for characterizing
and tuning the properties of both the light and the ion beam. Its elastic component—Rayleigh
scattering—is investigated in this work for photon energies close to certain electronic transitions
because of its potential usage in the Gamma Factory initiative at CERN. The angle-differential
cross-section, as well as the degree of polarization of the scattered light are investigated for the cases
of 1s− 2p1/2 and 1s− 2p3/2 resonance transitions in H-like lead ions. In order to gauge the validity
and uncertainty of frequently used approximations, we compare different methods. In particular, rigorous
quantum electrodynamics calculations are compared with the resonant electric-dipole approximation
evaluated within the relativistic and nonrelativistic formalisms. For better understanding of the origin
of the approximation, the commonly used theoretical approach is explained here in detail. We find that
in most cases, the nonrelativistic resonant electric-dipole approximation fails to describe the properties
of the scattered light. At the same time, its relativistic variant agrees with the rigorous treatment
within a level of 10% to 20%. These findings are essential for the design of an experimental setup
exploiting the scattering process, as well as for the determination of the scattered light properties.
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1. Introduction

Absorption and emission of a photon by an atom are the fundamental processes in atomic
physics, which are of utmost importance for the characterization of the atomic system. In particular,
the laser-induced fluorescence spectroscopy of atoms and molecules is based on an electronic excitation
and subsequent fluorescence, which defines the electronic structure of a sample [1]. The energy
scale of the fluorescence spectroscopy is typically located between infrared and ultraviolet regions.
In order to describe the electronic structure of atoms and ions with binding energies in this energy
range, it is often enough to employ the nonrelativistic theory. However, as the interest of atomic
physics spreads to a higher energy domain, experimental findings reveal that in some cases, even
relativistic consideration might not be enough. One of the most common examples of such a situation
is the consideration of core (deeply bound) electrons in heavy atoms or ions. A proper description of
the spectral properties involving the strongly bound electrons requires the incorporation of quantum
electrodynamics (QED) effects [2]. Both relativistic and QED considerations can be, however, very
tedious and demand from the researcher a background in the corresponding fields and sometimes
considerable computational resources. At the same time, the well-known and easy-to-use Bohr
theory based method of the description of the electronic structure remains attractive in its simplicity.
It can provide preliminary estimations even for modern applications. The necessity of more complex
considerations is, of course, to be decided in every particular case individually.
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Here, we consider the photon absorption and emission (fluorescence spectroscopy) of H-like
lead ion Pb81+ in its ground state with photon energy being close (but not exact) to 1s − 2p1/2
and 1s − 2p3/2 resonances. Ab initio, the problem can be formulated in terms of elastic photon
scattering or Rayleigh scattering. First, the incident photon is absorbed by an ion, and the ion
undergoes the transition from the initial state into an intermediate virtual (or real) state. After that,
the ion decays to the final state and emits the scattered photon. Rayleigh scattering is an important
and widely studied process in atomic physics. Being one of the basic second-order processes of QED,
Rayleigh scattering is extensively studied theoretically [3–11], as well as experimentally [12–14]. Apart
from the fundamental interest, Rayleigh scattering is actively utilized in various fields, including
the study of the solid-state, complex molecules, or nano-objects [15–18], astrophysics [19,20], as well as
in medical diagnostics [21].

In this work, we investigate the angular distribution of two observables: cross-section
and polarization of the scattered light. We carry out the calculations with three different approaches
and compare the obtained results. The simplest approximation we refer to as the nonrelativistic
resonant electric dipole one. Electron binding energies and wave functions are obtained by solving
the ordinary Schrodinger equation; as an intermediate state, only the nearest resonant level is taken into
account; and the electric dipole operator describes the photon-ion interaction. The second approach
is the relativistic resonant electric dipole approximation, wherein wave functions and binding energies
are the solutions of the Dirac equation. However, we still assume only one (resonant) intermediate
state and electric dipole transition operator. Finally, the third consideration we refer to as exact.
Here, we add to the relativistic resonant electric dipole approximation two things: (i) sum over all
possible intermediate states and (ii) include all terms in the multipole expansion of the transition
operator. We believe that the obtained results can be helpful for many applications that exploit
the near-resonant Rayleigh scattering. In particular, our example focuses on the Gamma Factory
initiative [22]. This project is pursuing building at CERN (European Organization for Nuclear Research)
a γ-ray source with photon energies several orders of magnitude higher than available currently
anywhere in the world with beam intensities comparable with those produced by free-electron lasers.
The idea is to store relativistic highly charged heavy ions at CERN’s Large Hadron Collider (LHC)
and scatter optical laser light on these ions. If we choose a laser wavelength to match (keeping in mind
the relativistic Doppler effect) a certain electronic transition in the ions, the scattering cross-section (and,
consequently, the output intensity) grows drastically. With values of the Lorentz factor γ≈3000, feasible
at LHC, Doppler-enhanced optical frequencies correspond to 1s → 2p transitions in elements from
the lead region of the periodic table. Recently, there have been the first successful proof-of-principle
experiments with Pb81+ ions [23,24], produced with Al stripper foil [25]. For that reason, we have
chosen lead among other high-Z elements for consideration.

2. Materials and Methods

2.1. Statement of the Problem

The process under consideration can be illustrated as follows:

|i〉+ γi → |a〉 → | f 〉+ γ f , (1)

where the incident photon γi with polarization vector εi and momentum ki is absorbed by an
ion, and the ion is brought from the initial state |i〉 = |1s〉 to the intermediate state |a〉, which
in the resonant case is restricted to 2p1/2 or 2p3/2 states only. After that, the ion decays to the final
state | f 〉 = |1s〉 and emits the scattered photon γ f with momentum k f and polarization vector ε f .
The geometry of the described process is shown in Figure 1. The ion is assumed to be located at
the origin of the coordinate system. The z-axis in the Cartesian coordinates is oriented along ki,
and the x-axis is chosen in the direction of εi if the light is linearly polarized. The scattered photon
propagates in the direction of k f . Polar angle ϑ is measured between the propagation directions
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of the initial and the scattered photons and referred to as the scattering angle. At the same time, the
azimuthal angle ϕ is the angle between the x-axis and the projection of k f on the xy-plane.

Figure 1. (Color online) The adopted geometry for the scattering process. The z-axis is chosen along
the direction of the momentum of the incident photon ki, while the x-axis is fixed by its polarization
vector εi. The polar (scattering) ϑ and azimuthal ϕ angles uniquely define the direction of the scattered
photon k f .

The problem can be conveniently formulated in terms of the density matrix formalism.
Density operators of the incident (ρ̂i) and the scattered (final) (ρ̂ f ) photons are connected
by a well-known relation [26]:

ρ̂ f = M̂ρ̂iM̂† , (2)

with M̂ being a scattering operator that characterizes the scattering process. The explicit expressions
for this operator are given in the following subsection. Since the incident and scattered photons
have well defined wave vectors, we write the photon density matrices in the helicity representation
as follows:

〈kλ|ρ̂|kλ′〉 = I
2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)
, (3)

where I stands for the intensity of the light and the Stokes parameters P1,2 and P3 define the degree
of linear and circular polarization, respectively. For the scattering cross-section calculations,
we assume the normalized incident light, i.e., its intensity is equaled to one. Keeping this in mind,
the angle-differential cross-section is given by the trace of the density matrix of the scattered
photon [26]:

dσ

dΩ
= 〈k f − 1|ρ̂ f |k f − 1〉+ 〈k f + 1|ρ̂ f |k f + 1〉 . (4)

In turn, the degree of linear polarization of the scattered light Pl can be found as:

Pl =
√

P2
1 + P2

2 . (5)

Now, let us turn to the details of the calculations.
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2.2. General Theory of Transition Matrix Amplitude

We adopt the Furry picture for our calculations. That means that the electron-nucleus interaction
is incorporated in the unperturbed Hamiltonian of the system and the ion-photon interaction
is considered as perturbation. For the determination of the properties of the scattered light, we then
evaluate the second-order scattering operator M̂, the matrix elements of which are defined as (in units
h̄ = me = c = 1) [11,27]:

M(mi, m f , λi, λ f ) =
α

ω
∑
a

 〈 f |α · ε∗λ f
e−ik f ·r|a〉〈a|α · ελi e

iki ·r|i〉
Ei + ω− Ea

+
〈 f |α · ελi e

iki ·r|a〉〈a|α · ε∗λ f
e−ik f ·r|i〉

E f −ω− Ea

 , (6)

where α is the fine structure constant, α is the vector of Dirac matrices, ω stays for the incident
and scattered photons energies, and Ei, E f , and Ea define the energies of the initial, final,
and intermediate states, respectively. The quantum numbers mi and m f are the total angular
momentum projections of the initial and final states, respectively. Summing over a means that
we take into account the contributions of all possible intermediate states instead of just the dominant
one. One may notice that if the photon energy ω is close to Ea − Ei, there is a singularity in the first
term in Equation (6). This singularity is exactly the case of the resonant intermediate state. In order
to regularize the expression, we introduce the corresponding width Γa in the denominator, i.e., we
replace Ea with Ea − iΓa/2 in the vicinity of the resonance [28,29]. This prescription corresponds
to performing an infinite resummation of the radiative correction insertions for the resonant
level [30,31].

Angular properties can be most conveniently described with the help of the multipole expansion
of the transition operator [32]. Transition operators inside the matrix elements take the following form:

α · ελeik·r =
√

2π ∑
pJM

iJ
√
[J](iλ)pD J

Mλ(ϕk, ϑk, 0)α · a(p)
JM(ω, r) , (7)

where a(p)
JM(ω, r) denotes the electric (p = 1) and magnetic (p = 0) multipole components

of the electromagnetic field, J represents the photon angular momentum, and M stands for its projection.
The electric and magnetic multipole field components are defined as:

a(0)JM(ω, r) = jJ(ωr)YM
JJ (r̂) , (8)

a(1)JM(ω, r) = jJ−1(ωr)

√
J + 1

2J + 1
YM

JJ−1(r̂)− jJ+1(ωr)

√
J

2J + 1
YM

JJ+1(r̂) . (9)

In the above equations, r̂ is the r unit vector, jJ(ωr) are spherical Bessel functions of order J,
and YM

JL(r̂) are vector spherical harmonics, defined by:

YM
JL(r̂) = ∑

mµ

〈Lm1µ|JM〉YLm(r̂)χµ , (10)

with Clebsch–Gordan coefficients 〈Lm1µ|JM〉, ordinary spherical harmonics YLm(r̂), and complex
spherical unit vectors χµ expressed via Cartesian unit vectors as:

χµ =


1√
2
(x̂− iŷ) for µ = −1,

ẑ for µ = 0,

− 1√
2
(x̂ + iŷ) for µ = 1 .

(11)



Atoms 2020, 8, 12 5 of 13

After the expansion (7) is applied, it is obvious that the angular distribution of the emitted
radiation is fully defined by the Wigner rotation D-matrices D J

Mλ(ϕk, ϑk, 0). As we agreed to the z-axis
being coincident with the propagation direction of the incident photon, all the angles included in the
corresponding D-matrix are equal to zero and D J

Mλi
(0, 0, 0) = δMλi [33]. Therefore, the angular

dependence of the scattering amplitude (6) is defined by a single rotation matrix D J
Mλ f

(ϕ, ϑ, 0) with ϕ

and ϑ defined as shown in Figure 1. From now on, for brevity, we omit the arguments of the rotation
matrix and always assume them to be (ϕ, ϑ, 0).

Now, after we write the transition operator in the multipole expansion (7), we can employ
the angular momentum theory to deal with the matrix elements effectively. The sum over a
in Equation (6) implies not only summation over different states (with different principal quantum
numbers n and total angular momentum jn), but also summation over all possible magnetic substates.
These substates have different values of projection mn of the angular momentum jn. A common way
to simplify calculations with such a summation is to make use of the Wigner–Eckart theorem:

〈n2 j2m2|α · a
(p)
JM|n1 j1m1〉 = (−1)2J〈j1m1 JM|j2m2〉

〈n2 j2||α · a
(p)
J ||n1 j1〉√

2j2 + 1
. (12)

Applying the Wigner–Eckart theorem (12) together with the multipole expansion (7)
to Equation (6), we come to the following form of the scattering amplitude:

M(mi, m f , λi, λ f ) = 2π α
ω ∑

njnmn

∑
J1 J2

M1 M2

∑
p1 p2

(−i)J1−J2(iλi)
p1(−iλ f )

p2
√
[J1][J2]D

J2∗
M2λ f

δλi M1

×

 〈jnmn J2M2|j f m f 〉〈jimi J1M1|jnmn〉
[jn]2

〈 f ||α · a(p2)
J2
||njn〉〈njn||α · a(p1)

J1
||i〉

Ei + ω− Enjn

+
〈jnmn J1M1|j f m f 〉〈jimi J2M2|jnmn〉√

[j f ][ji]

〈 f ||α · a(p1)
J1
||njn〉〈njn||α · a(p2)

J2
||i〉

E f −ω− Enjn


(13)

with [J] = 2J + 1. All the angle dependence is expressed now by the Wigner D-matrix, which depends
on the indices J2, M2, λ f . The function can be effectively dealt with using the angular momentum
algebra apparatus.

2.3. Exact Calculations

In order to come now to the observables, we rewrite Equation (2) in terms of the matrix elements
of the scattering operator in the following way:

〈λ f |ρ̂ f |λ′f 〉 =
1√

2ji + 1 ∑
λiλ
′
i

∑
mim f

M(mi, m f , λi, λ f )M∗(mi, m f , λ′i, λ′f )〈λi|ρ̂i|λ′i〉 . (14)

Here, we assume that the ion is initially unpolarized, and its polarization in the final state
remains unobserved. The next part of the derivation is quite tedious, so we will only mention
the operations that need to be performed. First, the product of two transition matrix amplitudes
MM∗ in Equation (14) results in a product of two rotation matrices, as follows from Equation (13).
This product can be written in terms of a double sum of a single rotation matrix multiplied by two
Clebsch–Gordan coefficients. Next, we exploit formulas for the sums of products of Clebsch–Gordan
coefficients (to sum over mi, m f , M1, M′1) and leave only the factors able to reveal some features
of the angular distribution. Moreover, for the photon energies much smaller than the electron rest-mass
energy, the second term in the square brackets of Equation (13) is much smaller than the first one.
For that reason, we write down explicitly only those terms of Equation (14), which include only terms
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originated from the first term. We band all the other terms together into a single symbolic notation
and arrive at the following look of Equation (14):

〈λ f |ρ̂ f |λ′f 〉 ∼ ∑
njnn′ j′n

 ∑
λiλ
′
i

∑
KMN

∑
J1 J2
J′1 J′2

∑
p1 p2
p′1 p′2

{
J2 j f jn
j′n K J′2

}{
jn ji J1

J′1 K j′n

}
(iλi)

p1(−iλ f )
p2(−iλ′i)

p′1(iλ′f )
p′2

× (−1)j′n−K(−i)J1−J2−J′1+J′2
√
[J1][J2][J′1][J

′
2]D

K
MN〈J2 − λ f J′2λ′f |KN〉〈J1λi J′1 − λ′i|K−M〉

×
〈 f ||α · a(p2)

J2
||njn〉〈njn||α · a(p1)

J1
||i〉

Ei + ω− Enjn

〈 f ||α · a(p′2)
J′2
||n′ j′n〉〈n′ j′n||α · a

(p′1)
J′1
||i〉

E f + ω− En′ j′n

 〈λi|ρ̂i|λ′i〉

+ O

(
Ei + ω− Enjn(n′ j′n)

E f −ω− Enjn(n′ j′n)

)
.

(15)

In the above equation, K symbolizes angular momentum transferred to the system as a result
of its interaction with two photons and indices M, N effectively play the roles of its projections.

We conclude this section with a short remark concerning the numerics used in this work. As has
been mentioned above, the calculation procedure implies a sum over the complete Dirac spectrum.
In the numerical calculations, the entire spectrum is typically substituted by a finite set of discrete
pseudostates (see, e.g., [34,35]). These pseudostates are then treated in the same manner as the bound
states. Setting up the pseudostates requires a set of basis functions. One of the most popular choices
of such a basis is a set of splines (piecewise polynomials), as they provide many advantages when
it comes to numerical calculations [36]. Within the class of piecewise polynomials, B-splines (for details,
see [34]) are especially well suited for atomic physics numerical tasks [35,37], and that is why they
are used here as well. In the works [11,38], the B-splines basis set was also employed for the calculation
of the Rayleigh scattering.

2.4. Relativistic Resonant Electric-Dipole Approximation

Equation (15) is not restricted to any particular kind of transition or certain states. However, when
the photon energy is very close to the transition energy into a particular intermediate state (resonant
state), the dominant contribution in the sum over njn in Equation (15) is given by this state.
Moreover, the restriction to the electric dipole transitions only allows us to obtain simple analytical
expressions as for the angle-differential cross-section, as well as for the polarization. Under these
assumptions, we arrive at the relativistic resonant electric-dipole approximation. To obtain this
approximation from Equation (15), we restrict first the sum over n, jn, n′, j′n into the resonant state only.
In the second place, we neglect the terms denoted by O(...) and imply the electric-dipole approximation
J1 = J2 = J′1 = J′2 = 1, as well as p1 = p2 = p′1 = p′2 = 1. With all these changes, we obtain:

〈λ f |ρ̂ f |λ′f 〉
rel. resonant E1 ∼ ∑

λiλ
′
i

∑
KMN

{
1 j f jn
jn K 1

}{
jn ji 1
1 K jn

}
λiλ
′
iλ f λ′f (−1)jn−KDK

MN

× 〈1− λ f 1λ′f |KN〉〈1λi1− λ′i|K−M〉
∣∣〈 f ||α · a(1)1 ||njn〉

∣∣4
(E f + ω− Enjn)

2 + Γ2
njn /4

.

(16)

For the calculations of the cross-section and degree of polarization of the scattered light, we have
to calculate the trace or non-diagonal matrix elements of the resulting density matrix; see Equations (4)
and (5). For this, we have to specify the total angular momentum of the intermediate (resonant)
state jn. Here, we consider p1/2 and p3/2 states. The first one, the p1/2 state, results in the following
angle-differential cross-section:

dσrel,p1/2

dΩ
(circ. pol.) ∼ dσrel,p1/2

dΩ
(lin. pol.) ∼ 1 (17)
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and the linear polarization Stokes parameters:

Prel,p1/2
1 (circ. pol.) = Prel,p1/2

1 (lin. pol.) = 0 , Prel,p1/2
2 (circ. pol.) = Prel,p1/2

2 (lin. pol.) = 0 (18)

for circular (circ. pol.) and linear (lin. pol.) polarizations of the incident light. These results can
be understood by the following argumentation. For the intermediate state with jn = 1/2 6j-symbols
in Equation (16), ensure that K = 0, 1. Because of the symmetry of the Clebsch–Gordan coefficients, only
even values of K will survive, which leaves us with K = 0 and D0

00 = 1. Since only the D-matrix defines
the angular distribution, for this intermediate state, all scattering directions and linear polarization
states are equally possible.

For the second one, the p3/2 state, we start again with Equation (16) and see that K = 2
is now allowed. That means that a second-order Legendre polynomial is appearing in the angular
distribution. Derivation results in the following angle-differential cross-section:

dσrel,p3/2

dΩ
(circ. pol.) ∼ D0

00 +
1
4

D2
00 ∼ 1 +

3
7

cos2 ϑ (19)

and the linear polarization Stokes parameters:

Prel,p3/2
1 (circ. pol.) = − sin2 ϑ

7/3 + cos2 ϑ
, Prel,p3/2

2 (circ. pol.) = 0 (20)

for the case of circular polarization of the incident light.
As for the linear polarization case, we obtain:

dσrel,p3/2

dΩ
(lin. pol.) ∼ 1− 3

5
cos2 ϕ sin2 ϑ (21)

and:

Prel,p3/2
1 (lin. pol.) = − sin2 ϕ− cos2 ϕ cos2 ϑ

5/3− cos2 ϕ sin2 ϑ
, Prel,p3/2

2 (lin. pol.) =
2 sin ϕ cos ϕ cos ϑ

5/3− cos2 ϕ sin2 ϑ
. (22)

2.5. Nonrelativistic Resonant Electric Dipole Approximation

It is well established by now that the nonrelativistic approximation can be employed to obtain rough
estimations of the scattering processes. However, in many cases, it fails to describe the experimental
results, even qualitatively [39–41]. Since the nonrelativistic resonant approximation has been used
in the original Gamma Factory proposal [22] (see also [42]), here, we are going to work out the details
of this approximation and compare it with previously outlined approaches.

In nonrelativistic treatment 2p1/2 and 2p3/2 states are considered as one degenerate 2p state.
We can formally come to this type of consideration from Equation (16) if we characterize electron
states with orbital quantum number l instead of total angular momentum quantum number j. For the
chosen states, that means the following substitutions: ji, f → li, f = 0 and jn,n′ → ln,n′ = 1. After that,
we deal with the cross-section and polarization in the same manner as before and obtain well-known
expressions:

dσnonrel

dΩ
(circ. pol.) ∼ 1 + cos2 ϑ , (23)

Pnonrel
1 (circ. pol.) = − sin2 ϑ

1 + cos2 ϑ
, Pnonrel

2 (circ. pol.) = 0 , (24)

dσnonrel

dΩ
(lin. pol.) ∼ sin2 ϕ + cos2 ϕ cos2 ϑ , (25)
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Pnonrel
1 (lin. pol.) = − sin2 ϕ− cos2 ϕ cos2 ϑ

sin2 ϕ + cos2 ϕ cos2 ϑ
, Pnonrel

2 (lin. pol.) =
2 sin ϕ cos ϕ cos ϑ

sin2 ϕ + cos2 ϕ cos2 ϑ
. (26)

These expressions can be also found in [6,43,44].

3. Results and Discussion

3.1. Ion Rest Frame

We perform numerical calculations for both initial circular and initial linear polarization.
Moreover, to investigate the limits of the resonant approximation, we present the results for two
different photon energies: at and off the resonance. In the “resonance” scenario, we set the photon
energy to match the corresponding transition energy. In the “off-resonance” case, the photon
energy is chosen to be 30Γ2p1/2 or 30Γ2p3/2 above the corresponding resonances 2p1/2 or 2p3/2,
respectively. For the case of the H-like lead ion, these widths take the following values Γ2p1/2 = 19.4
eV and Γ2p3/2 = 16.9 eV. The resonance and off-resonance scenarios lead to essentially different
values of the cross-section. Since we are mostly interested in the form of the angular distribution,
we normalize the cross-section results for all scenarios and compare the line shapes. Here, we note
that the shapes obtained via the nonrelativistic and relativistic resonant electric-dipole approximations
are independent of the photon energy and are given by Equations (23)–(26) and (17)–(22), respectively.

Figure 2 shows the cross-section and polarization angular distributions in the case when
the incident light is circularly polarized. For the 2p1/2 intermediate resonance (left column), we see that
for the “resonance” photon energy, the relativistic resonant electric-dipole approximation (black dashed
line) almost coincides with the exact calculations (solid blue line). The results differ for less than 0.3%
of the mean value, and this difference is not visible in the figure. We can also see that both cross-section
and polarization distributions are flat, as expected form Equations (17) and (18). Since the nondipole
photon-ion interaction has no effect on the |2p1/2〉 → |1s1/2〉 transition, the 2p1/2 intermediate state
is a perfect candidate for the demonstration of an effect beyond the resonant approximation. One
can see that in the “off-resonance” case, the angle-differential cross-section deviates from the flat
line by around 20%. At the same time, the degree of linear polarization reaches 0.25 for ϑ = 90◦.
The middle column in Figure 2 shows the results for the 2p3/2 resonant state. First of all, we notice
that the shape of the cross-section distribution obtained by the exact calculations differs significantly
from the relativistic resonant electric-dipole approximation, Equations (19) and (20). Comparing
the cross-section distributions in the “resonance” and “off-resonance” cases, we see that even that
far from the resonance (30 line widths), the effect of nondipole contributions is more pronounced.
On the other hand, the polarization seems to be more sensitive to the contributions from nonresonant
states. When we consider 2p as the intermediate state, we imply nonrelativistic approximation. In this
approximation, the line shapes of both cross-section and polarization distributions do not change with
changing the photon energy and agree with Equations (23) and (24).

In Figure 3, we present the results for the linearly polarized incident light. When we switch
from circular to linear polarization, the system loses circular symmetry in the xy-plane. That means
that the results are different for different values of azimuthal observation angle ϕ. Here, we consider
only the case of ϕ = 0◦. The discussion of the results would be quite similar to the previous figure,
so we only make several observations: (i) for the 2p1/2 resonant state, we see a similar picture as
in Figure 2, except that the effect of the nonresonant states is even more pronounced; (ii) for the 2p3/2
resonant state, we note that the results in the relativistic resonant electric-dipole approximation follow
Equation (21) and Equation (22); one can also see that both distributions, in this case, vary significantly
more strongly than for the circular polarization; (iii) for the nonrelativistic case, the shapes of both lines
are essentially different as compared to the 2p1/2 and 2p3/2 cases. In accordance with Equations (25)
and (26), they are also different from the case of circular initial polarization.



Atoms 2020, 8, 12 9 of 13

Figure 2. Cross-section and polarization angular distribution for different resonant states: 2p1/2—left
column, 2p3/2—middle column, and nonrelativistic 2p state—right column. Different approaches
are compared: dashed black line—relativistic resonant electric dipole approximation, dashed-dotted
red line—exact calculations for the “off-resonance” scenario (see the text), solid blue line—exact
calculations at the corresponding resonance. Incident light is assumed to be circularly polarized.

Figure 3. the same as Figure 2, but for the linearly polarized incident light and for the azimuthal
observation angle ϕ = 0◦.

The large detuning of the photon energy in the “off-resonance” scenario is a limiting case
and considered here for studies of the importance of the nonresonant state’s contribution. For the
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smaller values of the detuning, the nonresonant state’s contribution is lower. Specifically, in all the cases
considered above for photon energies in the range of 5Γ2p1/2 or 5Γ2p3/2 from the resonance, the results
of the relativistic resonant electric-dipole approximation differ from exact calculations for less than
12%. Therefore, we expect that this relativistic approximation performs well enough for the design
of experiments [22], in contrast to the presently employed nonrelativistic one.

3.2. Laboratory Reference Frame

Since the primary application of the results obtained in this work is expected to be the Gamma
Factory initiative, we make two additional points. The first one is that the results presented above can
be transformed into the laboratory reference frame for any given value of Lorentz factor γ. Assuming
that the incident photon and the ion move towards each other (so, the ion also moves along the z-axis),
this can be done by combining any angular distribution with the well-known relativistic aberration
formula:

cos ϑ′ =
cos ϑ− β

1− β cos ϑ
, (27)

where ϑ′ is the scattering angle in the laboratory reference frame counted from the z-axis and β

is the ion velocity relative to the speed of light. The latter can be expressed via γ from:

γ =
1√

1− β2
. (28)

In this head-on collision scenario, the azimuthal angle ϕ transforms trivially to ϕ′, i.e., ϕ′ = ϕ.
Corresponding calculations are presented in Figure 4 for the case of circular initial polarization
and 2p3/2 taken as the intermediate state. One can see from the figure that with growing γ,
the distribution is concentrated in the vicinity of ϑ′ = π. For a fixed high value of γ, one obtains
a well-known narrow cone-like radiation distribution, which is characteristic for relativistically
moving particles. Moreover, as we discussed in the previous subsection, the relativistic resonant
electric-dipole approximation provides a reasonable estimation of the angle distributions. It means
that for the design of experiments, one can transform to the laboratory frame the distributions given
by Equations (17)–(22).

The second point is that, although we so far considered a single process (meaning that we have
just one scattered photon), in the experimental case, one has a full beam of photons. Then, the value
of the differential cross-section in a certain direction describes the number of photons emitted
in that direction. Similarly, the value of Pl(ϑ

′) describes the polarization state of the photon beam
in the direction of ϑ′. Because of the concentration of the radiation in the direction of ϑ′ = π, all
the photons at different polarization states form a single beam. The polarization properties of this
beam are still to be defined. The recipe for how to define them will be discussed elsewhere, but we
point out the obvious importance of the consideration of the polarization distribution for studying this
issue.
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Figure 4. Angular distribution of the scattered light in the laboratory reference frame at different values
of the Lorentz factor. The color illustrates the values of the cross-section, normalized to one for a fixed
value of γ.

4. Conclusions

In this work, we investigated the excitation and subsequent decay of the 2p electron states of the H-like
lead ion using the well-developed theoretical apparatus of scattering theory. The investigation included
the angular distribution of the cross-section and the degree of linear polarization of the scattered light.
We derived the exact expression for density matrix elements, which were necessary for the calculation
of these two observables. The expressions were explicitly tailored for two resonant electric-dipole
approximations: nonrelativistic and relativistic. We performed numerical calculations with the exact
formula, as well as with both approximations. The results were compared for different intermediate
(resonant) states 2p1/2 and 2p3/2, as well as for different photon energies with respect to the resonance.
The findings showed two main points. First, in most cases, the results of the nonrelativistic
approach were substantially different from the exact calculations. Second, for moderate detuning
of the photon energy from the resonance transition energy, the relativistic resonant electric-dipole
approximation provided accuracy around 10% for all considered scenarios. The analytical expressions
derived in this approximation were quite general and could be used for other types of H-like ions, as well.
Therefore, Equations (17), (19), and (21) derived for the cross-section and Equations (18), (20), and (22)
for polarization could be used in the design of near-resonance Rayleigh scattering experiments and the
interpretation of the results. In particular, we expect these formulas to be favorable to theoretical
investigations at Gamma Factory. Additionally, it was demonstrated that the derived analytical
expressions in the relativistic resonant electric-dipole approximation could be easily transformed into
the laboratory reference frame.
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