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Abstract: Histamine intolerance, also referred to as enteral histaminosis or sensitivity to dietary
histamine, is a disorder associated with an impaired ability to metabolize ingested histamine that
was described at the beginning of the 21st century. Although interest in histamine intolerance has
considerably grown in recent years, more scientific evidence is still required to help define, diagnose
and clinically manage this condition. This article will provide an updated review on histamine
intolerance, mainly focusing on its etiology and the existing diagnostic and treatment strategies.
In this work, a glance on histamine intoxication will also be provided, as well as the analysis of some
uncertainties historically associated to histamine intoxication outbreaks that may be better explained
by the existence of interindividual susceptibility to ingested histamine.

Keywords: histamine; food intolerance; histamine intolerance; histaminosis; histamine intoxication;
diamine oxidase (DAO); low-histamine diet; food supplement

1. Introduction

In 2011, the European Food Safety Authority (EFSA) issued a scientific report warning that the
levels of biogenic amines found in foods marketed in European Union countries may still entail a
consumer health risk [1]. Among them, histamine has the highest toxic potential, along with tyramine,
and is therefore of great interest in terms of food safety. First described more than 60 years ago,
the deleterious effects of excessive histamine ingestion were initially referred to as scombroid fish
poisoning or scombrotoxicosis, as they were associated with the consumption of fish in this family,
but the condition is now known as histamine intoxication or histamine poisoning. In recent years,
another disorder associated with histamine intake, arising from an enzymatic deficiency, has been
described. The inability of certain individuals to metabolize histamine in the intestine, resulting in
sensitivity to normal or even low histamine levels in food, may help to explain some of the uncertainties
historically associated with histamine intoxication.

During the last decade, histamine intolerance has gained social and scientific recognition, with a
significant increase in the interest of researchers to investigate this disorder. This review aims to
analyze the pathophysiological relevance of dietary histamine, giving special focus to the adverse
effects derived from histamine intake and, in particular, to the state of the art concerning the etiology,
diagnosis and treatment of histamine intolerance.
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2. Histamine

Histamine (2-[4-imidazolyl]ethylamine) is a bioactive amine that is synthesized by decarboxylation
of its precursor amino acid, histidine, in an enzymatic reaction first described by Windaus and Vogt in
1907 involving L-histidine decarboxylase (EC 4.1.1.22) (Figure 1) [2]. Due to its chemical structure and
number of functional groups, histamine can be defined as a heterocyclic diamine with an imidazole
ring and ethylamine (i.e., an organic compound that provides a functional group in the form of a
primary amine) [1,3].
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The physiological and pathophysiological effects of histamine on the body were first described
in 1910 by Dale and Laidlaw, two pioneering researchers who studied the functions of this organic
compound at the Wellcome Physiological Research Laboratories [4–6]. Specifically, histamine is
synthesized and stored in high concentrations in secretory granules, mainly in basophils and mast
cells, and also in gastric enterochromaffin cells, lymph nodes and the thymus [1,7]. Functionally,
this amine is involved in various immune and physiological mechanisms, stimulating gastric acid
secretion, inflammation, smooth muscle cell contraction, vasodilation and cytokine production, among
other processes [8–11]. In addition, histamine functions as a neurotransmitter, being synthesized
by neurons located in the posterior region of the hypothalamus whose axons extend through the
brain [12]. These wide-ranging physiological effects occur by interaction with four G-protein-coupled
receptors with seven transmembrane domains (H1, H2, H3 and H4), which activate signal transduction
pathways upon perceiving their ligand, histamine [7,12].

Two main histamine metabolic pathways are known in humans, involving the enzymes diamine
oxidase (DAO) and histamine-N-methyltransferase (HNMT) (Figure 2) [10,11,13]. DAO (EC 1.4.3.22),
also called histaminase or amiloride-binding protein, is a copper-dependent amino oxidase encoded by
the AOC1 gene located on chromosome 7 (7q34-36) [14–16]. This functional enzyme, a homodimer with
two isoforms, catalyzes the oxidative deamination of the primary amine group of histamine [14,16,17].
On the other hand, histamine can be metabolized to 1-methylhistamine by the enzyme HNMT
(EC 2.1.1.8), a small monomeric protein encoded by a gene located on chromosome 2q22.1 [18]. HNMT
catalyzes the methylation of the secondary amine group of the histamine imidazole aromatic heterocycle
by a reaction requiring the S-adenosyl methionine cosubstrate as a methyl group donor [11,13,19].

Thus, depending on its location, the histamine present in the body is deaminated or methylated
by the action of the enzymes DAO and HNMT, respectively [1,10,20]. DAO is a secretory protein
stored in vesicular structures of the plasma membrane and is responsible for the degradation of
extracellular histamine [1,15]. In mammals, the expression of DAO is restricted to certain tissues,
mainly the small intestine, ascending colon, placenta and kidneys [14,21]. In the intestine, DAO activity
increases progressively from the duodenum to the ileum and is located mainly in the intestinal villi [22].
In contrast, the enzyme HNMT is expressed in a wide range of human tissues, above all in the kidneys
and liver, and also the spleen, colon, prostate, ovaries, spinal cord cells and the trachea and respiratory
tract [10,13]. HNMT is a cytosolic protein responsible for the inactivation of intracellular histamine
and can be synthesized in the cell itself or incorporated from the extracellular space by binding to
a receptor or by membrane transporters [7,18]. Regarding substrates, HNMT is highly selective for
histamine, whereas DAO can also metabolize other biogenic amines such as putrescine and cadaverine,
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although it shows a preference for histamine [14,16,23]. The affinity of DAO and HNMT for histamine
is very similar, although the latter shows a slightly lower Michaelis–Menten enzymatic constant (KM:
6–13 µmol/L) than DAO (KM: 20 µmol/L) [10].Biomolecules 2020, 10, x 3 of 28 
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The gateway for dietary histamine in the body is the intestinal epithelium. Therefore, although
HNMT is also present in the gastrointestinal tract, the more highly expressed DAO plays the major role in
protecting the body against exogenous histamine, whether originating from ingested food or generated
by the intestinal microbiota [24–26]. The protective effect of DAO has been demonstrated in animal
experimentation models that were administered aminoguanidine for irreversible and selective DAO
inhibition, followed by a dose of histamine [24,27,28]. The development of anaphylaxis symptoms in
DAO-inhibited pigs and sheep compared to control groups indicates that the enzyme exerts a significant
barrier effect against the absorption of exogenous histamine into the systemic circulation [1,13,19,24,29].
The HNMT enzyme ranks second to DAO in protecting against the absorption of dietary histamine
from the intestinal lumen, but appears to be more effective against intravenously or intradermally
supplied histamine [13,30].

3. Histamine in Foods

Histamine is present in a wide range of foods in highly variable concentrations, which are the
main exogenous source of this compound [31]. The main route for histamine formation in food is the
decarboxylation of histidine through the action of L-histidine decarboxylase, an enzyme of bacterial
origin [32,33]. Apart from histamine, food can also contain other biogenic amines, mainly tyramine
(4-hydroxy-phenethylamine), putrescine (1,4-diaminobutane) and cadaverine (1,5-diaminopentane),
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which are formed through enzymatic deamination of the amino acids tyrosine, ornithine (and/or
agmatine) and lysine, respectively [31,34]. The accumulation of these compounds in food is the result
of the transformation of amino acids by microorganisms and depends on various factors, such as the
availability of the precursor amino acids and environmental conditions favorable for growth and/or
the bacterial decarboxylase activity [31,34,35].

These decarboxylation reactions have been described as a survival strategy for microorganisms in
acidic environments, as well as an alternative source of metabolic energy in situations of suboptimal
substrate availability [1,9]. This enzymatic activity in bacteria is a species- and strain-dependent
property [32]. Several Gram-positive and Gram-negative bacteria responsible for microbial spoilage or
fermentative processes in food are able to produce histamine [1,36]. Specifically, the Enterobacteriaceae
species Hafnai aluei, Morganella morganii and Klebsiella pneumonia have been identified as some of the
most prolific histamine-forming bacteria in fish [9,37]. On the other hand, in cheeses, fermented meat,
vegetable derivatives and fermented beverages, various lactic acid bacteria have also been described
as histamine-producing microorganisms (e.g., Lactobacillus hilgardii, Lactobacillus buchnerii, Lactobacillus
curvatus and Oenococcus oeni) as well as certain strains of Enterobacteriaceae [1,38,39].

Foods that potentially contain high levels of histamine are: a) those microbiologically altered,
such as fish and meat, or derived products that may have been preserved or processed in unsuitably
hygienic conditions; and b) fermented products, in which the bacteria responsible for the fermentation
process may also have aminogenic capacity [3,40]. Table 1 shows histamine content in the different
food categories from the Spanish market [31].

Table 1. Histamine content in different food categories. Adapted from [31].

Food
Histamine Content (mg/kg)

n Mean (SD) Median Minimum Maximum

Fruits, vegetables and plant-based products

Fruits 136 0.07 (0.20) ND ND 2.51
Nuts 41 0.45 (1.23) ND ND 11.86
Vegetables 98 2.82 (7.43) ND ND 69.72
Legumes 11 ND ND ND ND
Cereals 28 0.12 (0.33) ND ND 0.89
Chocolate 25 0.58 (0.44) 0.17 0.16 0.56
Spices 12 ND ND ND ND

Alcoholic beverages

Beer 176 1.23 (2.47) 0.70 ND 21.60
White wine 83 1.24 (1.69) 0.45 0.10 13.00
Red wine 260 3.81 (3.51) 1.90 0.09 55.00

Fish and seafood products

Fresh fish 136 0.79 (0.71) ND ND 36.55
Canned fish 96 14.42 (16.03) 5.93 ND 657.05
Semipreserved fish 49 3.48 (3.37) 2.18 ND 34.90

Fresh meat 6 ND ND ND ND
Cooked meat 48 0.30 (0.26) ND ND 4.80
Cured meat 23 12.98 (37.64) 0.80 ND 150.00
Dry-fermented sausages 209 32.15 (14.22) 8.03 ND 357.70
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Table 1. Cont.

Food
Histamine Content (mg/kg)

n Mean (SD) Median Minimum Maximum

Meat and meat products

Dairy products

Unripened cheese 20 ND ND ND ND

Raw milk cheese 20 59.37
(106.74) 18.38 ND 389.86

Pasteurized milk cheese 20 18.05 (38.23) 4.59 ND 162.03

ND: not detected.

4. Uncertainties Associated with Histamine Poisoning: A Paradigm Shift Towards
Histamine Intolerance

Although histamine has important physiological functions in the body, it can pose a health risk
when ingested in high levels [41]. The proper functioning of histamine degradation systems is key in
preventing its accumulation. Histamine intoxication, a kind of food poisoning, may occur after the
consumption of foods with an unusually high histamine content that overpowers the degradation
mechanisms (generally higher than 500 mg/kg) [1,3,42].

Historically, histamine intoxication has also been termed scombroid fish poisoning or the
mahi-mahi flush because of its repeated association with the consumption of fish in the Scombridae
and Scomberesocidae families (e.g., tuna, herring and mackerel) [43]. Histamine was first identified
in 1946 as the causative agent of the toxic effects of consuming poorly transported tuna, and for a
long time histamine poisoning was associated almost exclusively with the consumption of spoiled
fish [44,45]. Over the years, the World Health Organization (WHO) has recommended the use of the
term histamine intoxication to better designate this pathology, as it can be caused by marine species
from other families (e.g., Clupeidae, Engraulidae, Coriphaenidae and Pomatomidae) and even other
foods, such as cheese [43]. A meta-analysis carried out in 2018 of the different scientific reports of
histamine intoxication between 1959 and 2013 established that the causative food in 98% of cases
was fish, the remaining percentage being attributed to cheese [46]. Currently, international health
administrations consider histamine intoxication to be one of the main problems of global food security,
both for its effects on human health and its impact on trade [47,48].

Histamine intoxication is characterized by occurring in outbreaks and having a short incubation
period (i.e., 20–30 min post-ingestion), with symptoms that are generally of low/moderate severity
and remit in a few hours [3]. The symptoms are closely linked to the various physiological
functions of histamine in the body, affecting the skin (e.g., redness, rash, urticaria, pruritus, edema
and local inflammation), the gastrointestinal tract (e.g., nausea, vomiting and diarrhea) and the
hemodynamic (hypotension) and neurological (e.g., headache, palpitations and tingling) bodily
functions [1,41]. The symptomatic similarity of histamine intoxication with allergy means it is likely
to be underdiagnosed [43,48,49]. The diagnosis of histamine intoxication is based primarily on the
determination of elevated plasma histamine levels and/or the identification of an ingested food with an
unusually high histamine content [13]. In general, an outbreak of histamine poisoning tends to involve
more than one individual, lasts a short period of time and a particular causative food is identified [38].

In terms of incidence, the data available for the European Union shows an increase in histamine
intoxication outbreaks in the last ten years, unlike other types of food poisoning, and with an almost
hegemonic predominance of fish as the causative agent (over 90% of cases) [42,50]. The most recent
data from the EFSA and European Center for Disease Prevention and Control (ECDC) show that in
2017, there was a 22% increase in outbreaks compared to the previous year [50]. Specifically, in 2017,
there were a total of 117 outbreaks of histamine intoxication involving 572 people, 9% of whom required
hospitalization. Fortunately, no deaths have been attributed to histamine poisoning over the past
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decade [42]. The same trend is observed in the information provided by the European Union Food and
Feed Warning System (RASFF), with a progressive rise in the number of cases of histamine poisoning
linked to tuna consumption in 2014–2017 and a particularly high increase in 2017 [3].

Although histamine intoxication has been extensively studied in recent decades, unresolved
questions remain, concerning, for example, the variable histamine concentrations in the foods triggering
outbreaks, or the heterogeneity in the degree and type of adverse effects [46]. Furthermore, the fact that
oral administration of histamine in doses equivalent to those normally found in foods causing illness
does not produce the same range and/or severity of symptoms is a paradox that has led to multiple
hypotheses [30].

Several authors have proposed that alcohol and certain food components, such as other biogenic
amines, may have a potentiating effect on histamine toxicity [13,48]. Amines such as putrescine and
cadaverine, which are usually found in foods along with histamine, can also act as DAO substrates.
It has therefore been suggested that these amines could weaken the protective barrier against dietary
histamine by competitively interacting with degradation enzymes in the intestine [3,49]. Other possible
potentiators are alcohol and its metabolite acetaldehyde, as they compete with histamine for the
enzyme aldehyde dehydrogenase (ALDH), which is simultaneously involved in histamine and alcohol
metabolism [1,32]. The potentiation effect of these components could help explain the differences
in absorption of the same dose of histamine when ingested in isolation or in a food matrix [48,49].
The FAO and WHO have acknowledged that the involvement of potentiators can alter the threshold
dose for toxicity, and they recommend that future studies focus on clarifying the ambiguities in the
pathogenesis of histamine intoxication [30].

Finally, several authors have reported considerable interindividual variability in histamine
tolerance, which has been demonstrated in intervention studies [1,3,10,13]. After the oral administration
of the same histamine dosage, not all participants showed symptoms, and those who did varied in
symptom type and severity and even had different blood histamine levels [48,51,52]. These results
indicate the existence of population subgroups with greater sensitivity and clinical responses to
histamine, likely linked to a diminished histamine degradation capacity, which could explain some of
the historical uncertainties associated with histamine intoxication outbreaks [1]. Without disputing the
clinical entity of histamine intoxication, the paradigm shift lies precisely in moving the focus from food
to the human body, maintaining histamine as the causative agent, but focusing on how each person is
able to respond to the intake of variable levels of histamine from food. Thus, histamine intolerance
is the clinical condition that describes the inability of certain individuals to degrade histamine and
results in the onset of symptoms caused by its accumulation in the blood (Figure 3).
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5. Histamine Intolerance

According to the 2003 review of allergy nomenclature by the World Allergy Organization,
adverse reactions to food without an immunological basis should be referred to as nonallergic food
hypersensitivity, in order to clearly differentiate them from food allergies initiated by a specific immune
mechanism [53]. Nonallergic food hypersensitivity is commonly known as food intolerance, a response
triggered by a food or any of its components at a dose normally tolerated by the healthy population [54].
While the prevalence of food allergies is estimated at 1–2% in adults, currently almost 20% of the
Westernized world’s population suffers from some type of food intolerance, with lactose intolerance
being the most common [54].

Histamine intolerance, also referred to as enteral histaminosis or sensitivity to dietary histamine,
can be defined as a disorder arising from reduced histamine degradation capacity in the intestine
due to impaired DAO activity, leading to its accumulation in plasma and the appearance of adverse
effects [11,41,55].

The DAO enzyme was first identified back in 1929 by Charles H. Best in autolyzing lung tissue,
which he called histaminase because of its ability to degrade histamine [56]. Years later, given its
ability to also degrade other diamines, as described above, the more accurate designation of DAO
was proposed [57,58]. Beyond its role in the intestinal degradation of histamine in humans, DAO is
also present in microorganisms, plants and animals, where it also catalyzes the oxidative deamination
of the primary amino group of histamine into its corresponding aldehyde, concomitantly producing
stoichiometric amounts of ammonia and hydrogen peroxide (Figure 4) [14,59,60].
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Although the first scientific references to histamine intolerance date from more than 20 years ago,
it is significant that almost 80% are from the last decade, reflecting the growing interest of researchers
in this disorder (Figure 5). In 2011, EFSA already considered histamine intolerance as one of the
risks associated with histamine intake, clinically differentiating it from histamine intoxication [1].
In a subsequent joint report, the WHO and FAO emphasized that the no observed adverse effect
level (NOAEL) established for histamine was only valid for healthy people, and not for members of
susceptible populations, such as those with histamine intolerance [30]. EFSA concluded that only foods
with histamine levels below the detection limits are safe for individuals with histamine intolerance [1].
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Clinical manifestations of histamine intolerance consist of a wide range of nonspecific
gastrointestinal and extraintestinal symptoms, due to the ubiquitous distribution of the four histamine
receptors in different organs and tissues of the body (Figure 6) [10,13,54,61]. In a very recently
published study, a team of Austrian researchers comprehensively analyzed the symptoms experienced
by 133 patients diagnosed with histamine intolerance [62]. The most frequent and severe manifestations
were gastrointestinal, with abdominal distension observed in 92% of patients and postprandial fullness,
diarrhea, abdominal pain and constipation in 55–73%. Impairments of the nervous and cardiovascular
systems, such as dizziness, headaches and palpitations, were recorded in second place, followed
by respiratory and dermatological symptoms. Highlighting the complexity of the clinical picture
of histamine intolerance, combinations of three or more symptoms involving different organs were
recorded in 97% of cases, with an average of 11 symptoms per patient. The low specificity and complex
variability of symptoms undoubtedly contribute to the current difficulty in achieving consensus on
the diagnostic criteria for histamine intolerance, as will be discussed in detail below [13]. A lack of
data also makes it difficult to determine the current incidence of this condition, although some authors
have estimated that it affects 1–3% of the population, a percentage that will possibly increase as more
knowledge and diagnostic tools for histamine intolerance become available [10,13,63].
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5.1. The Etiology of Histamine Intolerance

As mentioned in previous sections, the main barrier against exogenous histamine in the intestines
is the DAO enzyme, which prevents its passage into the systemic circulation [10,13,65]. Numerous
clinical studies have provided data on the prevalence of low plasma DAO levels in individuals
showing symptoms of histamine intolerance, mainly headaches and gastrointestinal or dermatological
disorders [66]. Although certain studies have limitations, either in the design or number of participants,
the majority point to an association between symptoms and DAO deficiency, establishing a general
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trend that supports the key role of DAO in the etiology of these disorders. A DAO deficiency that
predisposes a population subgroup to histamine intolerance may have a genetic, pathological or
pharmacological origin [1,41].

Regarding the genetic background of histamine intolerance, several studies have analyzed in
depth the polymorphisms in genes encoding the enzymes L-histidine decarboxylase, DAO and
HNMT, as well as the different histamine receptors. More than 50 nonsynonymous single-nucleotide
polymorphisms (SNPs) in the DAO-encoding gene have been identified, some of which can produce
a protein with altered activity and lead to symptoms of histamine intolerance [67–72]. Specifically,
the most relevant SNPs affecting DAO enzyme functionality in Caucasian individuals are rs10156191,
rs1049742, rs2268999 and especially rs1049793 [69,71]. On the other hand, an SNP in the promoter region
of the gene has also been identified that causes a lower transcriptional activity of the DAO-encoding
gene (rs2052129), as well as several genetic variations responsible for enzyme deficiency in people of
Asian or African origin (rs45558339 and rs35070995, respectively) [67,72]. In most cases, the effect of
these genetic variations on DAO functionality is through changes in enzyme kinetics, the resulting
increase in KM causing a reduction in the rate of histamine degradation [69]. In parallel, three SNPs
have been identified as being responsible for enhanced DAO enzyme activity (rs2071514, rs1049748
and rs2071517) [72]. There is also evidence of DAO mutations in patients with certain cardiovascular,
gastrointestinal and nervous system pathologies, although with contradictory results regarding
positive/negative effects [68].

DAO deficiency can also be an acquired condition, caused by certain pathologies or interaction
with drugs. Several inflammatory bowel pathologies affecting mucosal integrity are known to result
in impaired DAO activity, the degree of which can be correlated with the severity of mucosal
damage [73–75]. Thus, DAO activity has been proposed as a marker of integrity of the intestinal
mucosa. Miyoshi et al. demonstrated that DAO activity can be a useful predictor of intestinal mucosal
damage in patients receiving chemotherapy [76]. Additionally, DAO deficiency has also been linked
to certain functional gastrointestinal disorders, such as carbohydrate malabsorption and nonceliac
gluten sensitivity (NCGS) [63,73,77–79]. Enko et al. found that a concomitant reduction in DAO and
lactase enzyme activities could be a consequence of mucosal damage in the small intestine due to
gastrointestinal disorders (e.g., gastroenteritis, irritable bowel syndrome, short bowel syndrome and
gastrointestinal surgery) [73]. Moreover, patients with lactose intolerance and plasma DAO deficit
showed higher end-expiratory H2 levels and the appearance of more symptoms during the H2 breath
test in comparison with lactose-intolerant individuals with normal DAO activity [79]. More recently,
two works have suggested a potential relationship between a reduced DAO activity and the presence
of NCGS. Schnedl et al. based this relationship on the broad parallelism between the symptomatology
of NCGS and histamine intolerance, while the pilot study conducted by Griauzdaite et al. reported a
strong association between reduced DAO activity and the presence of NCGS, although with a reduced
number of patients [77,78]. In fact, Griauzdaite et al. found out that nine of 10 patients with NCGS had
decreased serum DAO activity levels [78]. This recently indicated relationship between both disorders,
NCGS and histamine intolerance, should be further explored as it may be of interest for the correct
clinical management of affected patients.

Finally, DAO deficiency can be a temporary and reversible condition, caused by the inhibitory
effect of substances such as biogenic amines and alcohol, as discussed above, as well as several widely
used drugs (Table 2) [1,10]. It has been estimated that approximately 20% of the European population
regularly take DAO-inhibiting drugs, which significantly increases the number of people susceptible
to the adverse effects of dietary histamine [28]. In vitro experimental results show a potent inhibitory
effect (greater than 90%) of chloroquine, a historical antimalarial active ingredient, and clavulanic acid,
a β-lactam antibiotic widely used in combination with amoxicillin [80]. A significant inhibition of the
enzymatic activity has also been observed with the antihypertensive drug verapamil and the histamine
H2 receptor antagonist cimetidine, although the clinical use of the latter is currently anecdotal [23,80].
Other substances have also shown an inhibitory effect, albeit to a lesser extent (Table 2) [23,80,81].
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In most cases, the structural similarity of the cited drugs with histamine could explain their potential to
bind to the active site of DAO and reduce its enzymatic activity [23]. Along the same lines, substances
with an inhibitory effect on other enzymes involved in any of the metabolic pathways of histamine in
the body (i.e., HNMT, ALDH and MAO) may act as a trigger of histamine hypersensitivity [82].

Table 2. Active ingredients with an experimentally demonstrated inhibitory effect on the DAO
enzyme [23,28,80,81].

Active Ingredient Indication

Chloroquine Antimalarial
Clavulanic acid Antibiotic
Colistimethate Antibiotic

Cefuroxime Antibiotic
Verapamil Antihypertensive
Clonidine Antihypertensive

Dihydralazine Antihypertensive
Pentamidine Antiprotozoal

Isoniazid Antituberculous
Metamizole Analgesic
Diclofenac Analgesic and anti-inflammatory

Acetylcysteine Mucoactive
Amitriptyline Antidepressant

Metoclopramide Antiemetic
Suxamethonium Muscle relaxant

Cimetidine Antihistamine (H2 antagonist)
Prometazina Antihistamine (H1 antagonist)
Ascorbic acid Vitamin C

Thiamine Vitamin B1

5.2. Prevalence of DAO Deficit in Persons with Symptoms Related to Histamine Intolerance

Several studies have evaluated the prevalence of DAO deficit in plasma of individuals with
symptoms of histamine intolerance and/or diagnosis with certain chronic disorders.

Mušič et al. found DAO deficiency in 80% of 316 adult patients showing various symptoms
associated with histamine intolerance (e.g., urticaria, pruritus, diarrhea, abdominal pain, vomiting,
constipation, cough, rhinitis and headache), as well as significantly lower plasma DAO activity
compared to the control group [83]. Similarly, in a retrospective study, Manzotti et al. evaluated
DAO activity in 14 patients with a confirmed diagnosis of histamine intolerance who showed mainly
gastrointestinal and dermatological symptoms, but also headaches [84]. In this case, patients showed
a high prevalence of DAO deficit (71%) and a significantly lower mean DAO activity compared to
healthy volunteers. A lower percentage of DAO deficiency in histamine-intolerant patients (24%) was
reported by Pinzer et al. [63]. Those patients featured elevated histamine levels and constantly reduced
DAO activities throughout the day.

In a study focused only on headache symptoms, Steinbrecher and Jarisch reported DAO deficiency
in 23 of 27 patients (85%) [85]. In parallel, the authors described a significant increase in DAO activity
after patients followed a low-histamine diet for four weeks, along with a remission or reduction in
frequency of headaches in almost 90% of individuals. More recently, Izquierdo et al. studied the
prevalence of DAO deficit in 137 patients diagnosed with a confirmed migraine diagnosis and in a
control group of 61 nonmigraine individuals [66]. In this study, a high prevalence of DAO deficiency
was observed in the migraine group (87%) and with a mean DAO activity significantly lower in
comparison with that obtained from control volunteers. However, the prevalence of DAO deficiency in
the control population amounted up to 44%, which was attributed to the fact that certain individuals
could present other symptoms associated with histamine intolerance or DAO deficiency other than
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migraines. Another study with 44 migraine patients reported a 60% prevalence of DAO deficiency and
a significant copresence of certain gastrointestinal disorders, such as celiac disease and NCGS [78].

In the field of dermatological symptomatology, several studies have monitored plasma DAO
activity in patients with eczema, chronic idiopathic urticaria and atopic dermatitis. Overall, the reported
prevalence of DAO deficiency ranges from 19 to 57%, with the exception of the study by Worm et al.,
who did not detect statistically significant differences in plasma DAO activity between control patients
and those with atopic dermatitis [86–89].

Finally, regarding gastrointestinal symptoms, Honzawa et al. assessed the clinical significance
of plasma DAO activity levels in 98 patients suffering inflammatory bowel disease [90]. This study
showed that DAO activity in blood was significantly lower in patients with Crohn’s disease and
ulcerative colitis compared to the control population, suggesting its potential importance as a marker of
intestinal permeability. In a pediatric population under 15 years of age, Rosell-Camps et al. determined
DAO deficiency in 88% of patients with abdominal pain, diarrhea and vomiting [91]. In contrast, in a
more recent study by a group of Austrian researchers, DAO deficiency was found in only 8% of 394
children with chronic abdominal pain [92].

To date, little data is available on the prevalence of this enzymatic deficiency related to gender, and
it is inconclusive. Klockler et al. found no differences in plasma DAO activity between men and women,
although the number of individuals considered was scarce (n = 28) [93]. Likewise, the study performed
by Izquierdo et al. reported similar percentages of DAO deficiency in migraine-suffering women
(83%) and men (90%) [66]. On the contrary, García-Martín et al. did describe differences in plasma
DAO activity by gender, with the prevalence of this enzyme deficiency being higher in women [94].
Significant fluctuations in DAO activity values have also been reported in women associated with
different stages of the menstrual cycle [94,95].

One factor that could explain the discordance among the prevalence data of DAO deficit in
patients with disorders associated with histamine intolerance is that the parameter considered in all
of them was serum DAO activity, which, a priori, would not reflect an enzymatic deficiency derived
from certain intestinal pathologies. Overall, in spite of the varying percentages in DAO deficiency,
the currently available studies seem to indicate an etiological relationship between DAO deficiency
and certain symptoms or disorders related to histamine intolerance. Nevertheless, more studies are
needed to assess the clinical significance of the determination of plasma DAO activity, as well as to
develop new diagnostic methods aimed at identifying individuals with histamine intolerance due to
DAO deficiency.

5.3. Diagnosis of Histamine Intolerance

Despite significant advances in the understanding of histamine intolerance, reaching a consensus
on a diagnostic algorithm remains a pending challenge. The nonspecificity of symptoms and lack
of validated diagnostic tools prompts many affected individuals to go “doctor shopping”; that is,
to consult several medical specialists in search of an explanation and solution for their varied
symptomatology [13,63]. In the absence of a consensual and clinically validated diagnosis, Figure 7
shows a schematic summary of the diagnostic algorithm for histamine intolerance based on the
available scientific evidence reviewed below.

The combination of diagnostic criteria currently in use includes the appearance of typical clinical
manifestations and the exclusion of other related disorders [10,13,54]. All the authors who have
proposed a diagnostic algorithm for histamine intolerance emphasize the need to initially rule out
other potential causes of symptoms associated with an increase in plasma histamine [10,13,54]. For this
purpose, it is advisable to carry out an intradermal skin allergy test (i.e., skin prick test) to discard
IgE sensitization caused by food allergy, and to measure plasma tryptase to exclude an underlying
systemic mastocytosis [10]. It is also important to know whether the patient is taking any medication
with a possible inhibitory effect on DAO activity [55]. If these conditions are negative, the appearance
of two or more typical symptoms of histamine intolerance and their improvement or remission
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after the following of a low-histamine diet (i.e., a diet excluding foods that, a priori, contain high
histamine levels) will confirm the diagnosis of histamine intolerance [10,54,96,97]. In the diet follow-up,
a thorough 24-h record of all the foods consumed and symptoms experienced is recommended in order
to establish a relationship, if any, between a food and the onset of symptoms [10,13]. The duration of
the low-histamine diet to confirm the diagnosis is not clearly stipulated, although some studies suggest
a period of 4 to 8 weeks [54,97]. In addition to the diet, testing the effect of antihistamine treatment
on symptoms has also been proposed, although its usefulness once dietary histamine is removed is
unclear [10,54].

• Presenting ≥ 2 symptoms of histamine 
intolerance

• Dismiss food allergies (skin prick test) and 
systemic mastocytosis (tryptase)

• Dismiss other concomitant gastrointestinal 
pathologies

• Dismiss DAO-inhibitor drugs

• Follow-up of a low-histamine diet (4-8 weeks)
• Thorough 24-hour record of food 

consumption and symptomatology
• Remission or improvement of symptoms

• Determination of DAO enzymatic activity in 
plasma or intestinal biopsy 

• Histamine challenge/provocation test 
• Histamine 50-skin-prick 
• Identification of genetic polymorphisms (SNPs)
• Determination of biomarkers of histamine 

metabolism in urine or stool samples

ANAMNESIS

HISTAMINE EXCLUSION

COMPLEMENTARY TESTS

Figure 7. Summary of the described approaches to the diagnosis of histamine intolerance. SNPs:
single-nucleotide polymorphisms.

Once it has been established that dietary histamine is responsible for the intolerance-associated
symptoms, the diagnosis of this disorder is virtually confirmed. A range of nonvalidated complementary
tests have also been proposed by several authors with the aim of obtaining a marker to confirm the
diagnosis [97]. However, it has to be taken into account that not all of the tests consider the different
origins of DAO deficiency (i.e., genetic, pathological or pharmacological). Thus, a genetic origin would
lead to a reduction of the DAO enzymatic activity in the whole organism. Likewise, the pharmacological
blockade of DAO would take place in all tissues where the drug is distributed after entering the systemic
circulation, although in a punctual manner upon the substance’s introduction. Lastly, the scope of a
DAO deficit due to intestinal pathologies would be limited to the local intestinal environment.

Due to the genetic background of DAO deficiency, one of the strategies for the diagnosis could be
the determination of genetic polymorphisms (SNPs) that characterize the population as genetically
susceptible to histamine [54]. Currently, there is already the possibility of performing a noninvasive
genetic analysis capable of identifying three of the SNPs associated with reduced DAO activity
(i.e., rs10156191, rs1049742 and rs1049793) from a sample of the oral mucosa, although evidence-based
studies on the diagnosis potential of this test are still needed. It is important to note that this test will
only reflect the existence of a genetic DAO deficiency.

The most studied, and possibly also the most controversial, is the determination of plasma DAO
activity. This analytical test consists of measuring the amount of histamine degraded in a blood sample
in a given time interval. Two types of commercial testing kits are currently available on the market,
one consisting of an ELISA-type immunoassay, and the other a radioimmunoassay using radioactively
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labeled putrescine [83,84]. The evidence for the validity of blood DAO activity measurements for the
diagnosis of histamine intolerance is neither abundant nor conclusive. Some studies have proposed
that determining blood DAO activity may be helpful in identifying subjects with symptoms associated
with histamine intolerance [63,83,84]. In contrast, three studies did not find a significant relationship
between the clinical history of patients with typical symptoms of histamine intolerance and blood
DAO activity values, concluding that this technique cannot be recommended as a diagnostic tool in
routine clinical practice until studies have validated its effectiveness [98–100]. Moreover, the work
performed by Schnoor et al. also reported a high interassay variation in DAO activity values that
made the proper classification of histamine-intolerant subjects impossible [100]. This controversy is
described in a joint article published in 2017 by the German and Swiss allergology societies, which
emphasizes the need for more research before giving plasma DAO activity a definitive diagnostic value
for histamine intolerance [97].

A variant of the intradermal skin allergy test called the histamine 50-skin-prick test was also
proposed by Kofler et al. to diagnose histamine intolerance [101]. In this technique, the results were
read after 50 min (as opposed to the usual 20 min) and showed that, although the size of the wheal
did not differ between the histamine intolerant and control groups, the time course was significantly
different. Patients with symptoms of intolerance showed a delayed remission of the wheal induced by
cutaneous administration of histamine, signaling a reduced degradation ability. The same results were
obtained in a study recently published by Wagner et al., who re-evaluated this skin test as a diagnostic
tool of histamine intolerance, also observing a correlation between the delay in wheal disappearance
and a lower plasma DAO activity [102].

Both the determination of plasma DAO activity and the histamine 50-skin-prick test could be
suitable tests to identify a DAO deficiency from genetic or pharmacological origin, but they would not
be useful to determine a deficit secondary to certain intestinal diseases.

On the contrary, there are certain alternatives, such as the intestinal biopsy, the histamine
provocation test or the histamine metabolomics in urine, that could make it possible to diagnose
histamine intolerance due to DAO deficiency without excluding any of the possible etiological causes.

The measurement of intestinal DAO activity by a colon biopsy during endoscopic procedures
has been studied as a possible diagnostic marker. The few available studies have shown a reduced
intestinal DAO catabolic activity in patients with recurrent urticaria, food allergy and colon adenoma,
accompanied by an increase in histamine levels [103–106]. Although this test has interesting diagnostic
potential, more studies are needed to validate its clinical significance and its relationship with the
symptoms of histamine intolerance [97]. If proven, this diagnostic test would be very adequate since this
disorder originates from a reduced ability of the intestinal DAO enzyme to cope with dietary histamine.

Histamine challenge/provocation test has also been proposed by some authors as a diagnostic
tool for intolerance, which would, at the same time, establish the individual tolerance threshold.
This double-blind, placebo-controlled test involves oral administration of histamine and requires patient
medical supervision and hospitalization. In the study by Wöhrl et al., half of the healthy volunteers
developed symptoms after the administration of a solution containing 75 mg of histamine [107].
In contrast, the results of a multicenter study by Komericki et al. using the same oral dose of histamine
indicated the challenge test was unreliable for diagnosing histamine intolerance due to a lack of
intraindividual reproducibility of symptoms after two different provocation tests [108]. The application
of this procedure is still limited because of the risk of serious adverse side effects and the absence of a
standardized dose of histamine and properly established protocol [97].

Finally, in recent years, efforts have been made to identify a noninvasive marker to establish a
solid and clinically irrefutable diagnostic criterion for histamine intolerance due to DAO deficiency.
Currently, the application of metabolomics as a tool for the identification of biomarkers of histamine
metabolism in urine is also being challenged as a possible new diagnostic strategy [11]. The hypothesis
is that individuals with histamine intolerance could have a different excretion profile of histamine and
its metabolites in urine than normal individuals. For this purpose, Comas-Basté et al. have recently
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proposed a chromatographic approach that allows for determining in a fast and unequivocal manner
the urinary levels of histamine and its methylated metabolite, methylhistamine [11]. It is still necessary
to validate the potential diagnostic utility of this approach in patients with histamine intolerance,
as well as complementing the excretion profile with other histamine metabolites to obtain a more
accurate image of the possible alterations produced in this intolerance.

5.4. Treatment Approaches to Histamine Intolerance

Currently, the main strategy to avoid the symptoms of histamine intolerance is to follow
a low-histamine diet. Supplementation with exogenous DAO has recently been postulated as a
complementary treatment to enhance dietary histamine degradation in intolerant individuals who
have a deficiency of this enzyme in the intestine [109,110].

5.4.1. Low-Histamine Diet

A low-histamine or histamine-free diet has been proposed as the main strategy for the preventive
treatment of histamine intolerance [10,54,82,111]. Conceptually, these diets exclude a number of foods
that patients associate with the onset of symptoms, primarily those that may contain high levels of
histamine [82]. However, there is no a single dietary recommendation of a low-histamine diet. As it
may be seen in Table 3, there is no coincidence in all the foods excluded in the different low-histamine
diets found in the literature [10,87,91,112–118].

Table 3. Foods excluded in the different low-histamine diets found in the literature [10,87,91,112–118].

Foods Excluded by Low-Histamine Diets

<20% * 20–60% * >60% *

Milk Shellfish Cured and semicured cheese
Lentils Eggs Grated cheese

Chickpeas Fermented soy derivatives Oily fish

Soybeans Eggplant Canned and semipreserved oily fish
derivatives

Mushrooms Avocado Dry-fermented meat products
Banana Spinach

Kiwi Tomatoes
Pineapple Fermented cabbage

Plum Citrus
Nuts Strawberries

Chocolate Wine
Beer

* Percentage of low-histamine diets from the literature that exclude each foodstuff.

Histamine is widely distributed in different food categories and in highly variable concentrations, as its
accumulation is influenced by multiple factors [3,119]. In fresh foods such as fish and meat, and in some
derived products, the presence of histamine is due to a lack of freshness or an inadequately hygienic quality
of raw materials and/or production processes [31]. For this reason, meat and fish can be consumed in the
framework of a low-histamine diet, as long as their freshness is ensured. In contrast, fermented products are
systematically excluded, due to a high probability of containing histamine [31]. Other foods such as spinach,
eggplant and tomatoes should also be avoided for the same reason. In general, all these abovementioned
foods are unanimously eliminated in most published low-histamine diets (Table 3).

On the other hand, there are certain foods that a priori do not contain histamine, but that patients
associate with the appearance of symptoms. For these foods, there is much more variability when it
comes to their exclusion from low-histamine diets (Table 3). The exclusion of foods could be based on
their content of other biogenic amines, such as putrescine and cadaverine, which act as competitive
substrates for DAO and may therefore inhibit intestinal degradation of histamine if present in significant
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quantities [1,82]. Thus, the onset of symptoms after the consumption of citrus fruits, mushrooms,
soybeans, bananas and nuts may be due to high levels of other amines, specially putrescine [82].
These diets may also exclude certain foods free of histamine and with low enough concentrations of
other amines to justify their exclusion. This is the case, for example, for papayas, kiwis, strawberries,
pineapples and plums, which have been reported to trigger the release of endogenous histamine,
although the mechanism responsible has not yet been elucidated [8,13].

The effectiveness of a low-histamine diet has been demonstrated in clinical studies, which report
favorable results in terms of improvement or total remission of symptoms frequently associated with
histamine intolerance and DAO deficiency (Table 4). As shown in Table 4, over the past three decades,
various clinical studies have assessed the effect of a low-histamine diet on the evolution of various
symptoms, mainly dermatological, gastrointestinal and neurological, including cases with more than
one type. Although most studies have involved only a small group of patients (a mean of 38 per study,
with a minimum of 10 and maximum of 157), they report an efficacy rate for the diet ranging from
33% to 100%. Specifically, 10 of the 13 studies reviewed found an improvement in symptoms in more
than 50% of patients who followed the diet; two studies show success rates of less than 50% (33%
and 46%), and only one did not observe any beneficial effects (Table 4). Most of the studies involved
patients with dermatological symptoms, primarily chronic idiopathic urticaria, atopic dermatitis and
eczema. In this field, a recent systematic literature review included a total of 1668 patients with
chronic urticaria undergoing different exclusion diets, including low-histamine, pseudoallergen-free
(i.e., without preservatives and artificial colors present in processed foods or aromatic compounds
from certain natural products) and fish exclusion diets [120]. Overall, following any of the exclusion
diets resulted in the total or partial remission of symptoms in 4.9% and 37.5% of patients, respectively.
A low-histamine diet for an average of 3 weeks resulted in one of the highest remission rates. Despite
the promising results of a low-histamine diet for the treatment of dermatological conditions, scientific
societies of dermatology still consider this exclusion diet of unproven utility pending randomized,
double-blind, placebo-controlled clinical trials to confirm its effectiveness [121].

In general, the duration of the dietary treatment considered in the different clinical studies ranges
from 3 to 4 weeks, and no positive relationship could be established between a longer duration and
the success rate in symptom remission (Table 4). As may also be seen in this table, some studies have
also assessed the effect of diet on other variables, such as plasma histamine levels or plasma DAO
activity [83,85–87,112,122,123]. Regarding DAO activity, the studies published by Steinbrecher et al.,
Maintz et al., Mušič et al. and Lackner et al. all point out an increase in plasma enzymatic activity in
more than 50% of patients after the dietary intervention, although no explanatory hypothesis has been
yet suggested [83,85,86,123]. In contrast, Guida et al., Wagner et al. and Son et al. reported no changes
in serum DAO activity [87,112,122]. The inconsistency of these data highlights the need to develop
more research in this specific field before conclusions can be drawn.

Table 4. Clinical studies on the efficacy of a low-histamine diet for the treatment of symptoms of
histamine intolerance.

Design and Outcomes
of the Study

Number of Patients and
Symptoms Duration

Percentage of Patients with
Improvement in the Study

Outcomes
Reference

Prospective study with
evaluation of the
evolution of the

symptomatology

28 patients with chronic
headache and 17 with

other dermatological and
respiratory symptoms

4 weeks
68% reduction in chronic

headache and 82% reduction
in other symptoms

[124]

Prospective study with
evaluation of the

evolution of symptoms,
plasma histamine levels

and DAO activity

10 patients with chronic
idiopathic urticaria and 19

control individuals
3 weeks

100% reduction in
symptoms, 100% reduction
in plasma histamine and no

changes in DAO activity

[122]
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Table 4. Cont.

Prospective study with
evaluation of the

evolution of symptoms,
plasma histamine levels

and DAO activity

35 patients with headache
and other symptoms

(urticaria, arrhythmia,
diarrhea and asthma)

4 weeks

77% reduction in symptoms,
73% increase in DAO

activity and no changes in
plasma histamine levels

[85]

Prospective study with
evaluation of the

evolution of symptoms
and DAO activity (in five

of the patients)

17 patients with DAO
deficiency, atopic eczema

and other symptoms
(headache, flushing and

gastrointestinal
symptoms)

2 weeks
100% reduction in symptoms
and 60% (three out of five)
increase in DAO activity

[86]

Prospective study with
evaluation of the

evolution of symptoms
and the use of

antihistamine drugs

13 patients with chronic
idiopathic urticaria and 35
control patients (without

diet)

4 weeks
Lack of improvement in

symptoms and no changes
in the use of antihistamines

[125]

Prospective study with
evaluation of the
evolution of the

symptomatology

36 patients with atopic
dermatitis and 19 control

individuals
2 weeks 33% reduction in symptoms [88]

Prospective study with
evaluation of the
evolution of the

symptomatology and
DAO activity

20 patients with DAO
deficiency and
dermatological,

gastrointestinal and
respiratory symptoms

6–12 months
100% reduction in

symptoms and 100%
increase in DAO activity

[83]

Retrospective study with
evaluation of the
evolution of the

symptomatology

16 pediatric patients with
diffuse abdominal pain,

diarrhea, headache,
vomiting and rash

4 weeks 100% reduction of symptoms [91]

Prospective study with
evaluation of the
evolution of the

symptomatology

16 pediatric patients with
chronic abdominal pain

and DAO deficiency
4 weeks 88% reduction of symptoms [92]

Retrospective study with
evaluation of the
evolution of the

symptomatology

157 patients with chronic
idiopathic urticaria 4 weeks 46% reduction of symptoms [126]

Prospective study with
evaluation of the
evolution of the

symptomatology and
DAO activity

56 patients with chronic
idiopathic urticaria and

gastrointestinal symptoms
3 weeks

75% reduction in symptoms
and no changes in DAO

activity
[87]

Prospective study with
evaluation of the

evolution of symptoms,
plasma histamine levels

and DAO activity

22 patients with chronic
idiopathic urticaria 4 weeks

100% reduction in
symptoms, 100% reduction
in plasma histamine levels

and no changes in DAO
activity

[112]

Retrospective study with
evaluation of the
evolution of the

symptomatology and
DAO activity

63 patients with
gastrointestinal symptoms 7–18 months

79% reduction in symptoms
and 52% increase in DAO

activity
[123]

5.4.2. Exogenous DAO Supplementation

Similar to the current treatment for lactose intolerance, the possibility of oral supplementation with
exogenous DAO has been proposed by several authors to facilitate dietary histamine degradation [13,127].
Improving intestinal DAO activity would allow a less restrictive diet, which could include foods with
a tolerable dose of histamine [10,61]. In this context, in the update of the official list of novel foods in
2017, the European Commission gave the green light to the marketing of a DAO supplement as food
supplement or as food for special medical purposes [128]. Specifically, European regulations authorize
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the formulation of porcine kidney protein extract with an enteric coating to ensure its integrity during
its passage through the gastric environment [128]. In this specific regulation, the minimum DAO
enzymatic capacity required for the supplement is determined through a radio extraction assay (REA).
This technique, based on the radioactive labeling of putrescine and the scintillation counting of its
consumption, is advantageous in terms of rapidity and sensitivity, but it was mainly conceived to
be applicable to serum samples. Comas-Basté et al. have recently developed a rapid and reliable
methodology through ultra-high performance liquid chromatography and fluorimetric detection
(UHPLC-FL) for the in vitro determination of DAO activity specifically for the analysis of unpurified
complex matrixes, such as porcine kidney extract and DAO supplements [129]. This methodological
approach is based in the direct determination of histamine degradation and overcomes certain
drawbacks in terms of matrix interferences and handling of radioactive materials.

Porcine kidneys are the main source of DAO enzyme, according to the literature. Several studies
have demonstrated the capacity of this product to degrade histamine and other biogenic amines
in vitro [57,129–133]. A wide variability of the DAO capacity of porcine kidney extracts has been
reported (with values ranging from 0.1 to more than 100 mU/mg), depending on the purification grade
applied to the matrix and/or the amine compound used as the reaction substrate [57,129–133]. In fact,
many of these works sought the selective purification of the DAO enzyme to design biosensors for the
biorecognition of biogenic amines as indicators of freshness in foods [134]. More recently, two studies
have been published specifically focused in investigating the in vitro DAO activity of porcine kidney
protein extract expressly used as active ingredient to formulate food supplements for the preventive
treatment of histamine intolerance [129,130]. Comas-Basté et al. studied the in vitro enzymatic activity
of 13 different production batches of porcine kidney protein extract used in the elaboration of food
supplements, reporting a low influence of the raw material (porcine kidney) on the DAO activity of the
extract, with a mean value of 0.23 ± 0.01 mU/mg [129]. Later, Kettner et al. obtained a porcine kidney
crude extract with an in vitro DAO activity of 0.5 ± 0.06 mU/mg, and described a 10-fold increase of
this enzymatic activity through the application of several consecutive purification steps [130].

Regarding the food supplement, divergent results have also been reported, since while certain
authors discard its enzymatic capacity, DAO activity values ranging from 0.04 to 0.20 mU/mg have
also been described for different commercial products available in the market [129,130]. Overall, these
works coincide in the need to identify alternative sources to porcine kidney DAO for exogenous
supplementation in histamine-intolerant individuals.

A higher catalytic capacity of DAO enzymes of plant origin in degrading certain amino substrates
has been described by some authors in comparison with those of animal origin [129,135–137].
Specifically, the germinated sprouts of certain edible legumes have been pointed out as interesting
sources of DAO enzyme. Germination is a physiological process that has been described as capable
of increasing the DAO enzymatic capacity of sprouts by up to 250 times compared to ungerminated
seeds [61,138]. The increased presence of DAO enzyme in legume sprouts could be associated with the
importance of hydrogen peroxide, a byproduct of the deamination reaction, in the cell wall structuring,
lignification and mobilization of seed reserves during germination [139–142]. In fact, it has been
demonstrated that the germination of legume seeds for a period of 6–8 days in darkness provides the
optimal environment to maximize the DAO activity of this plant-origin matrix [61,138,143]. From a
commercial point of view, having a plant source of this enzyme would expand the target of this
novel food for the vegetarian/vegan population, as well as those with religious restrictions on the
consumption of pork products. In addition, obtaining DAO enzyme from legumes would be a practice
in accordance with the current call for action of the Sustainable Development Goals.

Nowadays, only five published intervention studies (four from the last five years) have tested
the clinical efficacy of exogenous DAO supplementation in patients with symptoms of histamine
intolerance (Table 5). Although there is some variability, the available research points to the effectiveness
of DAO supplements in reducing the appearance and intensity of symptoms. However, it is difficult to
compare the different studies, since they differ in the design, the enzyme dosage, the intervention time
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and the measurement of efficacy outcomes. Komericki et al., Manzotti et al. and Schnedl et al. assayed
the efficacy of DAO supplementation in patients with diverse symptoms associated with histamine
intolerance (gastrointestinal, cardiovascular, respiratory and dermatological and/or neurological
complaints) [84,108,109]. All three studies reported an important improvement in the intensity or
frequency of symptoms, although they involved a small study population (14, 28 and 39 patients)
and/or a reduced intervention time (from two to four weeks). Moreover, Schnedl et al. also evaluated
the changes in plasmatic DAO activity, reporting a slight increase in 61% of patients during the
intervention, which the authors linked to a possible improvement in the integrity of the intestinal
mucosa due to the supplementation [109].

Table 5. Studies on the efficacy of DAO enzyme supplementation for the treatment of symptoms of
histamine intolerance.

Design Number of Patients and
Symptoms

Duration of DAO
Supplementation Efficacy Outcomes Reference

Randomized, double-blind,
placebo-controlled,

crossover provocation study
using histamine-containing

and histamine-free tea in
combination with DAO

capsules or placebo

39 patients with
histamine intolerance

(headache and
gastrointestinal and skin

complaints)

-

Statistically significant
reduction of

histamine-associated
symptoms compared to

placebo

[108]

Retrospective study with
evaluation of the clinical

response to DAO
supplementation

14 patients with
diagnosis of histamine
intolerance (headache
and gastrointestinal,

cardiovascular,
respiratory and skin

complaints)

2 weeks
Reduction of at least one of
the reported symptoms in

93% of patients
[84]

Double-blind,
placebo-controlled,

crossover study

20 patients with chronic
spontaneous urticaria 1 month

Significant reduction of
7-Day Urticaria Activity
Score (UAS-7) and slight
significant reduction of

daily antihistamine dose

[144]

Randomized, double-blind,
placebo-controlled clinical

trial

100 patients with
episodic migraine and

serum DAO deficit
1 month

Significant decrease in the
duration of migraine

attacks and decrease in
triptans intake

[110]

Open-label interventional
pilot study

28 patients with
histamine intolerance

(gastrointestinal,
cardiovascular,

respiratory and skin
complaints) and reduced

serum DAO values

1 month of
intervention and 1
month of follow-up

Significant improvement
in frequency and intensity

of all symptoms.
61% of patients showed

slightly increase in serum
DAO values.

During the follow-up
period (without DAO
supplementation), the
symptoms sum scores

increased and DAO levels
decreased.

[109]

The clinical trials developed by Yacoub et al. and Izquierdo-Casas et al. were focused on
a single disorder related to histamine intolerance (chronic spontaneous urticaria and migraine,
respectively) [110,144]. Yacoub et al. considered 20 patients with chronic spontaneous urticaria who
showed a significant reduction in the severity of the complaint according to the Urticaria Activity
Score (UAS-7) [144]. Regarding migraines, the randomized double-blind clinical trial conducted by
Izquierdo et al. considered a larger number of patients (100 patients) and obtained a statistically
significant decrease in the duration of pain attacks with no recorded adverse side effects [110]. However,



Biomolecules 2020, 10, 1181 19 of 26

the authors did not find statistical differences when considering other research outputs, such as the
frequency and intensity of pain.

Overall, despite the promising results, more ambitious clinical studies with a rigorous experimental
design, longer treatment periods and properly sized samples are essential to establish the clinical
efficacy of this treatment.

6. Conclusions and Perspectives

Histamine intolerance is currently a clinical entity of increasing interest, which can appear due
to the intake of histamine from foods, mainly caused by a deficiency of the DAO enzyme at the
intestinal level. Novel knowledge and studies of histamine intolerance have helped clarify many of
the uncertainties that were classically associated with histamine intoxication. Etiologically, various
SNPs have been identified in the gene encoding the DAO enzyme related to lower enzyme activity.
Moreover, certain inflammatory bowel diseases that limit enzyme secretion or some DAO-inhibiting
drugs have also been identified as possible causes of DAO deficiency. This intolerance manifests
through a plethora of nonspecific gastrointestinal and extraintestinal symptoms.

The diagnosis of histamine intolerance is usually performed after ruling out allergic symptoms
and by the presence of at least two clinical manifestations and their improvement or remission
after following a low-histamine diet. Various complementary tests are currently being proposed to
improve the diagnosis of this intolerance based, among others, on determining the DAO activity
in blood or intestinal biopsy samples or on identifying genetic or metabolic urinary markers by
noninvasive techniques.

The clinical management is carried out mainly through the follow-up of a low-histamine diet,
although there is no consensus on the list of foods to be excluded. Even so, there are different clinical
studies that show the efficacy of this dietary intervention in improving the quality of life of patients
with symptoms of histamine intolerance. Oral supplementation with exogenous DAO enzyme from
porcine kidney is also being used to enhance the intestinal capacity to degrade dietary histamine.
Although few works have assayed the clinical efficacy of this preventive treatment, promising results
have been obtained so far. Research is currently also being made to identify new sources of DAO
enzyme, especially of plant origin, due to its higher catalytic capacity and other potential productive
and commercial advantages.

In this context, it is necessary to keep promoting the multidisciplinary study of this disorder,
both from basic (i.e., analytical chemistry, food science, physiology and biochemistry) and clinically
applied research, meant to increase the scientific base and the currently available diagnostic and
treatment strategies for histamine intolerance.
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25. Maršavelski, A.; Petrović, D.; Bauer, P.; Vianello, R.; Kamerlin, S.C.L. Empirical Valence Bond Simulations
Suggest a Direct Hydride Transfer Mechanism for Human Diamine Oxidase. ACS Omega 2018, 3, 3665–3674.
[CrossRef] [PubMed]

26. Smolinska, S.; Jutel, M.; Crameri, R.; O’Mahony, L. Histamine and gut mucosal immune regulation. Allergy
2014, 69, 273–281. [CrossRef]

27. Sjaastad, Ö.V. Potentiation by aminoguanidine of the sensitivity of sheep to histamine given by mouth. Effect
of aminoguanidine on the urinary excretion of endogenous histamine. Q. J. Exp. Physiol. Cogn. Med. Sci.
1967, 52, 319–330. [CrossRef]

http://dx.doi.org/10.1017/S0025727300048894
http://www.ncbi.nlm.nih.gov/pubmed/2646494
http://dx.doi.org/10.1136/bmj.1.5448.1488
http://www.ncbi.nlm.nih.gov/pubmed/14288090
http://dx.doi.org/10.1124/pr.114.010249
http://dx.doi.org/10.1093/ajcn/85.5.1185
http://dx.doi.org/10.1016/j.jpba.2017.06.029
http://dx.doi.org/10.1186/s10194-019-0984-1
http://www.ncbi.nlm.nih.gov/pubmed/30909864
http://dx.doi.org/10.1016/j.aller.2015.05.001
http://www.ncbi.nlm.nih.gov/pubmed/26242570
http://dx.doi.org/10.1007/s00775-001-0331-1
http://www.ncbi.nlm.nih.gov/pubmed/12072962
http://dx.doi.org/10.1007/s00011-017-1118-3
http://www.ncbi.nlm.nih.gov/pubmed/29164268
http://dx.doi.org/10.1016/j.abb.2013.12.022
http://dx.doi.org/10.1016/j.clinbiochem.2016.12.011
http://dx.doi.org/10.1007/s00011-017-1086-7
http://dx.doi.org/10.1007/s00011-009-2004-4
http://dx.doi.org/10.1074/jbc.M117.814244
http://dx.doi.org/10.1007/s002449900480
http://dx.doi.org/10.1021/bi9014192
http://www.ncbi.nlm.nih.gov/pubmed/19764817
http://dx.doi.org/10.1111/all.13663
http://www.ncbi.nlm.nih.gov/pubmed/30418682
http://dx.doi.org/10.1021/acsomega.8b00346
http://www.ncbi.nlm.nih.gov/pubmed/30023875
http://dx.doi.org/10.1111/all.12330
http://dx.doi.org/10.1113/expphysiol.1967.sp001918


Biomolecules 2020, 10, 1181 21 of 26

28. Sattler, J.; Häfner, D.; Klotter, H.J.; Lorenz, W.; Wagner, P.K. Food-induced histaminosis as an epidemiological
problem: Plasma histamine elevation and haemodynamic alterations after oral histamine administration and
blockade of diamine oxidase (DAO). Agents Actions 1988, 23, 361–365. [CrossRef]

29. Klocker, J.; Mätzler, S.A.; Huetz, G.-N.; Drasche, A.; Kolbitsch, C.; Schwelberger, H.G. Expression of histamine
degrading enzymes in porcine tissues. Inflamm. Res. 2005, 54 (Suppl. 1), S54–S57. [CrossRef]

30. FAO (Food and Agriculture Organization of the United Nations); WHO (World Health Organization). Public
Health Risks of Histamine and other Biogenic Amines from Fish and Fishery Products. Meeting Report; World Health
Organization: Geneva, Switzerland, 2013.

31. Bover-Cid, S.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Processing Contaminants:
Biogenic Amines. In Encyclopedia of Food Safety; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2,
pp. 381–391. ISBN 9780123786128.

32. Vidal-Carou, M.C.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.L.; Bover-Cid, S. Biogenic Amines: Risks
and Control. In Handbook of Fermented Meat and Poultry; Toldrá, F., Hui, Y., Astiasarán, I., Sebranek, J.,
Talon, R., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2014; pp. 413–428. ISBN 9781118522653.

33. Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474.
[CrossRef]

34. Gardini, F.; Özogul, Y.; Suzzi, G.; Tabanelli, G.; Özogul, F. Technological factors affecting biogenic amine
content in foods: A review. Front. Microbiol. 2016, 7. [CrossRef]

35. Latorre-Moratalla, M.L.; Bover-Cid, S.; Bosch-Fusté, J.; Vidal-Carou, M.C. Influence of technological conditions
of sausage fermentation on the aminogenic activity of L. curvatus CTC273. Food Microbiol. 2012, 29, 43–48.
[CrossRef]
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