Supporting Information

for

Triapine Derivatives Act as Copper Delivery Vehicles to Induce Deadly Metal Overload in Cancer Cells

Kateryna Ohui,^{a,#} Iryna Stepanenko,^{*,a,#} Iuliana Besleaga,^a Maria V. Babak,^{b,c} Radu Stafi,^a Denisa Darvasiova,^d Gerald Giester,^e Vivien Pósa,^{f,g} Éva A. Enyedy,^{f,g} Daniel Vegh,^h Peter Rapta,^d Wee Han Ang,^{b,c} Ana Popović-Bijelić,ⁱ Vladimir B. Arion^{*,a}

^aUniversity of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria

^bDepartment of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore

^cDrug Development Unit, National University of Singapore, 28 Medical Drive, 117546 Singapore

^dInstitute of Physical Chemistry and Chemical Physics, Slovak Technical University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic

^eUniversity of Vienna, Department of Mineralogy and Crystallography, Althan Strasse 14, A-1090 Vienna, Austria

^fDepartment of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary

^{*g}</sup>MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged,* Dóm tér 7, H-6720 Szeged, Hungary</sup>

^hInstitute of Organic Chemistry, Catalysis and Petrochemistry, Department of Organic Chemistry, Slovak Technical University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic

ⁱFaculty of Physical Chemistry, University of Belgrade, 11158 Belgrade, Serbia

[#] both co-authors contributed equally

* corresponding author: vladimir.arion@univie.ac.at; iryna.stepanenko@univie.ac.at

Content

Synthesis of HL ^{1a} along with synthetic pathway (Scheme S1)	S 3
Tautomeric forms of \mathbf{HL}^1 and \mathbf{HL}^2 (Scheme S2)	S 4
Atom numbering used for assignments in 1D and 2D NMR spectra of HL^1	
and HL ² (Scheme S3)	S 4
The tautomeric forms of \mathbf{HL}^2 in solution (Scheme S4)	S 4
Preparative HPLC trace of $[Cu(HL^1)Cl_2]$ (1) (Figure S1)	S 5
ESI mass spectra of $1 \cdot H_2O$ after HPLC (Figure S2)	S 5
Positive ion ESI mass spectrum of $3.0.75H_2O$ (Figure S3)	S 6
The structure of the cation $[H_3L^{1a}]^{2+}$ in $[H_3L^{1a}]Cl_2 \cdot 2H_2O$ (Figure S4)	<mark>S6</mark>
pH-potentiometric titration curves for HL² (Figure S5)	S 7
UV <mark>-Vis</mark> spectra of HL¹ recorded at various pH values (Figure S6)	S <mark>7</mark>
Time dependence of the measured spectra of HL^2 at various pH values (Figure S7)	S 8
Time dependence of the measured spectra of HL^1 at various pH values (Figure S8)	S 9
Time-dependent UV–Vis spectra of (a) HL^1 and (b) HL^2 at pH 2.6 (Figure S9)	S 9
Time-dependent UV–Vis spectra of (a) 1 and (b) 2 at various pH values (Figure S10)) S10
Concentration-effect curves for HL ¹ , HL ² and 1–3 (Figure S11)	S10
UV-Vis spectra of (a) 1 and (b) 2 in the presence of 120 equiv GSH (Figure S12)	S11
EPR spectra of DMPO spin-adducts (Figures S13 and S14)	S11, S12

Synthesis of HL^{1a}: To 3-*N*-(*tert*-butyloxycarbonyl)amino-2-pyridinecarboxaldehyde (210 mg, 0.945 mmol) and 2-pyridinamidrazone (128.65 mg, 0.945 mmol) in ethanol/water (3/1, 8 mL) 12M HCl (0.173 mL, 2.08 mmol) was added dropwise. The resulting solution was stirred at room temperature for 2 h, then additional amount of 12M HCl (0.173 mL, 2.08 mmol) was added and the reaction mixture heated overnight at 85 °C to produce a yellow suspension. The yellow precipitate of [H₃L^{1a}]Cl₂·2.5H₂O was collected by filtration and dried in vacuo. The raw product was neutralised with saturated NaHCO₃ until pH 7-8 to produce HL^{1a} (C₁₂H₁₂N₆, 70 mg, 0.29 mmol, yield 31%). From the first filtrate (before neutralization) the yellow needle-like crystalline product of [H₃L^{1a}]Cl₂·2H₂O of X-ray diffraction quality was isolated. Anal. Calcd for [H₃L^{1a}]Cl₂ 2.5H₂O (Mr = 358.22), %: C, 40.23; H, 5.35; N, 23.46. Found, %: C, 40.17; H, 5.26; N, 23.32. Anal. Calcd for HL^{1a}·0.1H₂O ($M_r = 242.07$), %: C, 59.54; H, 5.08; N, 34.72. Found, %: C, 59.63; H, 4.94; N, 34.39. ¹H NMR (HL^{1a}, 500 MHz, DMSO-d₆), δ , ppm: 8.86 (s, 1H), 7.95 (d, J = 2.9 Hz, 1H), 7.43 – 6.95 (m, 4H). ESI-MS for HL^{1a} (MeCN/MeOH+1% H₂O) positive: m/z 241.23 [HL^{1a}+H]⁺, negative: m/z 239.11 [HL^{1a}-H]⁻.

Scheme S1. Synthesis of HL¹ and HL^{1a}.

Scheme S2. The likely tautomeric forms for HL^1 and HL^2 .

Scheme S3. Atom numbering used for assignments in 1D and 2D NMR spectra of HL^1 and HL^2 .

Scheme S4. The tautomeric forms of HL^2 in solution.

Figure S1. Preparative HPLC trace of $[Cu(HL^1)Cl_2]$ (1).

Figure S2. ESI mass spectra of $1 \cdot H_2O$ after HPLC.

Figure S3. Positive ion ESI mass spectrum of $3.0.75H_2O$. The peak at m/z 472.18 is attributed to $[Fe(L^2)_2]^+$.

Figure S4. The structure of the cation $[H_3L^{1a}]^{2+}$ in $[H_3L^{1a}]Cl_2 \cdot 2H_2O$. Selected bond distances (Å) and torsion angles (deg): C4–N2 1.339(4), C4–C5 1.422(5), C5–C6 1.431(5), C6–N3 1.291(4), N3–N4 1.398(4), N4–C7 1.290(4), C7–C8 1.437(5), C8–C9 1.421(5), C9–N6 1.342(4); C6–N3–N4–C7 –179.3(3). H-bond parameters: N2–H···N3 [N2···N3 2.778(4) Å, N2–H···N3 129.4°]; N6–H···N4 [N6···N4 2.772(4) Å, N6–H···N4 129.7°].

Figure S5. pH-potentiometric titration curves for **HL**²: direct (×) and back-titration (o); and for HCl (dotted line) for comparison in pure water. { $c_L = 3 mM$; T = 298 K; I = 0.10 M (KCl)}

Figure S6. UV–Vis spectra of **HL**¹ recorded at various pH values. { $c_L = 100 \ \mu M$; $T = 298 \ K$; $I = 0.10 \ M \ (KCl)$; $\ell = 1.0 \ cm$; 1% (v/v) DMSO}

Figure S7. Time dependence of the measured spectra of HL^2 at various pH values: (a) 2.2; (b) 9.8 and changes of the absorbance values (as A/A₀) at the different pH values and in pure water (without buffer and KCl, pH = 6.3) { $c_L = 100 \ \mu M$; $T = 298 \ K$; $I = 0.10 \ M \ (KCl)$; $\ell = 1.0 \ cm$; 1% (v/v) DMSO}.

Figure S8. Time dependence of the measured spectra of HL^1 at various pH values: (a) 2.0; (b) 10.0 and (c) changes of the absorbance values (as A/A₀) { $c_L = 100 \ \mu M$; $T = 298 \ K$; $I = 0.10 \ M$ (KCl); $\ell = 1.0 \ cm$; 1% (v/v) DMSO}.

Figure S9. UV–Vis spectra of (a) **HL**¹ and (b) **HL**² at pH 2.6 measured immediately (0 h) and after 24 h in addition to spectra recorded for the ligand samples kept for 0 or 24 h at pH 2.6 in the presence of 1 equiv Cu(II) ion at pH 7.4 { $c_L = 100 \ \mu M$; $T = 298 \ K$; $I = 0.10 \ M \ (KCl)$; $\ell = 1.0 \ cm$; 1% (v/v) DMSO}.

Figure S10. UV–Vis spectra of (a) **1** and (b) **2** at various pH values measured immediately upon dissolution (solid lines) and after 24 h (dashed lines) { $c_{complex} = 100 \ \mu M$; $T = 298 \ K$; $I = 0.10 \ M \ (KCl)$; $\ell = 1.0 \ cm$; 1% (v/v) DMSO}.

Figure S11. Concentration-effect curves for **HL**¹, **HL**² and **1–3** in A2780, A2780cis and HEK293 cell lines upon 72 h exposure.

Figure S12. UV–Vis spectra of (a) **1** and (b) **2** in the presence of 120 equiv GSH before (red lines) and after (black and grey lines) mixing their solutions in a tandem cuvette, and the effect of the addition of O₂ to the sample followed by the reaction (green dashed lines) $\{c_{complex} = 100 \ \mu\text{M}; \ c_{GSH} = 12.0 \ m\text{M}; \ pH = 7.40 \ (50 \ m\text{M} \ HEPES); \ T = 298 \ K; \ I = 0.10 \ M \ (KCl); \ \ell = 1.0 \ cm; 1\% \ (v/v) \ DMSO\}.$

Figure S13. EPR spectra of DMPO spin-adducts measured in the 1% (v/v) DMSO/H₂O) + DMPO + (a) **Fe(II)-(HL²)**₂ or (b) **Fe(II)-(3AP)**₂ (prepared by the reaction of the corresponding ligand with FeSO₄·6H₂O at 1:2 iron-to-ligand mole ratio) + H₂O₂ system measured on air after 2 min of reactions: Initial concentrations: $c_0(\text{Fe(II)-(HL²)}_2)$ or $c_0\text{Fe(II)-(3AP)}_2 = 0.4 \text{ mM}$, $c_0(\text{H}_2\text{O}_2) = 0.01 \text{ M}$, $c_0(\text{DMPO}) = 0.04 \text{ M}$.

Figure S14. EPR spectra of DMPO spin-adducts measured in 5% (v/v) DMSO/H₂O) + DMPO + (a) **Fe(II)-(HL²)**₂ or (b) **Fe(II)-(3AP)**₂ (prepared by the reaction of the corresponding ligand with FeSO₄·6H₂O at 1:2 iron-to-ligand mole ratio) + H₂O₂ system measured on air after 10 min of reactions: Initial concentrations: $c_0(Fe(II)-(HL^2)_2)$ or $c_0Fe(II)-(3AP)_2 = 0.4$ mM, $c_0(H_2O_2) = 0.01$ M, $c_0(DMPO) = 0.04$ M.