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Abstract: We present a novel binding mechanism where a neutral Rydberg atom and an atomic ion
form a molecular bound state at a large internuclear distance. The binding mechanism is based
on Stark shifts and level crossings that are induced in the Rydberg atom due to the electric field
of the ion. At particular internuclear distances between the Rydberg atom and the ion, potential
wells occur that can hold atom–ion molecular bound states. Apart from the binding mechanism,
we describe important properties of the long-range atom–ion Rydberg molecule, such as its lifetime
and decay paths, its vibrational and rotational structure, and its large dipole moment. Furthermore,
we discuss methods of how to produce and detect it. The unusual properties of the long-range
atom–ion Rydberg molecule give rise to interesting prospects for studies of wave packet dynamics in
engineered potential energy landscapes.

Keywords: hybrid atom–ion system; cold chemistry; Rydberg atom; long-range molecule; avoided
crossing

1. Introduction

Molecules or bound complexes are often classified according to their binding mech-
anisms. The covalent bond, the ionic bond, the van der Waals bond, and the hydrogen
bond are perhaps the ones that are most widely known, but they represent only a selection
of all possible kinds of bonds. A recently discovered class of molecular bound states
are long-range Rydberg molecules between two or more neutral atoms, where binding
lengths can be in the micrometer range. After their prediction about two decades ago
[1,2], several types of long-range Rydberg molecules have been experimentally observed in
recent years [3–8] (for reviews, see, e.g., [9–11]).

In this work, we predict another species of the long-range Rydberg molecules. Here,
a Rydberg atom is bound to an ion at a large given internuclear distance, which clearly
exceeds the extension of the Rydberg electron wave function.

In a simple classical picture, the bound state is based on the electrostatic interaction
between an induced electric dipole (the Rydberg atom) and a charge (the ion). Depending
on the orientation of the electric dipole, the interaction can be attractive or repulsive.
The electric field of the ion generally polarizes the neutral Rydberg atom according to its
polarizability. This polarizability is a function of the electric field that the atom is exposed
to and thus changes with the distance between the atom and the ion. The idea is now that
a long-range Rydberg molecule can form at a distance where the polarizability flips its
sign, such that at shorter distances, there is repulsion between the atom and the ion, and at
larger distances, there is attraction.

The sign flip of the polarizability goes along with an avoided crossing between a
low-field-seeking and a high-field-seeking energy level of the Rydberg atom, both of which
experience individual Stark shifts in the electric field of the ion. For such an avoided
crossing, the upper branch forms a potential well, which can exhibit molecular bound
states. We note that a precondition for avoided crossings to occur is that the Rydberg atom
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exhibits a noninteger quantum defect [12]. For Rb, which we use for discussion in this
work, the quantum defect and the avoided crossings are large. By contrast, for hydrogen,
where no quantum defect is present, the crossings are not avoided. Curiously, it has been
predicted that hydrogen interacting with a proton can form a different kind of long-range
atom–ion Rydberg molecule; see, e.g., [13,14] and references therein.

For the long-range atom–ion Rydberg molecule predicted here, we show that a Ry-
dberg series of bound states exists, within which the binding energies and bond lengths
strongly vary. We discuss properties of the novel molecules, such as their stability and
lifetime as well as their rotational and vibrational characteristics. Due to their large electric
dipole moment, they can easily be aligned in a weak electric field. We propose controlled
coupling of various quantum states via radio-frequency or microwave radiation. Finally,
we describe how the predicted molecules can be created and detected in a cold atom
experimental setup.

Before we start our investigation of the long-range atom–ion Rydberg bound states,
we would like to mention that in recent years there has been a growing interest in the
collisions and interactions of cold atoms and ions (for reviews, see, e.g., [15,16]). As of late,
especially the interactions between ions and ultracold Rydberg atoms have been studied
theoretically [17–20] as well as experimentally [21–24]. Building upon this, an observation
of the proposed long-range atom–ion Rydberg molecule may be possible in the near future.

2. Binding Mechanism and Properties of the Long-Range Atom–Ion Rydberg
Molecules

In the following, we explain in detail the binding mechanism of the long-range atom–
ion molecule. It consists of a neutral Rydberg atom and an ion that are at a large enough
internuclear distance r so that there is negligible overlap of the Rydberg electron orbital
with the ion. We assume, for now, that the ionic core of the neutral atom is located at the
origin. The ion is located on the z-axis at~r = (x = 0, y = 0, z = r). For simplicity, we
consider the ion to be a point charge, with a single, positive elementary charge e. The
ion generates a spherically symmetric electric field of strength E = e/(4πε0|~r − ~x|2) at
location ~x. Here, ε0 is the vacuum permittivity. The electric field of the ion leads to level
shifts and crossings in the atomic Rydberg atom, based on the Stark effect. The resulting
level structures are quite similar to the well-known Stark maps of a Rydberg atom in a
homogeneous electric field.

For the sake of a concrete example, we choose Rb as the neutral atom species. Figure 1
shows Rydberg levels of a Rb atom as a function of the internuclear distance r between
atom and ion. Specifically, the level structures in the vicinity of nP states are considered.
The principal quantum number is n = 17 for Figure 1a,b, while it is n = 47 for Figure 1c,d.
In the given range of energies and internuclear distances, avoided level crossings between
the high-field-seeking 17PJ (47PJ) states and the low-field-seeking states of the hydrogenic
manifold belonging to n = 14 (n = 44) start to occur. Here, J denotes the total electronic
angular momentum quantum number, which can be 1/2 or 3/2 for the P states. The
avoided crossings give rise to potential wells within which molecular bound states can
exist. Figure 1b,d are magnifications of the regions marked with magenta arrows in
Figure 1a,c. The horizontal red lines in Figure 1b (Figure 1d) are the quantum-mechanical
vibrational bound state levels in the wells (for rotational angular momentum l′ = 0).

The physics behind the bound states is as follows. The interaction is based on the
interaction between an induced dipole moment and a charge. At the location of the bottom
of a potential well, the dipole moment of the Rydberg atom flips its sign. At larger distances,
it is a high-field seeker and thus is attracted by the ion. At shorter distances, it becomes
a low-field seeker and is repelled by the ion. Hence, it oscillates about the bottom of the
potential, the location of which corresponds to an approximate bond length.
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Figure 1. (a) Stark map level structure of a Rb atom in the vicinity of the 17P state as a function of
the internuclear distance r between the atom and the ion. The energy reference is given by the term
energy of the 17P3/2 state at zero electric field corresponding to the value for r → ∞. Blue (gray)
solid lines represent levels with |mJ | = 1/2 (|mJ | = 3/2), where mJ is the magnetic quantum number.
The purple vertical line marks a critical internuclear distance rc. For r . rc, our model breaks down
(see text). (b) Magnification of the region indicated by the magenta arrow in Figure 1a, showing the
two outermost potential wells. The red solid horizontal lines correspond to vibrational level energies.
The parameters ∆E, ∆r, and rmin are used to characterize a potential well (see text). (c,d) Stark map
and magnification of the vicinity of the 47P state. Here, the energy reference is the term energy of the
47P3/2 state at zero electric field.

To calculate the atomic Rydberg level energies in Figure 1, we use the Hamiltonian

H = H0 + VI . (1)

Here, H0 represents the Hamiltonian of the unperturbed Rydberg atom, including the
fine structure but ignoring the hyperfine structure. The eigenstates of H0 are |n, S, L, J, mJ〉,
where L and S denote the quantum numbers of the electronic orbital angular momentum
and the electronic spin, respectively. We obtain the corresponding eigenenergies E(n,S,L,J,mJ)

for the unperturbed atomic Rydberg states of Rb using the ARC (Alkali.ne Rydberg Calcu-
lator) package [25]. For the wave functions for the states |n, S, L, J, mJ〉, we use analytical
expressions from [26]. In Equation (1), the operator VI describes the electrostatic interaction
between the Rydberg atom (treated as a Rydberg electron and a point-like Rydberg ionic
core) and the ion. This potential energy is given by

VI =
e2

4πε0 r
− e2

4πε0|~r−~re|
, (2)
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where~re is the location of the Rydberg electron. It is possible to express VI in a multipole
expansion (see, e.g., [27]), which yields

VI = −
e2

4πε0

∞

∑
l=1

√
4π

2l + 1
rl

e
rl+1 Yl0(θe, φe) . (3)

Here, l is the order of the multipole term and Ylm represents the spherical harmonics.
The quantum number m is m = 0, due to rotational symmetry. Furthermore, the variables
(re, θe, φe) are the spherical coordinates for the Rydberg electron location

~re = re

 sin(θe) cos(φe)
sin(θe) sin(φe)

cos(θe)

 . (4)

We note that in Equation (3), the zero order (l = 0) multipole term drops out, as the
corresponding contributions of Rydberg electron and Rydberg ionic core cancel each other.
Thus, when the electron is located at the origin, i.e., re = 0, the interaction VI vanishes.
Therefore, the atomic ground state will only be comparatively weakly affected by VI .

Restricting ourselves to a suitable Hilbert subspace {|n, S, L, J, mJ〉}, we diagonalize
the Hamiltonian H of the static (motionless) atom–ion system for a given, fixed internuclear
distance r. For this, we calculate all matrix elements

Hij = 〈ψi|H|ψj〉 = 〈ψi|H0|ψj〉+ 〈ψi|VI |ψj〉 , (5)

where ψj = |n, S, L, J, mJ〉 and ψi = |ñ, S̃, L̃, J̃, m̃J〉 represent the basis vectors. The diagonal
elements Hii result from the first term in Equation (5) and are given by the energies
E(n,S,L,J,mJ)

. The off-diagonal elements of Hij result from the second term in Equation (5)
and arise from the interaction. By diagonalizing the matrix Hij, we obtain the energy
levels for the perturbed Rb Rydberg atom. In our calculations, we only take into account
multipole terms up to the order of l = 6 in Equation (3), since higher orders have negligible
contributions. We note that truncating the multipole expansion of Equation (3) to the lowest
order l = 1 would correspond to approximating the electric field to be homogeneous. Such
a homogeneous field gives rise to the standard Stark maps [12].

In the spirit of the Born–Oppenheimer approximation, the obtained energy levels
represent molecular potential energy curves VBO(r) of the atom–ion system. The relative
motion of the atom–ion system in these potentials is described by(

− h̄2

2µ
∆ + VBO(r)

)
Ψ = EΨ , (6)

which for χ/r = Ψ goes over into the radial Schrödinger equation(
− h̄2

2µ

∂2

∂r2 +
h̄2l′(l′ + 1)

2µr2 + VBO(r)

)
χ = Eχ . (7)

The term
h̄2l′(l′ + 1)

2µr2 (8)

is the centrifugal potential. Here, µ denotes the reduced mass of the diatomic molecule. Due
to the rotational symmetry of VBO(r), the angular momentum l′ for the molecular rotation
is a good quantum number. The bound states of the Schrödinger equation correspond to
the vibrational eigenstates of the atom–ion molecule with angular momentum l′.

Bound state wells, similar to the ones discussed in Figure 1, also occur for different
principal quantum numbers n. In fact, there exists a Rydberg series of potential wells for
the long-range atom–ion Rydberg molecules. The well depth ∆E, the width ∆r at half the
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depth, and the position rmin of the bottom of a well (see Figure 1b) change with n. Figure 2
shows these dependencies for the second outermost potential well associated with the
nP1/2 state, as n increases in steps of five units from n = 17 to n = 47. As can be seen in
Figure 2a, ∆E decreases by about three orders of magnitude from 18 GHz× h for n = 17 to
about 30 MHz× h for n = 47. At the same time, ∆r increases from about 4 nm to almost
12 nm (Figure 2b), and the binding length rmin rises from 80 nm to a remarkable value of
1440 nm (Figure 2c).
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Figure 2. Properties of the second outermost potential wells associated with the nP1/2 states of
Rb and of corresponding molecular bound states as functions of the principal quantum number n.
(a) Depth ∆E (on a logarithmic scale). (b) Width ∆r. (c) Position rmin. (d) Number N of vibrational
bound states. (e) Energy splitting ∆Ev between the vibrational ground state and the first excited
vibrational state (on a logarithmic scale). (f) Rotational constant B for a 87Rb138Ba+ molecule (on a
logarithmic scale).

As the potential wells change with n, so do the numbers of their vibrational bound
states N and the vibrational splittings of the levels. This is shown in Figure 2d–f for the
second outermost potential wells associated with the nP1/2 states. The number of vibra-
tional bound states N decreases from 19 to 3 as n increases from 17 to 47 (see Figure 2d).
At the same time, the energy splitting for deeply bound vibrational levels drops from
1 GHz× h to 10 MHz× h (see Figure 2e). As the atom–ion interaction potential is spheri-
cally symmetric, it has rotational eigenstates. The rotational constant B can be estimated
in the approximation of a rigid rotor using B = h̄2/(2µr2

min), where rmin represents the
binding length. Generally, B is quite small due to the long-range character of the dimer. For
example, in Figure 2f we show the rotational constant for a 87Rb atom bound to a 138Ba+

ion as a function of n for the given second outermost potential well. B decreases from
15 kHz× h for n = 17 to 50 Hz× h for n = 47.

Finally, for completeness, we briefly consider hyperfine interaction, which is not
included in our calculations. Hyperfine splittings of the 27P1/2 states of 87Rb and 85Rb are
measured to be < 1 MHz× h [28]. The hyperfine splitting intervals scale as ∝ 1/n3

eff with
the effective principal quantum number neff, which is defined by neff = n− δ(n) using the
quantum defect δ(n). Therefore, for the investigated range of n from n = 17 to n = 47 the
size of the hyperfine splitting will be orders of magnitude smaller than the typical depth
of each molecular potential well and the vibrational level splitting (see Figure 1b,d). The
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rotational level structure, however, can show similar splittings as the hyperfine structure
for specific ranges of rotational quantum numbers.

3. Stability and Lifetime of the Long-Range Atom–Ion Rydberg Molecules

One possible decay channel for a long-range atom–ion Rydberg molecule is radiative
decay. The radiative lifetime of a molecular state will be generally similar to the one for
the corresponding atomic Rydberg state. Considering decay due to spontaneous photon
emission and assuming zero temperature, the lifetime τ of Rydberg atoms increases with
neff as ∝ nα

eff [29–31], where α ≈ 3 for the alkali atoms. At finite temperature T, the total
lifetime τT can be obtained from 1/τT = 1/τ + 1/τbb. Here, 1/τbb is the decay rate due to
black-body radiation. We note that τbb approximately follows the scaling law τbb ∝ n2/T
for large n. For example, the lifetimes of the 17P1/2 and 17P3/2 levels of 87Rb are about 5 µs
(8 µs) at T = 350 K (T = 0 K) according to the calculation in [32], which includes the effects
due to the core polarizability, spin–orbit interaction, and black-body radiation. A lifetime
of 5 µs corresponds to a natural linewidth of 200 kHz/(2π). This is, by the way, already
larger than B/h for the rotational constant of 15 kHz× h we calculated in the previous
section. Therefore, low rotational levels within a vibrational state cannot be resolved.

Another possible decay channel is the tunneling of the molecule through the outer
(or inner) potential barrier of a well. Let us consider the second outermost potential well
associated with the 17P1/2 state, located at rmin ≈ 80 nm (see Figure 1a,b). Here, the
most weakly bound vibrational states may undergo tunneling towards larger internuclear
distances. After passing the barrier, the molecule accelerates along the repulsive potential
energy curve and dissociates. The transmission probability Pt of a molecule impinging on
a barrier can be estimated by

Pt = exp

−2

√
2µ

h̄

Tp2∫
Tp1

√
V(r)− Em dr

 , (9)

where Em is the energy of the molecule. Tp1 and Tp2 are the classical turning points for
the potential barrier V(r). For the given well we obtain Pt = 2.7× 10−2, Pt = 5.9× 10−4,
Pt = 1.1× 10−5, and Pt = 2.4× 10−7 for the four energetically highest vibrational levels,
respectively. As expected, there is a fast increase of Pt with increasing vibrational quantum
number close to the threshold of the barrier. A molecular decay rate γt due to tunneling can
be estimated by multiplying the tunneling probability with the frequency of the oscillatory
motion, which is about 1 GHz. Therefore, γt is on the order of a few 107 s−1 for the most
weakly bound level. For tunneling out of the corresponding well associated with the 47P1/2
state (see Figure 1c,d), the calculation yields Pt = 0.38, Pt = 3.3× 10−3, and Pt = 4.8× 10−5

for the three available vibrational states. The frequency of the oscillatory motion, however,
is only about 10 MHz and, therefore, the decay rates γt are still moderate.

In principle, a long-range atom–ion Rydberg molecule can also decay at the bottom of
its potential well due to a nonadiabatic transition to another potential energy curve. Within
the Landau–Zener theory [33,34] for avoided crossings, the probability for nonadiabatic
transfer is given by

PLZ = exp

(
− πh̄Ω2

2va
dE(r)

dr

)
, (10)

where h̄Ω is the energy splitting at the crossing, va is the velocity for the approach to
the energy gap, and dE(r)

dr is the differential slope of the two crossing potential energy
curves. The rate for a nonadiabatic Landau–Zener transition is obtained by multiplying
PLZ with the frequency of oscillatory motion. We have verified for the second outermost
potential wells (for Rb, ranging from 17P1/2 to 47P1/2) that decay of the molecular states
via this process is completely negligible as compared to radiative decay. For this, we used a
maximal velocity va corresponding to a kinetic energy equal to the potential well depth ∆E.
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Finally, we discuss the stability of long-range atom–ion Rydberg molecules in terms of
over-barrier motion [35]. In Figure 3a, the red solid lines show the total Coulomb potential
of the Rydberg electron and the two ionic cores

VCou =
e2

4πε0

(
− 1
|z| −

1
|r− z| +

1
r

)
, (11)

where all three particles are located on the z-axis. The electron is at position z, and the ionic
cores are at positions z = 0 and z = 80 nm (such that their distance is r = 80 nm). At half
the distance between the cores, i.e., at z = 40 nm, a potential barrier for the electron occurs.
Our type of long-range atom–ion Rydberg molecule cannot energetically exist above this
potential barrier because the electron could freely pass from one ionic core to the other one,
corresponding to a charge exchange between the atom and the ion. There still might be
molecular bound states in this regime, but these are of a different type and we will not
consider them any further here.
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Figure 3. (a) Over-barrier motion. The red solid lines represent the Coulomb potential VCou as given
in Equation (11) for two ionic cores located at z = 0 and z = 80 nm on the z-axis (i.e., r = 80 nm) and
an electron at position z. The black solid horizontal lines correspond to the energy of the unperturbed
Rydberg level for n = 17 and n = 22, respectively. (b) Comparison of the critical internuclear
distance rc to the internuclear distance rmin where the minimum of the second outermost potential
well associated with nP1/2 states is located, as a function of n.

In the following, we roughly estimate at what internuclear distance over-barrier
motion will set in if the initial atomic Rydberg state is a nP1/2 state. For this, we simply
compare the energy of an electron in an unperturbed atomic Rydberg level to the barrier
height. The energy of an unperturbed Rydberg level is −Ry n−2

eff , where Ry ≈ 13.605 eV is
the Rydberg energy. For calculating the quantum defect δ(n) = δ0 + δ2/(n− δ0)

2 for nP1/2
states of Rb we use the quantum defect parameters δ0 = 2.6548849(10) and δ2 = 0.2900(6)
from [28]. The barrier energy at the top is −3e2/(πε0r). Therefore, the critical distance
below which over-barrier motion occurs is given by

rc =
3e2

4πε0Ry
(n− δ(n))2 . (12)

This is plotted in Figure 3b along with values rmin for the locations of the second
outermost potential wells associated with the nP1/2 states. For large n, rc is significantly
smaller than rmin and, therefore, the potential barrier prevents charge exchange, protecting
the long-range atom–ion Rydberg molecules. As n decreases, rc approaches rmin. For the
lowest n considered here, n = 17, the calculation yields rc = 65 nm, which is already close
to rmin ≈ 80 nm (see also Figure 1a).

Even for energies slightly below the potential barrier charge exchange might occur
due to tunneling of the electron through the barrier. This would lead again to a breakdown
of our scheme. Therefore, we have calculated tunneling probabilities similarly as in
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Equation (9). For n = 17 and an approximate binding length of rmin ≈ 80 nm, and using
the unperturbed level energy of the Rydberg atom, we obtain a tunneling probability of
about 3× 10−12. The frequency of the oscillatory motion of the Rydberg electron in a
state characterized by neff,1 can be roughly estimated by the frequency separation of this
state to the next neighboring, energetically lower state characterized by neff,2 ≈ neff,1 − 1,
i.e., −Ry (n−2

eff,1 − n−2
eff,2)h

−1. For n = 17, the frequency of the oscillatory motion is about
2× 1012 Hz. Consequently, the tunneling rate is 6 s−1, which is negligible as compared to
the natural (radiative) decay rate of the molecule. For the states with n > 17 considered in
Figure 3b and corresponding approximate binding lengths rmin, the tunneling rates quickly
decrease further with increasing n.

4. Production and Detection of the Long-Range Atom–Ion Rydberg Molecules
4.1. Production by Photoassociation

A possible way to create a long-range atom–ion Rydberg molecule is resonant photoas-
sociation. For example, we consider a single ion immersed in a cloud of ultracold neutral Rb
atoms in the ground state 5S1/2. When a colliding atom–ion pair reaches the distance of the
molecular bond length (≈ rmin of a potential well), a laser with a wavelength of ≈ 300 nm
can resonantly drive a transition to an atomic Rydberg state with sufficient P character. The
partial wave will generally not change or only slightly change during photoassociation.
Specifically, if the atom and the ion collide in a partial wave with angular momentum l′,
then the produced atom–ion molecule will typically have a rotational angular momentum
of l′ or l′ ± 1 (see discussion further below). The binding lengths are quite large, ranging
between ≈ 80 and ≈ 1440 nm in our examples. In particular, they are much larger than
the typical internuclear distance where the maximum of the angular momentum barrier is
located (see, e.g., the lower panel of Figure 4a). Therefore, even for relatively low collision
energies of 1 mK× kB, where kB is Boltzmann’s constant, quite a number of partial waves
can contribute to the photoassociation. The precise number of partial waves depends of
course on the atomic mass of the involved particles and the photoassociation distance, in
addition to the precise collision energy (cf. Equation (14) further below).

In Figure 4, various examples for different parameters for photoassociation are pre-
sented. Specifically, here, we consider a 5S1/2 electronic ground state 87Rb atom colliding
with a 138Ba+ ion in its electronic ground state 6S1/2. For simplicity, the hyperfine structure
of the Rb atom is ignored. Furthermore, in general, the total electronic spin degree of
freedom is not taken into account, i.e., we do not discriminate between electronic singlet
and triplet states. The blue solid lines in the middle and the lower panel of Figure 4a show
the interaction potential for two different partial waves l′ = 0 (the s-wave) and l′ = 20.
Regarding l′ = 0, we choose for the interaction potential at very short range (r . 4 nm)
the (1)3Σ+ potential energy curve taken from [36]. The part at the longer range (r & 4 nm)
for l′ = 0 is given by the polarization potential ∝ 1/r4 (see, e.g., [15]). We have checked
that these two parts are smoothly connected with each other. For l′ = 20, the angular
momentum potential of Equation (8), which gives rise to the centrifugal barrier, is added.
The black, magenta, and ocher solid lines in the middle and the lower panel of Figure 4a
are calculated scattering wave functions for collision energies E of (1, 0.1, 0.01) mK× kB,
respectively. These are energy-normalized (cf. Equation (17) below). In order to carry out
photoassociation, it is important that the scattering wave function and the wave function
of the target molecular level have sufficient Franck–Condon overlap. We present in the
upper panel of Figure 4a the potential energy curves in the regions of the two outermost
molecular potential wells associated with the 17P1/2 (on the left) and 27P1/2 (on the right)
states of Rb. Figure 4b,c are magnifications of these regions. Here, for simplicity, in the
upper panels, we only show the second outermost potential wells together with the wave
functions of the corresponding vibrational levels. A comparison to the scattering wave
functions (middle and lower panels of Figure 4b,c) reveals that these can have decent
overlap with atom–ion Rydberg molecule states, in general. We note, however, that the
lower the collision energy, the smaller the number of partial waves that will contribute to
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Figure 4. Comparison of wave functions. (a) Upper panel: Potential energy curves in the region of
the two outermost potential wells associated with the 17P1/2 (on the left; see also Figure1b) and the
27P1/2 (on the right) states. Blue (gray) solid lines indicate levels with |mJ | = 1/2 (|mJ | = 3/2). Black
dashed vertical lines mark internuclear distances below which the potential energy landscape is not
plotted. The energy reference is the term energy of the 17P3/2 and 27P3/2 state, respectively, at zero
electric field (r → ∞). Middle panel: The blue solid lines show the potential energy curve for a Rb
5S1/2 atom colliding with a Ba+ 6S1/2 ion within the partial wave l′ = 0. We choose the (1)3Σ+ state
to represent the short-range part for r . 4 nm (see text). Here, the energy reference corresponds to
the atomic asymptote of the two collision partners. The black, magenta, and ocher solid lines are
scattering wave functions for atom–ion collision energies E of (1, 0.1, 0.01) mK× kB, respectively.
Their amplitudes are scaled for better visibility and are given in arbitrary units. Lower panel: The
same as the middle panel but for l′ = 20. For the blue solid lines, the angular momentum potential
is included. (b,c) Magnifications of parts of Figure 4a. For simplicity, in the upper panels, only the
second outermost potential wells associated with the states 17P1/2 and 27P1/2 are considered. The
red solid lines are the wave functions of vibrational levels with l′ = 0 (presented by using a scaling
factor and given in arbitrary units).
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the photoassociation. For example, this can be seen from the almost vanishing amplitude
of the scattering wave function for the case E = 0.01 mK× kB and l′ = 20 over essentially
the whole range of internuclear distances shown in Figure 4a.

Next, we provide a quantitative estimation for photoassociation. For low enough laser
intensity, the occupation probability Pm of an atom–ion molecular state is given by

Pm = nat
πvrel

k2

l′max

∑
l′=0

(2l′ + 1)
γs

∆2 + (γ + γs)2 . (13)

This result is extracted from [37], where an expression for the rate Γ = Pmγ for excita-
tion of the molecular state followed by its spontaneous decay is presented. Equation (13)
is valid only for small values of Pm. Here, nat is the particle density of the atomic cloud,

vrel is the relative velocity between the collision partners, k =
√

2µE/h̄2 = µvrel/h̄ is the
wave number for reduced mass µ, and ∆ is the detuning from resonance. The highest
contributing partial wave is roughly determined by

l′max ≈
√

2µr2
min E/h̄ . (14)

In Equation (13), γ is the rate of natural spontaneous emission for the excited state,
and γs is the rate of stimulated decay back to the entrance channel. γs can be expressed by

h̄γs = 2π

(
h̄ΩR

2

)2
|〈Ψe|E, l′〉|2 , (15)

which involves the Franck–Condon overlap of the excited molecular bound state wave
function Ψe and the scattering wave function |E, l′〉. Here, ΩR is the Rabi frequency for the
optical coupling,

h̄ΩR = E0|d(r)| =

√
2I

c ε0
|d(r)| , (16)

where I is the intensity of the light, c is the speed of light, and d(r) is the dipole matrix
element for the optical transition. In Equation (16), E0 denotes the amplitude of the
oscillating electric field of the light, which has a field strength of E0 cos(ωt). We note that
the scattering wave function |E, l′〉 is energy-normalized so that for r → ∞ it takes the form

〈r|E, l′〉 ≈

√
2µ

πh̄2k
sin(kr− l′

π

2
+ δ̃l′) , (17)

where δ̃l′ denotes the l′-dependent scattering phase shift between the incoming and outgo-
ing wave. This energy normalization assures that the given wave has an incoming particle
flux that is independent of k.

The transition electric dipole moment d(r) varies with n, r, and the polarization of
light (see, e.g., [17]). For simplicity, we consider here the transition electric dipole moment
d∞ for r → ∞, which neglects Stark level shifts and mixing of states due to the electric
field of the ion, in principle. Regarding transitions with π-polarized light from (5S1/2,
mJ = 1/2) toward (nP1/2, mJ = 1/2), generally ignoring the hyperfine structure, one
obtains that |d∞| decreases from 5.5× 10−3ea0 for n = 17 to 0.9× 10−3ea0 for n = 47,
where a0 = 0.529× 10−10 m is the Bohr radius. According to [17], d(r) is on the order
of d∞/8 for such transitions, which should be a reasonable approximation for our pur-
pose. To give an example, we now determine the occupation probability Pm, as given in
Equation (13), for vibrational levels within the second outermost potential well associated
with the 27P1/2 state of Rb. For this state, a natural lifetime of τ = 1/γ = 3.9× 10−5 s and
|d∞|/8 = 0.3× 10−3ea0 are calculated. We use an atomic density of nat = 1× 1012 cm−3,
which is low enough such that atom–atom–ion three-body recombination is negligible
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during the typical duration of the photoassociation experiment (see, e.g., [38]). Further-
more, an atom–ion collision energy of E = 1 mK× kB is considered. We assume that
we resonantly address a molecular state with rotational angular momentum quantum
number l′res corresponding to ∆ = 0. All other possible transitions between scattering
states and molecular rotational states for a given vibrational level are accounted for with
their respective detunings ∆ 6= 0. For a light intensity I = 1 kW cm−2 and l′res = 100 we
obtain from Equation (13) occupation probabilities Pm in the range from 0.2 to 2% for the
vibrational levels v = 0 to 6 in the well. Here, v is the vibrational quantum number. By
increasing the laser intensity, the occupation probability Pm still grows but, in general, not
linearly anymore. We note that when choosing l′res = 10 (l′res = 0) as compared to l′res = 100,
Pm is reduced typically by about a factor of 8 (a factor of 20 to 30) for a large part of the
vibrational levels.

The vibrational levels on the potential wells should be spectroscopically resolvable
when the collision energies of the atom–ion system are sufficiently low. For example, the en-
ergy level shift for a typical (thermally distributed) atom–ion collision energy of 1 mK× kB
is about 21 MHz× h, which entails a corresponding inhomogeneous line broadening. Thus,
according to Figure 2e, vibrational levels for the second outermost molecular potential
wells associated with nP1/2 Rb Rydberg states should be well resolvable for n . 30, as
the vibrational level splitting is & 100 MHz× h. The molecular rotation will not lead to
significant additional broadening if the rotational angular momentum l′ does not change
significantly in the photoassociation process. The maximal change in |∆l′| due to recoil
from the ultraviolet photon with wavelength λ ≈ 300 nm in the Rydberg excitation can
be estimated using |∆l′| = (h/λ)rmin/h = rmin/(300 nm). For n = 30, the approximate
binding length rmin for molecules of the second outermost potential well is ≈ 400 nm, and
hence, one obtains |∆l′| ≤ 1. Furthermore, these parameters correspond to a rotational
constant B of about 0.6 kHz× h when considering a 87Rb138Ba+ molecule. According to
Equation (14), l′max is ≈ 190 for this system, assuming a collision energy of E = 1 mK× kB.
Consequently, about 190 partial waves can contribute to the photoassociation. The max-
imal energy shift (and line broadening) due to the change ∆l′ is then on the order of
2Bl′max|∆l′| ≈ 2 MHz× h, which is small as compared to the vibrational splitting of about
100 MHz× h and as compared to the thermal broadening for collision energies on the order
of 1 mK× kB.

4.2. Detection by Photoionization

In order to detect a long-range atom–ion Rydberg molecule, one can use photoion-
ization. The resulting two positively charged ionic cores of the molecule repel each other
such that the dimer gets dissociated. As a consequence, the total number of ionic particles
increases, which can be observed with an ion detector. For heteronuclear long-range atom–
ion Rydberg molecules, mass-resolved ion detection could even discriminate whether a
detected ion originated from the involved Rydberg atom.

The efficiency of the detection scheme is directly related to the photoionization rate
ΓPI = σPI IλPI/(hc). Here, σPI represents the photoionization cross-section and λPI is the
wavelength of the photoionizing light. As an example, we consider the wavelength of
λPI = 1064 nm for which high-power laser sources are available. According to [39], the
photoionization cross-section σPI for direct photoionization starting from Rb Rydberg P
states ranges from about 1× 10−21 cm2 for n = 90 to about 2× 10−19 cm2 for n = 20.
Consequently, when addressing, e.g., the 17P state of Rb, a laser intensity on the order of
105 W cm−2 is needed to obtain a photoionization rate comparable to the rate for natural
radiative decay. Generally, the cross-section approximately scales as ∝ n−3. Since, however,
the lifetime of the molecule increases approximately as ∝ n3

eff, there is only a comparatively
small change of the ionization efficiency as a function of n for a given laser intensity.

Additional information can be drawn from the photoionization detection if it is
combined with an energy spectroscopy of the released ions. Upon dissociation of the
molecule, each of the ionic fragments gains a characteristic kinetic energy determined
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by the electrostatic potential energy Epot ≈ e2/(4πε0rmin), where rmin is roughly the
binding length of the initial molecule. For rmin ≈ 80 nm, as given for the potential wells
involving 17P states considered in Figure 1b, one obtains a total kinetic energy of about
200 K× kB (corresponding to ≈ 17 meV), which is distributed over the two ionic fragments
according to their mass ratio. Therefore, energy spectroscopy of product ions could reveal
information about the binding length of the initial long-range atom–ion Rydberg molecules.
Such energy spectroscopy may be carried out, e.g., by employing an ion trap [40] or by
making use of time-of-flight techniques [41–43].

5. Prospects for Experiments with Long-Range Atom–Ion Rydberg Molecules

The long-range atom–ion Rydberg molecules possess several unusual properties that
make them appealing for future investigations and applications. For example, they exhibit
a very large electric dipole moment. Here, two contributions have to be considered. The
first contribution comes about due to the fact that the charge of the ion is not located at
the barycenter of the molecule, which gives rise to a permanent electric dipole moment
even for the homonuclear case. The second contribution is represented by the induced
electric dipole moment within the Rydberg atom as a consequence of the polarization in
the electric field of the ion. Considering, e.g., a homonuclear dimer with an approximate
binding length of rmin ≈ 80 nm (see also Figure 1b), the first contribution to the electric
dipole moment is approximately ermin/2 ≈ 6.4× 10−27 Cm ≈ 1900 D. The induced electric
dipole moment is comparatively small since molecular potential wells precisely occur at
internuclear distances where the polarizability of the Rydberg atom changes its sign. Our
calculations show that for all vibrational levels of the second outermost potential well
associated with the 17P1/2 state of Rb, the induced electric dipole moment is below 20 D.
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Figure 5. Examples for coupling of molecular levels. Shown are the potential energy curves in
the region around the two outermost molecular potential wells associated with the 27P1/2 state of
Rb. Blue (gray) solid lines indicate levels with |mJ | = 1/2 (|mJ | = 3/2). Here, the reference for
zero energy is the term energy of the 27P3/2 state at zero electric field (r → ∞). The red solid lines
correspond to wave functions of vibrational levels with l′ = 0. Their amplitudes are scaled for
better visibility and are given in arbitrary units. The green arrow illustrates a transition between
two neighboring vibrational states within the same potential well, which can be driven by a radio-
frequency field. The purple vertical arrow represents a microwave transition between two vibrational
states in different potential wells. The cyan vertical arrow indicates a transition from a bound state
towards a repulsive potential energy curve.
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Since the rotational constants are very small, already small external electric fields on
the V/m scale or below will be sufficient to align long-range atom–ion Rydberg molecules
and to perform related experiments with them. Furthermore, their vibrational oscillation
frequencies are in the 10 MHz to 1 GHz regime for the range of states considered here (cf.
Figure 2e). The corresponding timescale of 1 to 100 ns is convenient for the investigation
of wave packet dynamics, since it is largely accessible using standard lab electronics
and laser switches. Microwave and radio-frequency radiation can be employed to drive
transitions between vibrational and rotational states (see Figure 5 for different examples).
This gives rise to interesting opportunities for coupling various neighboring potential wells
in order to form novel, complex potential landscapes. The wave packet dynamics in such
potential landscapes, which might involve tunneling and nonadiabatic transitions between
states, can then be studied in detail. Related methods for potential engineering using,
e.g., magnetic or electric fields are currently developed for (neutral) long-range Rydberg
molecules [44,45].

6. Conclusions and Outlook

We have predicted a novel molecular binding mechanism between an atomic ion and
a neutral Rydberg atom. The electric field of the ion induces Stark shifts and level crossings
in the Rydberg atom, which gives rise to potential wells for long-range atom–ion Rydberg
molecules. These molecules can possess extremely large binding lengths on the micrometer
scale and correspondingly large, permanent electric dipole moments in the kilo-Debye
range. From our investigation, we expect the stability and lifetime to be sufficient for
detection and further applications. We have characterized the properties of the molecule as
a function of the principal quantum number of the involved Rydberg atom, also regarding
the vibrational and rotational level structure. In addition, we have proposed methods for
production and detection of the long-range atom–ion Rydberg molecule and discussed
prospects for studies of wave packet dynamics and potential landscape engineering.

One possible platform for the observation of the long-range atom–ion Rydberg
molecule is based on hybrid atom–ion experiments. In these experiments, either laser-
cooled and trapped ions are immersed into ultracold trapped clouds of neutral atoms, or
ions are directly produced within an ultracold parent gas (for reviews, see, e.g., [15,16]).
Typical setups allow for a high level of control over the collision energy between the atom
and the ion, for which values around 1 mK× kB and below have been achieved [46–49].
We note that in Paul traps, electric fields are used to confine ions. These are, however,
comparatively small. Typically, the electric field strength, even at a distance of a few µm
away from the trap center, is well below 100 V/m. Binding lengths in the range from 1.0
to 0.1 µm for a long-range atom–ion Rydberg molecule already correspond to ion electric
fields at the position of the neutral atom in the range from 1.44 to 144 kV/m. Therefore,
the additional external electric field due to the ion trap only leads to a small distortion
of the relevant molecular potential wells. Considering the current status of the field of
hybrid atom–ion experiments, we anticipate that an observation of the long-range atom–ion
Rydberg molecule proposed here is well within reach.

During the preparation of the manuscript, we became aware of work that is parallel
to ours [50].
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