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Abstract: Cognition is a crucial element of human functionality. Like any other physical capability,
cognition is both enabled and limited by tissue biology. The aim of this study was to investigate
whether oxygen is a rate-limiting factor for any of the main cognitive domains in healthy young
individuals. Fifty-six subjects were randomly assigned to either increased oxygen supply using
hyperbaric oxygen (two atmospheres of 100% oxygen) or to a “sham” treatment (a simulation of
increased pressure in a chamber with normal air). While in the chamber, participants went through
a battery of tests evaluating the major cognitive domains including information processing speed,
episodic memory, working memory, cognitive flexibility, and attention. The results demonstrated that
from all evaluated cognitive domains, a statistically significant improvement was found in the episodic
memory of the hyper-oxygenized group. The hyper-oxygenized group demonstrated a better learning
curve and a higher resilience to interference. To conclude, oxygen delivery is a rate-limiting factor for
memory function even in healthy young individuals under normal conditions. Understanding the
biological limitations of our cognitive functions is important for future development of interventional
tools that can be used in daily clinical practice.
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1. Introduction

Cognition, “the mental action or process of acquiring knowledge and understanding through
thought, experience, and the senses,” [1] is crucial for human functionality. Cognition is the sum of
different aspects of intellectual domains such as attention, memory and working memory, processing
speed, cognitive flexibility, and executive functions. Similar to any other physical capability, cognition
is both enabled and limited by tissue biology, in this case, brain biology. Most research on the biology
of cognition relates to pathophysiological conditions and how they cause cognitive decline, and less is
known about the biological rate-limiting factors that prevent us from enhancing cognitive functions.
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In this study, we challenged the different cognitive domains to evaluate whether, in normal healthy
brains, oxygen delivery is a rate-limiting factor preventing enhanced cognitive performance.

The brain has unique thermodynamic characteristics. It comprises about 2% of the body’s total
weight, yet it utilizes about 20% of the total oxygen supply and consumes about 30% of the body’s
total energy. At normal oxygen (normoxic) conditions, oxygen is continuously consumed by the brain
tissue, and brain tissue oxygenation (PbTO2) values range from a maximal intra-capillary 90 mmHg
to less than 30 mmHg [2]. At any given moment, the brain utilizes all oxygen delivered, and the
perfusion differentially changes based on neuronal activity, as demonstrated and utilized by functional
MRI. When neurons become active, local blood flow to those brain regions increases at the expense of
other less active brain regions [3]. Apparently, since oxygen is a limited resource, many neurological
functions are regularly activated at suboptimal levels. Therefore, it is safe to assume that cognition is
another such affected function.

Data relating to the dependency of different cognitive functions on brain oxygenation have been
mostly gathered from pathologic conditions [4,5]. Previous research on hypoxia has demonstrated a
decline in cognitive function when oxygen’s partial pressure goes below 50 mmHg [6]. In such cases,
there is a decline in memory performance [7,8], attention skills [9], working memory [10], and executive
functions [11].

Very few studies have investigated data on the immediate effects of increasing oxygen delivery
to the brain (hyperoxia) on cognitive function. Scholey et al. demonstrated that a short period of
hyperoxia, induced up to five minutes prior to learning a set of words, can enhance later word recall [12].
Chung et al. have demonstrated that doubling the breathing oxygen concentration to 40% oxygen
administration leads to increases in the N-back task performance [13]. In addition, in a previous study,
we demonstrated that oxygen is indeed a rate-limiting factor for performing a multitask paradigm
(motor + cognitive tasks) [14].

The aim of the current study was to investigate whether significant hyperoxia can enhance major
cognitive domains in healthy young people.

2. Materials and Methods

The study was a prospective, randomized, sham-controlled trial, conducted at the Sagol Center for
Hyperbaric Medicine and Research at the Shamir Medical Center, Israel. The protocol was approved by
the Shamir Institutional Review Board (0031-17-ASF) and was registered in the US National Institute
of Health Clinical Trails, registry number NCT04358796. All participants signed an informed consent
form prior to their inclusion.

2.1. Participants

The study included healthy volunteers, between the ages of 20 and 39 years old. Candidates
were recruited via notification in social media (i.e., Facebook groups for students). Candidates were
excluded if they had any chronic disease, any history of brain insult such as traumatic brain injury,
stroke, encephalitis or meningitis, any change in their cognitive or behavioral functions in the month
prior to their inclusion, any chest pathology or lung disease incompatible with pressure changes, any
ear or sinus pathologies incompatible with pressure changes, if they were treated by hyperbaric oxygen
therapy (HBOT) for any reason prior to study enrollment, or if they were not able to read and sign the
informed consent form.

2.2. Protocol

After signing the informed consent form, participants were randomized, according to a
randomization table, to perform the cognitive tasks in one of two environments within a multiplace
hyperbaric chamber (HAUX-STARMED 2700/5): (a) HBOT group—the chamber environment was
compressed to 2 absolute atmospheres (ATAs), and participants breathed 100% oxygen by personal
mask while doing the cognitive tests; (b) sham group—participants breathed 21% oxygen at 1 ATA
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(normal air). To simulate the pressure sensation, the chamber was compressed to 1.1 ATA during the
first five minutes of the session with the noise of circulating air, and then decompressed gradually
during the next 15 min to 1.0 ATA. In the last five minutes of the session, circulating air noise was used
to simulate decompression. In order to avoid the training effect, the paradigm was administered only
once without crossover between the interventions.

2.2.1. Training Session

Prior to the evaluation session, to minimize learning effects and familiarize the participants with
the trial’s cognitive tasks, all participants attended a training session. All task instructions were
reviewed and participants practiced them in a normal environment of 1 ATA, breathing room air.

2.2.2. In-Chamber Evaluation Procedure

Both groups were tested following compression/sham compression and after 20 min of wearing a
mask to allow adjustment to the environment. Tests were administered simultaneously to the two
groups, in two separated chambers, using the same audio-recorded instructions. Subjects performed
the tasks using paper and pencil. Tests were scored by two blinded research assistants (T.H.F. and D.Y.).

2.3. Outcome Measures

Cognitive function was evaluated using a battery comprising eight tests producing objective
measures of accuracy and response time (see Table 1). The battery was designed to fit a highly
functioning group of participants wearing masks. The evaluated cognitive domains included the
following:

• Working memory:

# Auditory N-back test—In this test, the participants listened to a sequence of stimuli and
were required to state whenever the presented stimulus matched the one preceding “n”
steps earlier in the sequence. In the classic auditory N-back test, the participant hears
a sequence that consist of letters. The N-back task captures the active part of working
memory when N ≥ 2 [15]. In the current paradigm, we played a recording of six 20-digit
strings read out loud at a constant pace. In the first stage, the instructions were to note
whenever there was N = 1 repetition (i.e., “1”—“1”). In the second stage, the instructions
were to note whenever there was N = 2 repetition (i.e., “1”—“3”—“1”). The accuracy score
reflected the percentage of correctly traced repetitions out of the total repetitions from the
second stage sequences. The number sequences were randomized using MATLAB version
7.10.0 (R2010a, The MathWorks Inc., Natick, MA, USA), while maintaining a rule that in
each sequence there will be valid repetitions at a 1:3 probability.

# Digit-span test—In this test, a list of random numbers was read out loud at the rate
of one per second. Subjects were asked to write as many digits as they recalled from
each string. There were two versions of this test. In the forward version, the subjects
recalled the sequence in the order that it was read. In the backward version, the subjects
recalled the sequence in reverse order (i.e., from the last to first number read). Standard
administration of the test started with a three-digit sequence and ended after the subject
made two consecutive errors [16]. In the current research, we opted to prevent ceiling
effects. Therefore, the initial sequence included seven digits in the forward version and
five digits in the backward version. The test followed a standard procession in which there
were two trials for each sequence length, and the subjects were required to recall them all
until the test ended at sequence length = 10 in the forward test and sequence length = 8 in
the backward test. Two scores were given for each version of the test. The “span score” is
the highest sequence length correctly recalled. The “accuracy score” is the sum of digits
correctly recalled in their position, across the whole test, regardless of the accuracy of the
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full sequences. To construct this test, random number sequences were generated for each
sequence length.

• Divided attention: In this test, the subjects were instructed to divide attention between a visual
search task (i.e., searching for the cluster 1-7-4 and circling all of its occurrences, among a long
string of randomized numbers) and an auditory tracing task (i.e., recognizing verbally presented
words containing the Hebrew letter “
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• Cognitive flexibility: In this test, subjects had to solve an augmented Stroop-like paradigm. 
Stroop tasks require subjects to inhibit their response to an attribute of the stimuli to attend to a 
competing attribute of the stimuli. The traditional Stroop-test requires the subject to neglect the 
content attribute of a word stimulus (e.g., “green”) to attend to the color attribute of the word 
(e.g., red font). The Stroop test is known to measure “response inhibition” [19]. In the current 
version of the test, subjects were shown colored arrows, either on the left or the right side of the 
page, either pointing to the left or to the right, with a “color name” written in the middle. The 
“color name” font color contradicted the color of the arrow (see Figure 2). The subjects had to 
attend either to the side of the page the arrow was on (“side”), to the direction the arrow pointed 
(“direction”), or to the color of the font of the word written on the arrow (“color”). The 
instructions changed intermittently between trials, and the test was timed (five minutes). The 
target score was the sum of correct responses.  
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The test ended when all of the words were verbally presented (using a prepared recording).
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• Episodic memory: In this test, subjects were required to pass a version of the California verbal
learning test (CVLT) [17], which is a widely used episodic memory test. The test procedure
consisted of two parts: (1) immediate learning—hearing a list of 16 nouns that are drawn from four
semantic categories (i.e., fruits, clothes, etc.) and recalling as many words as possible immediately
afterward. The order of words in the list was randomized. The list was read for a second time
(after re-randomization of words). The score for this part is the sum of words retrieved in both
trials. (2) Interference—recalling words from a second list of 16 nouns and then, once again,
retrieving words from the initial list (without another exposure). The score for this part is total
number of words recalled from the first list after interference.

• Cognitive processing speed: In this test, subjects solved a symbol search paradigm known to be a
valid measure of cognitive processing speed in healthy older adults [18]. The assignment was
time-limited and lasted five minutes. For each trial, two target symbols were presented on the left
side of the paper. The subjects had to decide whether one of the two targets appeared in a series
of five shapes on the right (shapes could reappear on the right in different sizes and/or different
orientations) (see Figure 1). The score for this test is the sum of the correct responses.

• Cognitive flexibility: In this test, subjects had to solve an augmented Stroop-like paradigm.
Stroop tasks require subjects to inhibit their response to an attribute of the stimuli to attend to a
competing attribute of the stimuli. The traditional Stroop-test requires the subject to neglect the
content attribute of a word stimulus (e.g., “green”) to attend to the color attribute of the word
(e.g., red font). The Stroop test is known to measure “response inhibition” [19]. In the current
version of the test, subjects were shown colored arrows, either on the left or the right side of
the page, either pointing to the left or to the right, with a “color name” written in the middle.
The “color name” font color contradicted the color of the arrow (see Figure 2). The subjects had to
attend either to the side of the page the arrow was on (“side”), to the direction the arrow pointed
(“direction”), or to the color of the font of the word written on the arrow (“color”). The instructions
changed intermittently between trials, and the test was timed (five minutes). The target score was
the sum of correct responses.

• Executive function (problem-solving): In this test, participants were required to solve an arithmetic
series and trace irregular elements embedded in them, a task that is known to reflect executive
functions (problem-solving) [20]. In the simple series part, subjects were given three minutes to
solve up to 27 series. In the complex series part, they were given three minutes to solve up to
27 complex series, each composed of two interlocked series (see Figure 3). The score comprised
the number of correct responses in each part.
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Table 1. Domains and measures used in the study.

Domain Test Primary Outcome Measure

Working memory N-back Percentage accuracy
Digit span Span score; accuracy score

Divided attention Multi-task Percentage accuracy
Episodic memory Word lists Sum immediate retrieval; retrieval after interference

Cognitive processing speed Symbol search Sum accuracy
Cognitive flexibility Stroop Sum accuracy

Problem solving Arithmetic Sum accuracy
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2.4. Statistical Analyses

The data were analyzed using SPSS v.27. The results of the HBOT group were compared to those
of the sham group using an independent t-test (for two samples). An FDR (False Discovery Rate)
correction for multiple comparisons was performed. The effect size was calculated using Cohen’s D.
The statistical significance was defined as p < 0.05 for all statistical analyses.
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3. Results

Sixty-two subjects signed the informed consent form and were randomized to either study group.
Out of the 62, 5 did not perform an in-chamber test and were excluded: 1 had intercurrent disease
that prevented him from going into the chamber and 4 lost interest after the training session. Another
subject did not complete the tests in the chamber. Accordingly, 56 individuals were included in the
final analyses, 27 subjects in the HBOT group and 29 in the sham group (see Figure 4).
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The baseline characteristics are presented in Table 2.

Table 2. Baseline characteristics.

HBOT (N = 27) SHAM (N = 29) p Value

Mean Age (Stdev) 27.92 ± 4.77 26.96 ± 3.95 0.41
Years of Education (Stdev) 15.36 ± 2.11 14.64 ± 1.7 0.178

Gender (% Females) 59% 45% 0.28

Differences between groups in “Mean Age” and “Years of Education” were calculated using an unpaired t-test.
Differences between groups in “% females” were calculated using the chi-square test.

The mean age of the participants was 27.42 ± 4.35; 51.7% were female and the average number
of years of education among them was 14.98 ± 1.92. There was no significant difference in any of
the participants’ characteristics between the two groups (see Table 2). The cognitive test results are
summarized in Table 3. The learning curve, as demonstrated by the total number of words recalled
from a list of words read repetitively, significantly improved while breathing hyperbaric oxygen in
comparison to subjects from the sham group. Subjects from the HBOT group recalled significantly
more words in total compared to the sham group (t = 4.76, p < 0.03), although this result did not
withstand the FDR correction. The most notable difference between the groups was in memory decay.
Participants in the HBOT group were less vulnerable to memory decay, as indicated by their preferable
retrieval rates after distraction (i.e., a trial in which they had to memorize and recall a new set of
words) (t = 15.1, p < 0.001). Cohen’s D revealed a strong effect size (0.85) indicating that the significant
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difference between the experimental groups was also clinically valuable. There was no other significant
difference in any of the other evaluated cognitive parameters (see Table 3).

Table 3. Cognitive domains results.

Cognitive Domain HBOT (N = 27) SHAM (N = 29) t-Test (p) FDR (p) Effect Size (Cohen’s D)

Digit span (forward: highest correct) 7.78 (1.5) 7.46 (0.85) 0.37 0.55 0.26
Digit span (forward: overall correct) 41.3 (11.98) 38.27 (6.55) 0.25 0.75 0.31

Digit span (backward: highest correct) 7.34 (1.52) 6.85 (1.81) 0.28 0.67 0.29
Digit span (backward: overall correct) 40.85 (10.62) 42 (9.04) 0.66 0.79 0.12

Stroop (% correct) 59.03 (15.39) 62.96 (15.99) 0.35 0.6 0.25
Multi-tasking (% total accuracy) 66.6 (7.97) 64.24 (8.47) 0.29 0.58 0.29

Symbol search (no. correct) 31.66 (6.3) 33.03 (8.47) 0.49 0.65 0.18
N-back (% correct) 91.19 (9.57) 90.42 (10.05) 0.76 0.83 0.08

Series simple (no. correct) 15.3 (5.9) 15.27 (5.48) 0.98 0.98 0.00
Series complex (no. correct) 12 (4.51) 13.41 (4.35) 0.23 0.92 0.32

CVLT (total correct) 22.4 (2.96) 20.51 (3.75) 0.04 0.24 0.54
CVLT (no. of words—post interference) 11.33 (2.3) 9.03 (2.93) 0.001 0.012 * 0.85

Bold—p < 0.05; *—Satisfies FDR (False Discovery Rate) corrections. (Stdev in parentheses).

4. Discussion

In this study we evaluated whether oxygen delivery serves as a rate limiting factor for
any of the major cognitive domains. Fifty-six young healthy subjects were randomized to an
increased-oxygenation condition in a hyperbaric oxygen chamber or to a “sham” chamber, where they
were administered a battery of cognitive tests. From all the evaluated cognitive domains, we found that
episodic memory was significantly enhanced by increased oxygen delivery. The learning curve,
as demonstrated by the total number of words recalled from a list of words read repetitively,
was significantly improved while breathing hyperbaric oxygen compared to subjects from the
sham conditions. Subjects in the hyper-oxygenated group were also able to preserve more words
following an interference. None of the other measured cognitive domains was enhanced by increased
oxygen delivery.

Episodic memory, the human capacity to remember past events (i.e., places, figures, discussions,
emotions, etc.), is essential for an experience of continuity that is foundational to personal identity. In a
sense, “fine-grained” episodic memory is one of the hallmarks of humanity. Episodic memory involves
a complex network encompassing multiple brain regions that are highly dependent on oxygen delivery
(i.e., the PFC (Pre Frontal Cortex) and the parietal and medial temporal lobe (MTL) regions) [21]. In its
essence, the episodic memory circuit requires higher-association areas to process the sensory information
(the neocortex), interface areas to communicate with the hippocampus (the parahippocampal region),
the hippocampus to integrate and retrieve information about the episode, and executive areas to
produce the appropriate behavior (the prefrontal cortex) [22]. Specifically, the hippocampus, with its
related structures in the medial temporal lobe (MTL), is crucial for episodic memory [23]. Inputs from
the entorhinal cortex and the perirhinal cortex indicate that complex object relations are integrated in
the hippocampus, where their representations are preserved [24]. Any decline in oxygen delivery has
significant effects on the hippocampus and memory function [25–27]. Accordingly, episodic memory is
not a steady trait and is very sensitive to environmental and/or physiological changes [28,29]. Episodic
memory is the most age-sensitive system, with an average onset of decline around 60 years of age [23,30].
Notably, the results of this study indicate that memory function is a continuum that does not reach its
maximal ceiling effect at the normal sea-level environment, even in healthy young individuals.

Episodic memory, along with semantic memory, comprises the category of explicit memory, one of
the two major divisions of long-term memory (the other being implicit memory). The understanding
that oxygen is a rate-limiting factor for episodic memory even in healthy young adults and the insight
that memory can be further enhanced by being in a hyper-oxygenized environment may explain why
repressed memories can be recovered during hyperbaric oxygen therapy (HBOT). There is cumulative
evidence that patients coming to HBOT recover long-term repressed traumatic memories, and in some
of the hyperbaric centers, recovery of repressed memory was added as a potential side effect to the
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informed consent form [31]. Surfacing of inaccessible memories can be crucial for treating diseases
like PTSD and other amnestic conditions where knowing the history is essential. Understanding the
biology responsible for our ability to recall specific experiences and understanding that this ability can
be enhanced by HBOT gives us a powerful tool that can be used for those who need it.

The finding that not all cognitive measures are improved by oxygen administration is in agreement
with results from other studies. For example, the level of working memory on a computerized test
was unaffected by oxygen administration [12,32]. Hyperoxia had no effect on forward or backward
digit span performance [12]. The main potential claim against those previous studies could be that the
oxygen delivery was not increased enough to conclude that oxygen is not a limiting factor for the other
cognitive functions. However, in the current study, oxygen delivery was significantly increased by the
use of hyperbaric oxygen compressed to 2 ATAs while breathing 100% oxygen (more than a 15-fold
increase in partial pressure of blood oxygenation), and these results hold. This means that oxygen is
not the limiting factor for all cognitive domains.

This study had several limitations that should be noted. First, the relatively homogenous sample
comprised highly educated subjects with high performance could make it harder to detect significant
differences. It is possible that inclusion of a more diverse set of subjects (i.e., diverse levels of education
and/or different cultural backgrounds) would lead to different results. Second, the cognitive tests
included several adjustments needed for a chamber setting. It is important to note though that the
cores of all versions were based on well-validated paradigms. The small adjustments were made
to fit a cohort of healthy and high-functioning individuals having the tests done in a group context,
inside an oxygen chamber (i.e., with masks on their faces). Third, even though the protocol included
a significant increase in oxygen delivery by the use of a hyperbaric chamber, it is still possible that
a longer duration of exposure or higher oxygen pressure would result in different findings. Fourth,
although the results demonstrate an elevation in memory performance, it is not clear whether these are
due to a better encoding of the verbal information or a better process of consolidation. Further studies
and other paradigms (i.e., [33]) should be used to figure this out.

5. Conclusions

Oxygen delivery is a rate-limiting factor for episodic memory even in healthy young individuals
at normal sea-level conditions. Understanding the biology behind cognitive functions and the ability
to enhance them may serve as an interventional tool that can be used in daily clinical practice.
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