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Abstract: Periodically driven (Floquet) systems are described by time-dependent Hamiltonians
that possess discrete time translation symmetry. The spontaneous breaking of this symmetry leads
to the emergence of a novel non-equilibrium phase of matter—the Discrete Time Crystal (DTC).
In this paper, we propose a scheme to extend the lifetime of a DTC in a paradigmatic model—a
translation-invariant Ising spin chain with nearest-neighbor interaction J, subjected to a periodic
kick by a transverse magnetic field with frequency 2π

T . This system exhibits the hallmark signature
of a DTC—persistent sub-harmonic oscillations with frequency π

T —for a wide parameter regime.
Employing both analytical arguments as well as exact diagonalization calculations, we demonstrate
that the lifetime of the DTC is maximized, when the interaction strength is tuned to an optimal value,
JT = π. Our proposal essentially relies on an interaction-induced quantum interference mechanism
that suppresses the creation of excitations, and thereby enhances the DTC lifetime. Intriguingly, we
find that the period doubling oscillations can last eternally in even size systems. This anomalously
long lifetime can be attributed to a time reflection symmetry that emerges at JT = π. Our work
provides a promising avenue for realizing a robust DTC in various quantum emulator platforms.

Keywords: time crystals; Floquet systems; time translation symmetry breaking; quantum many-body
echo

1. Introduction

The classification of phases of matter based on symmetries and symmetry breaking
forms one of the cornerstones of modern statistical physics [1]. Crystals represent a
ubiquitous example of this paradigm, where inter-atomic interactions lead to the breaking
of spatial translation symmetry [2]. In a seminal paper in 2012, Frank Wilczek extended
the concept of symmetry breaking to the time domain [3]. In particular, he postulated that
the ground state of attractively interacting bosons on a Aharonov–Bohm ring can exhibit
periodic oscillations in time; this novel phase of matter was dubbed a “Quantum Time
Crystal”, since it breaks time translation symmetry. Wilczek’s bold proposal generated
considerable excitement and debate [4–7]. Eventually however, the existence of quantum
time crystals in equilibrium was ruled out by a no-go theorem [8]. This crucial insight
has prompted several researchers to explore the possibility of realizing time crystals in
non-equilibrium quantum systems [9–26]. These efforts have been immensely fruitful and
led to the development of an active area of research [27–39].

A particularly profound development in this field has been the discovery of discrete
time crystals in periodically driven (Floquet) quantum many-body systems [10–13]. A
Floquet system is described by a time-periodic Hamiltonian, H(t) where H(t + T) = H(t).
A discrete time crystal (DTC) is an out-of-equilibrium phase of matter that breaks this
time translation symmetry, and consequently shows a stable sub-harmonic response of
physical observables. In particular, the DTC phase is characterized by the existence of
a class of observables O and initial states, |ψ〉, such that 〈ψ|O(t)|ψ〉 6= 〈ψ|O(t + T)|ψ〉.
Furthermore, to qualify as a genuine non-equilibrium phase of matter, these sub-harmonic
oscillations must persist at long times (t/T � 1), without fine tuning the Hamiltonian
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parameters [40,41]. Through several theoretical and experimental studies, the existence of
the DTC phase has now been firmly established [40–56].

The first realization of a DTC crucially relied on the presence of many-body localization
(MBL) [42]. This is because Floquet many-body localized systems do not absorb energy
from the drive, and consequently evades thermalization. This leads to persistent oscillations
of physical observables with a characteristic frequency, ω 6= 2π

T at long times. However,
the requirement of MBL is very restrictive, thereby making the realization of a DTC in large
systems extremely challenging [57,58]. Furthermore, MBL can lead to long-lived transient
dynamics, thereby making it difficult to access the long-time behavior of the system in
current experiments [59]. These issues have prompted researchers to examine other routes
for realizing a robust DTC.

Intriguingly, recent research efforts have shown that it is possible to realize a robust
DTC in the absence of disorder [40,41,52–56]. This surprising observation implies the
presence of mechanisms other than MBL that can prevent Floquet systems from heating up.
Such mechanisms may also be useful for stabilizing other non-equilibrium phases of matter.
To explore this issue in a concrete example, we analyze the conditions necessary for creating
a time crystal in a periodically driven Ising spin chain. Yu et al. have already demonstrated
that this system can exhibit discrete time-translation-symmetry-breaking (TTSB) and ar-
gued that the DTC order is stabilized by high-frequency driving [60]. High-frequency
driving can also be used to realize prethermal time crystals [14–16,59]. Unfortunately, when
the driving frequency is very high, the DTC order can be destroyed due to dissipative
coupling to higher bands [61]. This necessitates the search for other pathways to stabilize
time crystals.

It has been recently demonstrated that Floquet phases of matter can be stabilized by a
many-body quantum interference, thereby circumventing the problems associated with
high-frequency driving [62–64]. In particular, Lyu et al. have shown that it is possible to
realize an eternal DTC in a periodically driven, even size, infinite range interacting Ising
spin chain, by appropriately tuning the interaction strength [64]. This naturally raises the
question of whether a similar scheme can be used to stabilize a DTC in a kicked short-range
Ising model. We answer this question affirmatively, and derive the optimal interaction
strength that maximizes the DTC lifetime in a finite chain. An important aspect of our
scheme is that the optimal interaction parameter maximizes the lifetime for both even and
odd size chains, while the protocol presented in ref. [64] is only applicable for even size
chains. It is interesting to note that for this optimal interaction strength J, strong disorder
leads to thermalization. Our results provide a novel route for extending the lifetime of
DTCs in translation-invariant systems, and can guide the experimental realizations of
DTCs [65–68].

Before proceeding further, we note that the phenomenology of DTCs is a closely
related to the dynamical Casimir effect, where periodic modulation of boundaries or
material properties of a system leads to a parametric amplification of initial vacuum
fluctuations [69,70]. A particularly striking example of this phenomenon is the temporal
Bragg diffraction, where a periodic modulation of the effective charge of neutral atoms
leads to phonon backscattering in time. In this case, the modulation frequency ω is related
to the initial phonon frequency ωc as: ω = (n± 1)ωc/2, where n is an integer [71,72]. This
is analogous to the discrete TTSB that characterizes DTCs.

This paper is organized as follows. In Section 2, we introduce our model and discuss
the conditions under which the system behaves like a discrete time crystal. In Section 3,
we describe our scheme to extend the DTC lifetime by tuning the Ising interaction. In
particular, we analytically derive the optimal interaction strength that maximizes the
lifetime of the DTC. Furthermore, we establish the validity of our analytical results by
numerically analyzing the dependence of the lifetime on the interaction strength as well as
the system size. Thus, our calculations provide a general framework to realize time crystals
in disorder free spin chains. Finally, we discuss potential realizations of our model. We
conclude with a brief summary of our results in Section 4.
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2. Model

We study the time evolution of a 1D spin chain described by the following Floquet
Hamiltonian:

H = ∑
i

(
JSz

i Sz
i+1,+(π − 2ε)Sx

i , δ(t− nT)
)
, (1)

where J is the nearest-neighbor Ising interaction, ~Si = h̄
2~σ

i and~σi are the Pauli spin matrices
(see Figure 1).
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Figure 1. (a) The return probability, P(nT) (defined in Equation (3)) when J = 0. When the π pulse
is imperfect, then there is no oscillation of the order parameter and hence no time crystal. (b) The
return probability, P(nT) when JT = π for the nearest-neighbor Ising model. This example clearly
shows that persistent time crystal order can be established in a disorder free spin chain by tuning the
interaction strength.

Setting h̄ = 1, we find the time-evolution operator for one Floquet period to be:

U(T) = e(−iHT) ≡ e(−i JT
4 ∑i σz

i σz
i+1)e(−i( π

2 −ε)∑i σx
i ). (2)

When ε = 0, the spin chain trivially exhibits time correlations at twice the driving
frequency for any initial state that spontaneously breaks the Z2 symmetry of H0. However,
to qualify as a DTC, there should be a class of initial states for which some physical
observables must exhibit indefinitely long sub-harmonic oscillations in the thermodynamic
limit, even when ε 6= 0 [40,41]. This kind of TTSB occurs in our model, when the Ising
interaction is non-zero [60].

In this paper, we study the response of the spin chain to the periodic drive by comput-
ing the return probability:

P(t) = |〈ψ(t)|ψ(0)〉|2 (3)

If P(t) exhibits robust sub-harmonic oscillations for long times, we conclude that
the system is in the DTC phase. In the DTC phase, the stroboscopic return probability
at times 2nT remains almost constant for a very long time, and the DTC lifetime, n∗ is
usually defined to be the number of drive periods, after which P(2nT) falls below a critical
value (∼0.05) [40,51,67]. The rationale for using this measure to quantify lifetime is the
following: the Fourier transform of P(t) taken up to a time t < 2n∗T exhibits a peak at ω/2,
whereas this peak splits when the Fourier transform is taken over longer times; thus, the
DTC exhibits persistent sub-harmonic oscillations at a rigid rhythm up to a time, t ∼ 2n∗T
(see Figure 2). In the next section, we systematically explore the dependence of the DTC
lifetime on the Ising interaction strength.
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Figure 2. The Fourier transform of the stroboscopic return probability, P(2nT) for a 10-site chain with
(a) JT = π

2 and (b) JT = π. As exemplified by the case of JT = π
2 , P(2nT) oscillates when n > n∗

(n∗ is the DTC lifetime defined below Equation (3)). These oscillations result in a splitting of the ω/2
Fourier peak.

3. Maximizing the DTC Lifetime

In this section, we study the stroboscopic evolution of a L-site periodic chain, prepared
in a spin-polarized initial state i.e., |ψ(t = 0)〉 can be either | . . . ↑↑↑ . . .〉 or | . . . ↓↓↓ . . .〉. We
analyze the response of the system to imperfect π−pulses in the experimentally relevant
parameter regime, where sin(ε) ≈ ε and cos(ε) ≈ 1− ε2

2 .

3.1. Few-Cycles Dynamics

To the lowest order in ε, we obtain the following expression for the return probability
after the first two pulses:

P(2T) = | cos(ε)(2L) − L exp(−i JT) cos(ε)(2L−2) sin(ε)2|2

≈ |(1− ε2

2
)(2L) − L exp(−i JT)(1− ε2

2
)(2L−2)(ε)2|2

≈ |1− Lε2(1 + exp(−i JT))|2. (4)

It is straightforward to see that in this limit, an almost perfect revival of the initial
state occurs when JT = π. This revival implies that the system can exhibit persistent
oscillations of physical order parameters (like the magnetization) with a frequency π

T - a
direct signature of discrete TTSB.

This remarkable conclusion can be understood by a very simple physical picture. Let
us assume that the system is initially prepared in a spin-polarized state: |ψ(t = 0)〉 =
| . . . ↑↑↑ . . .〉. Thus, after one imperfect π pulse, the state of the system is:

|ψ(t = T+)〉 ≈ cos(ε)L| . . . ↓↓↓ . . .〉 − cos(ε)L−1 sin(ε)

∑
h
| . . . ↓ . . . ↓↑h↓ . . . ↓ . . .〉 (5)

Just before the second π pulse is applied, the spin chain wavefunction is :

|ψ(t = 2T−)〉 ≈ cos(ε)L| . . . ↓↓↓ . . .〉 − cos(ε)L−1 sin(ε)

e−i JT ∑
h
| . . . ↓ . . . ↓↑h↓ . . . ↓ . . .〉 (6)
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Now, after the second π pulse is applied the state of the system becomes:

|ψ(t = 2T+)〉 = (cos(ε)(2L) − Le(−i JT) cos(ε)(2L−2) sin(ε)2)

|ψ(t = 0)〉+ . . . (7)

Thus, when the condition JT = π is satisfied, |ψ(t = 2T+)〉 ≈ |ψ(t = 0)〉. In other
words, a revival of the initial state occurs after two pulses due to a constructive quantum
interference. A schematic derivation of this result is illustrated in Figure 3. Thus, an
interaction-induced quantum interference can enable the creation of a DTC—a phenomena
similar to the recently proposed many-body echo [62,63]. A similar scheme has been
studied for the infinite range interacting Ising model [64]; in that case JT = π leads to
a perfect revival of the initial state for even size chains, while there is no DTC order for
odd size chains. However, for the nearest-neighbor Ising model, JT = π is the optimal
interaction strength for both odd and even size chains.

cos(ϵ)L cos(ϵ)2L

−cos(ϵ)L−1sin(ϵ) −cos(ϵ)2L−2sin(ϵ)2e(−iJT)

t = T t = 2T
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Figure 3. (a) Illustration of the state of the spin chain after two imperfect π pulses, starting from
a fully spin-polarized state. After the first pulse the spin chain wavefunction primarily comprises
two classes of states: A fully spin-polarized state, and L one-magnon states (i.e., a state with L− 1
spin-downs and one spin-up). When JT = π, the two pathways interfere constructively, leading to a
revival of the initial state. (b) The stroboscopic return probability P(2nT) for two different values of
JT, when ε = 0.07π. Persistent oscillations can be observed when JT = π. (c) The Fourier spectrum
of the return probability shows a robust peak at ω0/2, where ω0 = 2π

T , when JT = π.

3.2. Long-Time Dynamics

A perfect revival of the initial state would lead to an eternal time crystal. However, in
our model, the revival is imperfect, and the discrete time crystalline order may disappear
at later times. To understand what happens to the DTC at later times, we first study
the dynamics of the spin chain in the few-cycles regime. In this case, when ε is small,
the evolution of the spin chain can be captured by an effective analytic model [60]. This
effective model is obtained by truncating the Hilbert Space to only two kinds of states:
(a) Fully polarized states, and (b) One-magnon states i.e., states with (L − 1) spin-ups
(spin-downs), and 1 spin-down (spin-up). Using this effective model, we find that the spin
chain wavefunction after 2n pulses is given by:

|ψ(2nT)〉 = c0(2nT)|ψ0〉+ c1(2nT)∑
h
|h〉, (8)
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where |ψ0〉 = | . . . ↑↑↑ . . .〉 (the fully polarized state), |h〉 = | . . . ↑ . . . ↑↓h↑ . . . ↑ . . .〉 (the
one-magnon states), and

c1(2nT) = ε
2nT−1

∑
j=1

exp(−ijJT). (9)

This implies that

|c1(2nT)| = ε| sin(nJT)
sin(TJ/(2))

|, (10)

and thus, the stroboscopic return probability P(2nT) is given by:

P(2nT) = c0(2nT)2 = 1− Lε2
(

sin(nJT)
sin(TJ/(2))

)2

. (11)

When JT = 0, the return probability decays very fast, implying the absence of any
TTSB. In the presence of interactions however, the spins can become synchronized, and the
time crystal order can persist. Furthermore, when JT = π, P(2nT) ≈ 1, thereby indicating
that the system may exhibit time crystalline behavior for long times.

Next, we investigate the fate of the system at even longer times, by performing exact
diagonalization calculations on a 11-site model, when ε = 0.1π. Our results are shown in
Figure 4. It is evident from this figure that while there is a large parameter regime, where
the spin chain exhibits sub-harmonic oscillations at a frequency of π/T, the DTC lifetime is
maximized when JT = π. To further substantiate our finding, we analyze the dependence
of the DTC lifetime, n∗ on system size for some fixed values of JT. As shown in Figure 5a,
we find that n∗ increases exponentially with the system size. This is a characteristic feature
of DTCs. Interestingly, we find that when JT ≈ π, the lifetime of even size chains of
length L can be greater that of odd size chains of length L + 1. As we shall explain below,
this behavior can be understood as a consequence of a time reflection symmetry of the
model at JT = π. It is also worth noting that the behavior of P(2nT) is symmetric around
JT = π, thereby implying that n∗ is the same for JT = y and JT = 2π − y, where y ∈ R.
We provide numerical evidence for this result in Figure 5b. The results from Figure 5
suggests the existence of a critical J, below which TTSB would not occur for every value
of ε. We proceed to determine the region of parameter space, where the system is a DTC
by evaluating the average stroboscopic return probability, P(2nT) over 1000 periods. Our
results are shown in Figure 6b.

Figure 4. (a–f): The stroboscopic return probability at times 2nT(P(2nT)) for a 11-site spin chain
with nearest-neighbor interactions; JT

π = 0.75, 0.85, 0.95, 1, 1.05, and 1.25 respectively, and ε = 0.1π.
We find that time crystal signatures can be observed for a wide range of JT, and the time crystal
lifetime is maximum when JT = π.
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Figure 5. (a) The dependence of the DTC lifetime, n∗ defined below Equation (3) on the system size
for various values of JT. We find that the lifetime increases exponentially with the system size. When
JT ≈ π, the spin chain exhibits an interesting feature: the lifetime of an even size system of length
L is almost the same as that of an odd size system of length L + 1. This is due to a constructive
interference from several paths for even size chains. (b) The dependence of the lifetime on JT for a
fixed spin chain length, L. It is evident that n∗ is maximum, when JT = π for both even and odd
size chains.
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Figure 6. (a) Phase diagram of the model obtained from averaging P(2nT) over 1000 periods for
a 10-site system. There is a large region of parameter space where the system exhibits DTC order.
(b) The Fourier spectrum of σz

i (t) when the i-th spin is polarized along the +x and −z direction
respectively, while the other spins are polarized along +z direction. It is clear that the system
exhibits a sharp Fourier peak at ω = π/T - a direct signature of period doubling oscillations. (c) The
eigenstate averaged energy gaps defined in Equations (12) and (13) as a function of ε and J for
different system sizes L. In the DTC regime, ∆π

∆0
→ 0 in the thermodynamic limit. It is evident

from this figure that the transition from the no-TTSB phase to the DTC phase is accompanied by
a transition from increasing ∆π

∆0
to decreasing ∆π

∆0
with increasing system size. (d) Quasi-energy

spectrum for a 4-site system when JT = π: there are 4 perfect π-spectrally paired states due to the
time reflection symmetry that emerges at this point. These perfect π-spectral pairs would lead to
eternal period doubling oscillations.
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Our results so far have focused on the period doubling oscillations exhibited by the
spin chain, when it is initialized in a globally polarized state. Although these oscillations
suggest that the system may be a DTC, to rigorously establish the existence of the DTC
phase, we must examine whether the model possesses two crucial characteristics: (a) it
must be integrable, and (b) it must host an extensively large number of eigenstate pairs
with quasi-energies differing by π/T. The integrability of this system is already well
established [73,74]; this feature allows it to evade thermalization. To check for the “π-
spectral pairing”, we compute the energy difference between neighboring eigenstates:

∆0 = εi+1 − εi, (12)

as well as
∆π == εi+D/2 − εi − π/T, (13)

where ε is the quasi-energy and D = 2L is the Hilbert Space dimensions. Robust “π-spectral
pairing” occurs, when ∆π � ∆0 [11]. Our results are shown in Figure 6c; it is quite clear
that the model hosts an extensive number of π-spectral paired eigenstates in the parameter
regime that we had earlier identified to be a DTC. Consequently, we find that the system
can exhibit period doubling oscillations for different initial states (see Figure 6b). This
analysis of the quasi-energy spectrum clearly establishes this model as a DTC.

Finally, we address the “odd-even” effect in the DTC lifetime, when JT = π. Intrigu-
ingly at this special point, the system possesses a time reflection symmetry generated by
the operator [75]:

R =
L

∏
i=1

σx
i

L

∏
j=1

σz
j , (14)

such that
RU(T)R† = exp(−iLπ/2)U(T), (15)

where U(T) is the Floquet propagator defined in Equation (2).
As a consequence of this symmetry, there are at least 2L/2 states exactly at quasi-

energies 0 and π for even size systems (for a detailed derivation of this result, see ref. [75]).
This result implies that there are at least 2L/2 exact π-spectral paired eigenstates even in a
finite size system (see Figure 6d). We note that generically such exact π-spectral pairing
occurs only in thermodynamic limit. The presence of these exact π-spectral pairs has a
striking consequence: the spin chain can exhibit eternal period doubling oscillations. To
see this, let us assume that the system is initially prepared in a state:

|ψ(t = 0)〉 = |ψ±〉 = |φ0〉 ± |φπ〉, (16)

where φ0〉 (φπ〉 is a Floquet eigenstate with quasi-energy 0(π). In this case:

|ψ(t = T)〉 = |ψ∓〉 = |φ0〉 ∓ |φπ〉 (17)

and
|ψ(t = 2T)〉 = |ψ±〉 = |φ0〉 ± |φπ〉 = |ψ(t = 0)〉 (18)

This perfect revival after two pulses implies that the stroboscopic return probability,
P(2nT) is always 1 and the DTC has eternal lifetime. Of course, the states |ψ±〉 is generally
difficult to prepare experimentally. However, these eternal oscillations can be observed
as long as the initial state has a significant overlap with |ψ±〉. For the finite size systems
considered here, the globally polarized state is indeed an example of these special class
of initial states, and therefore the chain behaves as an eternal DTC, when it is initialized
in this state. Furthermore, the lifetime of the DTC in even size systems is significantly
enhanced when |JT − π| � 1.

A natural question to investigate at this point is the effect of disorder on this system,
when JT ≈ π. By comparing to known results in the literature, we conclude that the
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presence of strong onsite disorder would destroy the DTC in this parameter regime [12]. A
drawback of our scheme is that an eternal DTC can only be realized for a limited class of
initial states. This drawback can be overcome by engineering infinite range interactions [64].

3.3. Experimental Realization

Before we conclude, it is instructive to discuss potential experimental realizations of
our proposal. A promising platform to test our predictions is a Rydberg atom chain [67].
In this system, the atomic ground state and a chosen Rydberg state can be mapped to
a pseudospin-1/2 system; the periodic kick can be simulated using a periodically mod-
ulated laser beam that couples these states [76–78]. Alternatively, this model can be en-
gineered using ultracold bosons loaded in a tilted optical lattice in the Mott insulator
regime [79]. Finally, we note that digital quantum simulations on superconducting quan-
tum processors [80,81] and trapped ion quantum computers [82,83] provide an alternative
route to realize the long-lived DTC we have studied in this paper.

4. Summary and Outlook

A time crystal is an intriguing non-equilibrium phase of matter that is expected to
be a very useful platform for performing precision measurements [84,85] and quantum
simulation [86]. In this paper, we have described a scheme to extend the lifetime of a DTC
in a periodically driven finite Ising spin chain with nearest-neighbor interactions and no
disorder. Our major insight is that the lifetime of the DTC can be maximized by tuning
the interaction strength to an optimal value. This is a consequence of a novel interaction-
induced quantum interference mechanism. Furthermore, we find that the DTC lifetime
grows exponentially with the system size, with a considerably greater enhancement for
even size chains at the optimal interaction strength. Finally, we have discussed possible
realizations of our model in various quantum simulator platforms.

One of the grand challenges of Floquet engineering is to determine an optimal fre-
quency window, where heating is suppressed [87]. Our scheme can overcome problems
associated with high-frequency driving, and thus it can play an important role in de-
signing future experiments on time crystals. Although we have considered the case of
nearest-neighbor interactions in this paper, it will be interesting to extend our treatment
to long-range interacting systems in the future. In an exciting development, Viebahn et
al. have recently demonstrated that a similar two path interference can be employed to
suppress heating in a periodically driven ultracold fermionic system [88]. This leads us
to believe that generalizations of our scheme may be useful for stabilizing other Floquet
systems, and we plan to explore this in future work.
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