
biomolecules

Article

Molecular Basis of NDT-Mediated Activation of
Nucleoside-Based Prodrugs and Application in
Suicide Gene Therapy

Javier Acosta 1,† , Elena Pérez 1,†, Pedro A. Sánchez-Murcia 2, Cristina Fillat 3,4 and Jesús Fernández-Lucas 2,5,*

����������
�������

Citation: Acosta, J.; Pérez, E.;

Sánchez-Murcia, P.A.; Fillat, C.;

Fernández-Lucas, J. Molecular Basis

of NDT-Mediated Activation of

Nucleoside-Based Prodrugs and

Application in Suicide Gene Therapy.

Biomolecules 2021, 11, 120. https://

doi.org/10.3390/biom11010120

Received: 29 December 2020

Accepted: 13 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Applied Biotechnology Group, European University of Madrid, c/ Tajo s/n, Villaviciosa de Odón,
28670 Madrid, Spain; jacosta19.ja97@gmail.com (J.A.); elena.perez2@universidadeuropea.es (E.P.)

2 Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz,
Neue Stiftingtalstraße 6/III, A-8010 Graz, Austria; pedro.murcia@medunigraz.at

3 Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; cfillat@clinic.cat
4 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
5 Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC,

Calle 58 # 55-66 Barranquilla, Colombia
* Correspondence: jesus.fernandez2@universidadeuropea.es
† These authors contributed equally to this work.

Abstract: Herein we report the first proof for the application of type II 2′-deoxyribosyltransferase
from Lactobacillus delbrueckii (LdNDT) in suicide gene therapy for cancer treatment. To this end,
we first confirm the hydrolytic ability of LdNDT over the nucleoside-based prodrugs 2′-deoxy-5-
fluorouridine (dFUrd), 2′-deoxy-2-fluoroadenosine (dFAdo), and 2′-deoxy-6-methylpurine riboside
(d6MetPRib). Such activity was significantly increased (up to 30-fold) in the presence of an acceptor
nucleobase. To shed light on the strong nucleobase dependence for enzymatic activity, different
molecular dynamics simulations were carried out. Finally, as a proof of concept, we tested the
LdNDT/dFAdo system in human cervical cancer (HeLa) cells. Interestingly, LdNDT/dFAdo showed
a pronounced reduction in cellular viability with inhibitory concentrations in the low micromolar
range. These results open up future opportunities for the clinical implementation of nucleoside
2′-deoxyribosyltransferases (NDTs) in cancer treatment.

Keywords: chemotherapy; suicide gene therapy; nucleoside analogues; 2′-deoxyribosyltransferase;
structural bioinformatics; molecular dynamics

1. Introduction

According to the World Health Organization (WHO), cancer was responsible for
around 9.6 million deaths in 2018. Despite the great advances in its treatment, it is expected
that this number will nearly double in 2040 [1]. One of the first strategies in cancer treatment
was the use of nucleoside analogues as anticancer agents. In 2013, up to 13 purine and
pyrimidine antimetabolites had been approved as chemotherapeutic agents by the Food
and Drug Administration (FDA) [2]. However, the clinical use of nucleoside analogues
as therapeutic molecules is often limited due to several drawbacks, such as insufficient
drug concentrations in tumors, systemic toxicity, lack of selectivity for tumor cells, and the
appearance of drug-resistant tumor cells [3,4].

The use of enzyme prodrug therapy (EPT) can overcome these undesired effects.
Directed enzyme prodrug therapy (DEPT) involves the selective activation of non-toxic (or
with negligible toxicity) prodrug(s) in tumor tissues (or within the tumor microenviron-
ment) by exogenous enzyme(s). In this sense, this selective activation generates high local
concentrations of the toxic drug, which kills tumor cells, thereby reducing systemic toxicity.
However, getting a reasonable concentration of exogenous enzymes in tumor tissues is
the major bottleneck of DEPT therapies. In this context, two different DEPT strategies can
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be distinguished: (i) the delivery of genes which encode prodrug-activating enzymes into
the tumor cells (gene-directed enzyme prodrug therapy, GDEPT), using virus or non-virus
carriers [5,6] and (ii) the delivery of prodrug-activating enzymes in the tumor cells by
employing different carriers, such as tumor-associated monoclonal antibodies linked to
prodrug-activating enzyme (antibody-directed enzyme prodrug therapy, ADEPT) [7], or
the solid matrixes (immobilized-directed enzyme prodrug therapy, IDEPT) [8].

The major advantage of GDEPT over ADEPT or IDEPT strategies is the possibility to
express the targeted enzyme inside tumor cells. However, low efficiency in the transduction
process or in the protein expression, can be a limitation to gene delivery strategies. However,
ADEPT and IDEPT strategies are not a good alternative when the presence of a cofactor
(only present inside the cells) is needed for the catalytic reaction. The main problem of
these approaches is the difficulty of large-sized antibody–enzyme conjugates or some
immobilized enzyme derivatives to penetrate cell membranes.

The use of purine and pyrimidine salvage enzymes in GDEPT therapies (also known
as suicide gene therapies) for cancer treatment has been previously reported [9]. Several
examples of GDEPT can be found in literature, including the combined use of the bacterial
cytosine deaminase (CD) and the prodrug 5-fluorocytosine [9], the enzyme/prodrug system
thymidine phosphorylase (TP) and 5-fluorouracil (or 2′-deoxy-5-fluorouridine) [10], or the
combination of purine nucleoside phosphorylase from E. coli (EcPNP) and the prodrug
Fludarabine 6.

Nucleoside 2′-deoxyribosyltransferases (NDTs, EC 2.4.2.6), also called N-deoxyribosyl-
transferases or trans-N-deoxyribosylases, catalyze the transglycosylation reaction of the
2′-deoxyribose moiety between purine and/or pyrimidine bases (Figure 1) [11–13]. Inter-
estingly, in the absence of a second nucleobase the enzyme-glu intermediate is hydrolyzed
by a water molecule [14,15] (Figure 1).

Figure 1. Reaction scheme of NDT-mediated transglycosylation (A, B-1) and NDT-mediated hydrolysis (A, B-2).

NDTs display a strict selectivity for 2′-deoxynucleosides, but noteworthy, they show a
high promiscuity in nucleobase recognition which leads to classifying them as type I NDTs
(PDT), which catalyze the transglycosylation reaction between purine bases [12,13,16] and
type II NDTs (NDT) and which do not discriminate between purines and pyrimidines [17–19].
This makes NDTs unique catalysts for the enzymatic synthesis of diverse therapeutic nucleo-
sides [13,20–22]. However, with the sole exception of the studies of PDTs from Borrelia burgdorferi
and Trypanosoma brucei as therapeutic targets for Lyme disease [23] and sleeping sickness [24],
respectively, no previous studies have looked into the potential of NDTs in biomedicine.



Biomolecules 2021, 11, 120 3 of 11

Herein we report, for the first time, the potential application of NDT from Lactobacillus
delbrueckii (LdNDT) in suicide gene therapy for cancer treatment. To this end, firstly a
functional screening focused on the glycosidase ability of LdNDT with different natural
and non-natural nucleosides was performed. Additionally, with the aim of understanding
the differences in the specific activity of LdNDT in the presence and absence of nucleobases,
molecular dynamics studies were carried out. Finally, the LdNDT/prodrug system was
successfully tested as a cell-death inducer in human cervical cancer (HeLa) cells.

2. Materials and Methods
2.1. Materials

Cell culture medium reagents were from Difco (St. Louis, MO, USA). Triethyl am-
monium acetate buffer was purchased from Sigma-Aldrich (Madrid, Spain). All other
reagents and organic solvents were purchased from Symta (Madrid, Spain). Nucleosides
and nucleobases used in this work were provided by Carbosynth Ltd. (Compton, UK).

2.2. Enzyme Production and Purification

Recombinant His-tagged LdNDT was produced and purified as previously described [22].
The protein concentration was measured by UV280 nm spectroscopy assuming the molar
extinction coefficient of 34,380 M−1 cm−1, calculated from the amino-acid sequence.

2.3. Substrate Specificity Studies

The standard activity assay to determine NDT-mediated glycosidase activity, in the
presence and in the absence of nucleobase acceptor, was adapted from previous liter-
ature [12,13,22]. To this effect, 0.3 µg of pure LdNDT was added to a 40 µL solution
containing 5 mM 2′-deoxynucleoside (with or without the presence of 5 mM nucleobase)
in 50 mM phosphate-buffered saline (PBS) buffer, pH 7.4, for 5–20 min at 37.5 ◦C and
450 rpm. The enzymatic reaction was quenched by addition of 40 µL of cold methanol in
ice-bath and heated for 5 min at 95 ◦C. After centrifugation at 8500× g for 5 min, samples
were half-diluted with water and the presence of released nucleobase was determined and
quantitatively measured by HPLC (as described below). In such conditions, one activity
unit (U) was defined as the amount of enzyme (mg) producing 1 µmol min−1 (IU) of
released nucleobase under the assay conditions.

2.4. Computational Methods

Due to LdNDT having 98% of identity with NDT from L. leichmannii (LlNDT), we se-
lected LlNDT as the template for our molecular dynamics (MD) simulations. The Cartesian
coordinates of LlNDT in complex with its substrate, 5-methyl-2′-deoxypseudouridine cab
be found in the Protein Data Bank server (PDB id. 1F8Y) [25], were used as templates for the
complex of LlNDT with 2′-deoxy-5-fluorouridine (dFUrd), namely LdNDT:dFUrd complex,
and ribosylated LdNDTcomplex in the presence of 5-flurouracil (5-Fura) at the active site.
dFUrd was docked manually into the active site of the enzyme by means of structural
best-fit superposition onto the former nucleoside. Care was taken to protonate properly
the titratable residues at the active site using the server H++ 3.0 [26]. The ground state
geometries of the ligand, dFUrd, the ribosylated glutamic acid, Glu(dRib), 5-flurouracil,
and the two adenines tautomers (Ade7 and Ade9), were first optimized in the gas phase
and their electrostatic potentials were computed at the standard level of theory (HF/6-
31G**//HF/3-21G) and fitted to the atoms as restrained electrostatic potential (RESP)
charges using the program antechamber (AmberTools18, URL:ambermd.org). The atoms
of the substrates and of the former amino acids were described as AMBER atom types.
The leaprcff14SB force field was used in all the MD simulations. The MD simulations
were run on GPUs using the pmemd.cuda module of Amber18 in the Single-Precision-
Fixed-Precision (SPFP) mode. The LlNDT:dFUrd and ribosylated LlNDT:5-FUra complexes
were simulated as protein dimers. In the former complex, dFUrd was placed in each of
the active sites; in the latter complex, Glu(dRib) was placed in position 98 and 5-FUra
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at the active site. Both total complexes were embedded in a truncated octahedral box
of ca. 14,000 transferable intermolecular potential 3P (TIP3P) water molecules [27] that
extended 12 Å away from any solute atom and nine Na+ ions were added to ensure charge
neutrality. The system was relaxed by energy minimization in three consecutive steps
(3× 5000 cycles), in which after the first 1000 cycles the minimization method was switched
from steepest descendent to conjugate gradient. The resulting system was heated from 100
to 300 K during 200 ps with a time step of 0.2 fs and with the position of all the solute atoms
restrained with a harmonic potential of 20 kcal mol−1 Å−2. The Berendsen thermostat [28]
was employed for temperature regulation and the simulation was run with a fixed volume
(NVT ensemble). The harmonic restraints were gradually reduced in four steps from 40
to 5 kcal mol−1 Å−2. Then, the density of the system was equilibrated for 20 ps using a
time step of 0.2 fs by fixing the pressure, using the Berendsen thermostat with isotropic
pressure scaling (NPT ensemble), and allowing the volume of the box to change. Each of
the systems were simulated in at least three 100-ns independent simulations (3 × 100 ns)
at 300 K with a time step of 2 fs. One of the simulations of the ribosylated system was
extended up to 500 ns. A harmonic restraint of 5 kcal mol−1 Å−2 was imposed on the
alpha carbon atoms of the protein in order to maintain the secondary structure. The cutoff
distance for the nonbonded interactions was 10 Å and the periodic boundary conditions
were used. Electrostatic interactions were treated by using the smooth particle mesh Ewald
(PME) method [29] with a grid spacing of 1 Å. The SHAKE algorithm was applied to all
bonds involving hydrogen atoms.

2.5. Cell Lines and Cell Culture

Human cervical cancer (HeLa) cells were obtained from the American Type Culture
Collection, ATCC (Manasas, Virginia, United States), and maintained in Dulbecco’s Modi-
fied Eagle Medium (DMEM)+GlutaMaxTM supplemented with 10% heat-inactivated fetal
bovine serum, penicillin (50 U/mL), and streptomycin (50 µg/mL) in a humidified incu-
bator HERAcell CO2 (Thermo Fisher Scientific, Spain) at 37 ◦C and 5% CO2 atmosphere
Briefly, cells were grown to confluence as monolayers, trypsinized (0.05% trypsin/0.53 mM
EDTA), and plated.

2.6. Chemical Transfections

The encoding ndt gene, which codifies 2′-deoxyribosyltransferase type II from L. del-
brueckii subsp. lactis DSM 20072 (NCBI Reference Sequence: WP_002877839.1) was ordered
and purchased from Genscript (Piscataway, NJ, USA). The coding sequence was sub-
cloned as BamHI-EcoRI fragment into the mammalian expression vector pcDNA3.1+ N-HA,
leading to recombinant vector pLdNDT.

As a preliminary study, a first approximation in cell cultures was performed to eval-
uate the effectiveness of this strategy. For this purpose, a chemical transfection based
on the calcium phosphate precipitation method was selected, as it is considered one of
the most widely used because it is inexpensive, simple, and suitable for a range of dif-
ferent cell type [30,31]. Thus, cell transfections were performed by CalPhos Mammalian
Transfection Kit (Clontech Laboratories, Inc. A Takara Bio Company) in 24-well plates
(1 × 105 cells/well) and viability was measured by a MTT colorimetric assay [32]. HeLa
cells were transfected with 3µg of pLdNDT and 48h after transfection, different concentra-
tions of non-toxic prodrug 2′-deoxy-2-fluoroadenosine (dFAdo) or their respective toxic
metabolite (2-fluoroadenine, 2-FAde) were added to evaluate the cytotoxic effect. The
absence of mycoplasma and other contaminants was routinely checked in cell cultures.

2.7. Analytical Methods

Nucleoside production was analyzed quantitatively with an ACE 5-µm C18-PFP
250 mm × 46 mm column (Advanced Chromatography Technologies) pre-equilibrated
in 100% trimethyl ammonium acetate. Elution was carried out by: i) a lineal gradient
(0–12 min) from 0.1 M trimethylammonium acetate to 90/10 (v/v) 0.1 M trimethylammo-
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nium acetate/acetonitrile and ii) an isocratic mobile phase (12–30 min) 90/10 (v/v) 0.1 M
trimethylammonium acetate/acetonitrile. The flow rate was fixed at 0.7 ml/min (150-bar
pressure) and the UV detector was set at 254, 260, 240, and 230 nm. Retention times for the
reference natural and non-natural bases (hereafter abbreviated according to the recommen-
dations of the IUPAC-IUB Commission on Biochemical Nomenclature) were as follows:
adenine (Ade), 13.3 min; 2-fluoroadenine (2-FAde), 14.7 min; uracil (Ura), 6.8 min; 5-
fluorouracil (5-FUra), 7.5 min; and 6-methylpurine (6-MetPur), 15.2 min. Retention times for
the nucleosides (hereafter abbreviated according to the recommendations of the IUPAC-IUB
Commission on Biochemical Nomenclature) were as follows: 2′-deoxyadenosine (dAdo),
17.2 min; 2′-deoxy-2-fluoroadenosine (2-FdAdo), 19.2 min; 2′-deoxyuridine (dUrd), 10.9; 2′-
deoxy-5-fluorouridine (dFUrd), 12.1 min; and 6-methylpurine-2′-deoxyribose (d6MetPRib),
18.9 min. To confirm the reaction products, commercial nucleoside analogues were used as
HPLC standards.

3. Results and Discussion
3.1. Characterization of Glycosidase Activity of LdNDT

As a starting point, we characterized the C-N glycosidase activity (nucleobase release)
of LdNDT on different natural nucleoside (2′-deoxyuridine, dUrd and 2′-deoxyadenosine,
dAdo) and several nucleoside-based prodrugs (2′-deoxy-5-fluorouridine, dFUrd; 2′-deoxy-
2-fluoroadenosine, dFAdo; and 2′-deoxy-6-methylpurine riboside, d6MetPRib) (Figure 2).

Figure 2. Schematic representation of type II 2′-deoxyribosyltransferase from Lactobacillus delbrueckii
(LdNDT) glycosidase activity on 2′-deoxynucleosides in the absence (red columns) and presence of
nucleobase acceptors (blue columns).

On the one hand, dFUrd, commonly named floxuridine, is a well-known inhibitor of
thymidylate synthesis, but is also rapidly converted to the cytotoxic pyrimidine antimetabo-
lite 5-fluorouracil (5-FUra) in mammal cells by thymidine phosphorylase (TyNP) [2,4]. On
the other hand, dFAdo and d6MetPRib are potential precursors of the cytotoxic purine
antimetabolites 2-fluoroadenine (2-FAde) and 6-methylpurine (6-MetP) [4,33]. Since dFAdo
and d6MetPRib cannot be cleaved in mammal cells (human purine nucleoside phosphory-
lases do not act on 6-amino or 6-methyl purine nucleosides) [33], LdNDT expressing cells
could cleave these prodrugs, generating corresponding cytotoxic purine bases, which can
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also readily diffuse across cell membranes, leading to a bystander activity in surrounding
cells (even with low gene expression levels).

Given that, we measured the nucleobase release to the media in the NDT-mediated
glycosylation from 2′-deoxynucleoside and base as starting substrates (Figure 2). As a
trend, LdNDT shows better activities with pyrimidines (dUrd and dFUrd) than with purines
(dAdo, dFAdo, and d6MetPRib). These results agree with those previously reported by
Acosta and co-workers [22].

Additionally, we removed the acceptor nucleobase of the media and we measured
the release of the nucleobase (Figure 2, red bars). We observed that in these cases the
catalytic activity dropped by up to 90%. This means, that nucleobase release is hampered
if the acceptor nucleobase is not present, suggesting the presence of a ternary complex—
LdNDT + donor (nucleoside) + acceptor (nucleobase).

3.2. Molecular Dynamics: Understanding Nucleobase Release

With the aim of shedding a light on the experimental data, we ran molecular dynamics
(MD) simulation studies to understand how the entering nucleobase could interact with the
LdNDT:nucleoside complex. To this end, we selected as system of study the complex type II
2′-deoxyribosyltransferase from Lactobacillus leichmannii (LlNDT) with dFUrd (nucleoside
donor) and adenine (nucleobase acceptor). LlNDT has a 98% of sequence identity with
LdNDT and its structure is available in the Protein Data Bank server (PDB id. 1F8Y) [25,34].
Since the two major tautomers of adenine in solution, Ade7 and Ade9, are protonated on
N-7 and N-9 (Figure 3), respectively, after solvation with water molecules, several adenines
in the two protonation states were added to the former system, and three independent MD
simulations of 300 ns were computed.

Figure 3. NDT from L. leichmannii (LlNDT): 2′-deoxy-5-fluorouridine (dFUrd) simulation in the
presence of the two main tautomers in solution of adenine (Ade7 and Ade9) in a box of water
molecules. As an example, the different solutions for AD9 are shown. The major cluster of bound
nucleobases is highlighted in the zoom-in of the active site—AD9 binds at the aromatic landing
platform defined by the side chains of Phe13A and Tyr157B.

The residues that participate in the catalytic reaction mechanism of these kinds of
enzymes were identified some time ago [11,14,35]. In addition, we recently proposed a com-
plete reaction mechanism for the two half-reactions of LlNDT with dIno as substrate [14].
To test that model, we cross-validated the computed energy barriers with experimental
data of different enzyme variants.

Nevertheless, there are still several unknowns for the catalytic reaction mechanism of
the enzyme, such as how the acceptor nucleobase enters to the active site or, in line with
results shown in Figure 2, why the specific activity improves when the acceptor nucleobase
is present in the reaction mixture from the beginning.

In Figure 3 a representation of the simulated LlNDT:dFUrd complex in the presence
of Ade9 in the solution is depicted. We observed that the entering nucleobase Ade9 (and
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Ade7 too, data not shown) visits the ‘aromatic landing platform’ close to the active site and
that is defined by Tyr157B and Phe13A. No other significant pathways are explored by the
entering nucleobase. This is due to the action of the side chains of Trp12A, Leu43A, and
Arg51A, which protect the active site and exclude the entrance of the acceptor nucleobase.

To assess how the presence of the entering nucleobase affects the NDT-mediated
glycosylation process, we simulated the LlNDT:dFUrd complex once the enzyme was
glycosylated and the 5-FUra was ready to leave in the presence of the entering nucleobase.
As before, we ran three independent MD simulations in the presence of both Ade7 and
Ade9 (see computational methods). In Figure 4 we monitored the distance between the two
atoms that formed part of the glycosidic bond in dFUrd (N4 and C1′) along the three MD
simulations. In one of them, we observed how 5-FUra was leaving the active site (orange
line, Figure 4A). Visual inspection of this simulation revealed to us that 5-FUra moves to the
aromatic landing platform where the adenine residues were previously located (according
to previous simulations). Leaving of the nucleobase would share the same pathway as
the entering nucleobase. So, this process has to be interconnected. It must be stressed
that no water molecule was observed to occupy the site of 5-FUra. The apolar character
given by some residues at the active site of LlNDT (e.g., Met125A) prevents the entering of
water molecules.

Figure 4. (A) Evolution of the distance d1 (Å) between N4 of 5-flurouracil (5-FUra) and C1′ of
Glu(dRib)98 along the three independent molecular dynamics (MD) simulations (points green, gray,
and orange). Distance d1 is highlighted on the image on the left with a two-head arrow. Protein
is shown as gray cartoons, some relevant residues, and adenosine residues as sticks. (B) Dihedral
angle χ (◦) evolution of the residues Tyr157B, Trp12A, and Phr13A along the three independent
MD simulations.

Looking at conformational changes that happened when 5-FUra leaves the active
site, we found that Tyr157B, Trp12A, and Phe13A populated different conformer clusters
during this process (Figure 4B). To show this, we measured the dihedral angle χ defined as
the rotation around the Cß–Cγ bond of the amino acids and that represented the relative
orientation of their side chains. After ca. 80 ns of simulation, 5-FUra moved over the
5′-OH of the glycosylated enzyme (Figure 4A). 5-FUra stayed dancing around and after
ca. 150 ns it got stuck with Phe13A and Tyr157B until the end of the simulation. Sadly,
after 0.5 µs of MD simulation we could not yet see 5-FUra moving to the solvent. Phe13A
flipped-in/-out along the trajectory. When pointing to the active site (flipped-in, χ > 100◦

in absolute value), Phe13A defined the ground of the landing aromatic platform as shown
before. When pointing out (flipped-out, χ < 100◦ in absolute value) there was space for the
nucleobase to leave the active site. Altogether, our results point out that the presence of the
entering base at the beginning of the catalytic reaction may affect the conformational space
visited by Trp12A, Phe13A, and Tyr157B and that the entering/leaving of the nucleobases
should be encompassed processes.
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3.3. Application of NDT/Prodrug Systems in Suicide Gene Therapy

The early cytotoxic effect of the generated compound 2-FAde was demonstrated in
previous studies [33,36], where results revealed a great effect of this compound in the inhi-
bition of DNA synthesis, followed by RNA and protein synthesis interruption, respectively.
Unfortunately, 2-FAde displays a remarkable cytotoxicity in both cancer and non-cancer
cells, even at short concentrations [6], which precludes its clinical use as a chemothera-
peutic agent. Due to the fact that human purine nucleoside phosphorylase (HsPNP) does
not act on 6-aminopurine nucleosides, the use of GDEPT based on the LdNDT/dFAdo
system would allow the selective activation of dFAdo in tumor cells only [4,6,33], and this
cytotoxicity should be restricted only to the tumor microenvironment. Considering all the
above mentioned features, we hypothesized about the use of NDT/prodrug systems in
suicide gene therapies for cancer treatment.

To this aim, HeLa cells were chemically transfected with the pcDNA3.1 + N-HALdNDT
(pLdNDT) plasmid vector expressing LdNDT under the control of the cytomegalovirus
promoter and treated with dFAdo (prodrug). Since the toxic metabolite, 2-Fade, is generated
upon catalysis of dFAdo, cells were also treated with 2-FAde for comparative analysis.

According to the experimental results, HeLa cell treatment with the toxic compound
2-FAde for 24 h resulted in a concentration-dependent decline in viability (Figure 5). At
0.5 µM and 10 µM 2-FAde exposure cell viability was 61.04% and 2.64%, respectively.
In contrast, treatment with 0.5, 1, or 2.5 µM of dFAdo did not affect cell survival and
concentrations of 5 and 10 µM had a minimal effect on cell viability (87.01% and 81.64%,
respectively). The IC50 of 2-FAde and dFAdo in wild-type HeLa cells was 0.65 µM and
70 µM (data not shown), respectively. In this sense, whereas experimental results revealed
that dFAdo did show negligible effect on non-transfected cells (wild-type HeLa cells),
2-FAde showed a remarkable cytotoxicity, even at short concentrations (as expected) [6].
These results illustrate the unharmful effect of the dFAdo prodrug in this in vitro model.

Figure 5. Cytotoxic effect of 2-fluoroadenine (2-Fade) and 2′-deoxy-2-fluoroadenosine (dFAdo)
in wild-type and LdNDT transfected HeLa cells.(�) Wild-type HeLa cells + 2-Fade, (�) LdNDT
transfected HeLa cells + dFAdo, and (�) wild-type HeLa cells + dFAdo.

Interestingly, transfection of HeLa cells with pLdNDT followed by dFAdo prodrug
treatment revealed significant cytotoxicity at 1 µM dFAdo. Of note, at this concentration
similar cytotoxicity was achieved with pLdNDT/dFAdo and 2-FAde, highlighting the
efficiency of the enzymatic activity in transforming dFAdo into 2-FAde (Figure 5). These
results indicate that the pro-drug dFAdo diffuses across cell membranes of tumor cells and
is effectively metabolized to the diffusible cellular toxic compound 2-FAde within 24 h in
cells that express LdNDT.

Considering that the transfection efficiency of the HeLa cells was probably not too
high, which limited LdNDT expression to a small percentage of the cells in the culture,
we hypothesize that a high bystander effect might occur. This will be in accordance with
results from the EcPNP/prodrug system [6,33,36–39]. Similarly to what these authors
observed, fludarabine and 6-methylpurine might also be good prodrug compounds for
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the LdNDT/prodrug GDEPT (Figure 6A). Additionally, the promiscuity of LdNDT (able
to act on purine and pyrimidine nucleosides) would expand to (i) pyrimidine nucleoside
prodrugs (5-fluorouracil nucleosides) (Figure 6B) and (ii) purine/pyrimidine prodrug
cocktail (Figure 6B). This high versatility would increase the possibility of attacking tu-
mor cells. Moreover, according to our results LdNDT/dFAdo could be suggested as an
efficient alternative to the PNP/prodrug system, which would offer a broad range of
chemotherapeutic treatments.

Figure 6. Different protein-/nucleo-based-prodrug gene-directed enzyme prodrug therapy (GDEPT)
systems. (A) Enzymatic hydrolysis of purine prodrugs by PNP and (B) enzymatic hydrolysis of
purine and/or pyrimidine prodrugs by LdNDT.

4. Conclusions

Taking into account all these features, intracellular activation of prodrugs by LdNDT
provides a selective death of tumor cells expressing the transfected ndtLd gene. Our results
display the great potential of a GDEPT system based on LdNDT/dFAdo for the treatment
of several cancers (e.g., solid tumors). Recently, the FDA has granted orphan drug status to
GedeptinTM (adenoviral vector-expressing E. coli PNP gene), that works efficiently with a
broad range of nucleoside prodrugs generating active metabolites with high anti-tumor ac-
tivity for treatment of anatomically accessible oral and pharyngeal cancers. In this sense, it
could pave the way for future clinical implementation of NDT/suicide gene therapy. How-
ever, several aspects, such as (i) developing a more appropriate transfection system (e.g.,
viral gene delivery systems), (ii) getting optimal gene expression, for instance by means
of tumor-specific promoters, (iii) achieving high-levels of cytotoxic metabolite into trans-
fected cells, and mainly, (iv) evaluating their potential preclinical activity in mouse models,
require further investigation and clarification prior to thinking of clinical implementation.
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