## Supplementary Figure Legends



1

PGA2 (#g/ml)

10

Annexin V

0

0

2 Days

3 Days



**Figure S1.** Induction of apoptosis by PGA<sub>2</sub> in HCT116 cells. (A) HCT116 and HCT116 p53-/- cells were treated with indicated concentrations of PGA<sub>2</sub> for 24 h. Cells were then harvested and subjected to annexin V assay. (B) HCT116 cells were treated with vehicle or PGA<sub>2</sub> (10 µg/ml) for 48 h and 72 h. Cells were then subjected to annexin V assay. (C) HCT116 p53-/- cells were treated with vehicle or PGA<sub>2</sub> (10 µg/ml) for 48 h and 72 h. Cells were then subjected to annexin-V assay. (D) HCT116 cells and HCT116 p53-/- cells treated with indicated concentrations of PFT- $\alpha$  for 1 h were incubated in the absence or presence of PGA<sub>2</sub> (15 µg/ml) for another 18 h. Cells were then subjected to annexin V assay.



**Figure S2.** Phosphorylation of p53 at Ser-46 by PGA<sub>2</sub>. HCT116 cells were treated with indicated concentrations of PGA<sub>2</sub> for 12 h and subjected to immunoblot analysis against phospho-p53 Ser-46 and GAPDH as an internal reference protein.



**Figure S3.** Measurement of p53 target genes. (A) Total cellular RNA of HCT116 p53-/- cells treated with indicated concentrations of PGA<sub>2</sub> for 12 h were subjected to qPCR against indicated genes using *GADPH* as an internal reference gene for normalization. (B) HCT116 and HCT116 p53-/- cells pretreated with vehicle or PFT- $\alpha$  for 1 h were incubated in the presence of vehicle or PGA2 (15 ug/ml) for another 12 h. Then, total cellular RNA were extracted and subjected to qPCR against *p21*<sup>WAF1</sup> and *NOXA* using *GAPDH* as an internal reference gene for normalization.



**Figure S4.** Densitometric analysis of p53 target genes. These graphs shows densitometric analysis of Figure 2B.



**Figure S5.** The effect of NU7441 on survival of HCT116 p53-/- cells. HCT116 p53-/- cells were treated with NU7441 for 1 h and then treated with vehicle or PGA<sub>2</sub> for another 18 h. Cells were then subjected to annexin V assay.



**Figure S6.** The subcellular localization of p53 expression in PGA<sub>2</sub>-treated cells. (A) The cytosol (Cyt) and mitochondrial fractions (Mit) of HCT116 cells treated with vehicle or PGA<sub>2</sub> (15  $\mu$ g/ml) for 18 h were subjected to immunoblot analysis against p53, cytochrome c oxidase (cyt c oxidase), and GAPDH. (B) The cytosol (Cyt) and nuclear fractions (Nucleus) of HCT116 cells treated with vehicle or PGA<sub>2</sub> (15  $\mu$ g/ml) for 18 h were subjected to immunoblot analysis against p53, cytochrome c oxidase (cyt c oxidase), and GAPDH. (B) The cytosol (Cyt) and nuclear fractions (Nucleus) of HCT116 cells treated with vehicle or PGA<sub>2</sub> (15  $\mu$ g/ml) for 18 h were subjected to immunoblot analysis against phospho-p53 [Ser-15, p-p53 (s-15)], p53, lamin B1, and GAPDH. .



**Figure S7.** The effect of CHX on the PGA<sub>2</sub>-induced apoptosis in HCT116 cells. (A) HCT116 cells treated with CHX (1  $\mu$ g/ml) for 1 h were incubated in the vehicle or PGA<sub>2</sub> (15  $\mu$ g/ml) for another 18 h. (A, B) Cells were then subjected to annexin V assay. The representative images (A) and statistical analysis (B) of three independent experiments were shown, respectively. The result of three independent annexin V assay was presented as mean ± SEM. (C) Whole cell lysates (WCLs) were prepared and subjected to immunoblot analysis against p53, phospho-p53 [Ser-15, p-p53 (s-15)], cleaved PARP1 (c-PARP1), cleaved caspase-3 (c-Caspase-3), and GAPDH used as an internal reference protein.



**Figure S8.** The effect of knockdown of PUMA and NOXA expression on PGA<sub>2</sub>-induced apoptosis. HCT116 cells transfected with siRNA against *PUMA* (A) or *NOXA* (B) for 24 h were incubated with vehicle or PGA<sub>2</sub> for another 18 h. Cells were then subjected to immunoblot analysis against indicated proteins using GAPDH as an internal control.



**Figure S9.** The effect of PFT- $\alpha$  on the PGA<sub>2</sub>-induced increase of *DR5* mRNA. HCT116 cells pretreated with indicated concentrations of PFT- $\alpha$  for 1 h, were treated with vehicle or PGA<sub>2</sub> (15 µg/ml). At 18 h post-treatment of PGA<sub>2</sub>, total cellular RNA was extracted and subjected to real-time qPCR analysis against *DR5* mRNA using *GAPDH* mRNA as an internal reference gene.



**Figure S10.** Phosphorylation of histone H2AX by PGA<sub>2</sub>. (A) HCT116 cells pretreated with indicated concentrations of PFT- $\alpha$  for 1 h, were treated with vehicle or PGA<sub>2</sub> (15 µg/ml). At 18 h post-treatment of PGA<sub>2</sub>, whole cell lysates were subjected to immunoblot analysis. (B) HCT116 p53-/- cells pretreated with PFT- $\alpha$  or NU7441 for 1 h, were treated with vehicle or PGA<sub>2</sub> (15 µg/ml). At 18 h post-treatment of PGA<sub>2</sub>, whole cell lysates were subjected to immunoblot analysis against indicated proteins.



**Figure S11.** Measurement of various p53 target genes in PGA<sub>2</sub>-treated cells. HCT116 cells were treated with indicated concentrations of PGA<sub>2</sub> for 12 h. Total cellular RNA were then prepared and subjected to qPCR against indicated genes using *GAPDH* as an internal reference gene. FAS-L, Fas ligand; IGFBP3, insulin-like growth factor-binding protein 3; GML, glycosylphosphatidylinositol- anchored molecule like; P2RX6, purinergic receptor P2X 6; PERP, p53 apoptosis effector related to PMP22; ZMAT3, zinc finger matrin-type 3; PIDD, p53-induced death domain protein 1; APAF1, apoptotic peptidase activating factor 1; BIK, BCL2 interacting killer; BAD, BCL2 associated agonist of cell death.



**Figure S12.** Induction of p53 target genes by nutlin-3. HCT116 cells were treated with indicated concentration of nutlin-3 for 18 h. Total cellular RNA were prepared and subjected to qPCR using *GAPDH* as an internal reference gene.

| Cytosol |   | Mitochondria |   |              |
|---------|---|--------------|---|--------------|
| -       | + | _            | + | PGA2         |
|         |   | -            | - | Cytochrome C |
| -       | - |              |   | Caspase 9    |
| -       |   | -            | - | Tom40        |
| -       | - |              |   | α−Tubulin    |

**Figure S13.** Analysis of cytochrome c release in PGA<sub>2</sub>-treated cells. HCT116 cells treated with PGA<sub>2</sub> for 18 h were separated into cytosol and mitochondrial fractions. Each fraction was then subjected to immunoblot analysis against indicated proteins.



**Figure S14.** The effect of PGA<sub>2</sub> on the growth of HCT116 cells and HCT116 p53-/- cells. HCT116 cells and HCT116 p53-/- cells were treated with indicated concentrations of PGA<sub>2</sub> for 24 h. CCK-8 (cell counting kit-8) assay was performed to measure live cells.



**Figure S15.** The effect of PGA<sub>2</sub> on the distribution of cell cycle of HCT116 cells and HCT116 p53-/- cells. HCT116 cells and HCT116 p53-/- cells were treated with indicated concentrations of PGA<sub>2</sub> for 24 h. Cells were then fixed and stained with propidium iodide. The cell cycle distribution was measured using FACS Canto II.