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Abstract: With about 400,000 annual deaths worldwide, malaria remains a public health burden
in tropical and subtropical areas, especially in low-income countries. Selection of drug-resistant
Plasmodium strains has driven the need to explore novel antimalarial compounds with diverse modes
of action. In this context, biodiversity has been widely exploited as a resourceful channel of bio-
logically active compounds, as exemplified by antimalarial drugs such as quinine and artemisinin,
derived from natural products. Thus, combining a natural product library and quantitative structure–
activity relationship (QSAR)-based virtual screening, we have prioritized genuine and derivative
natural compounds with potential antimalarial activity prior to in vitro testing. Experimental valida-
tion against cultured chloroquine-sensitive and multi-drug-resistant P. falciparum strains confirmed
the potent and selective activity of two sesquiterpene lactones (LDT-597 and LDT-598) identified
in silico. Quantitative structure–property relationship (QSPR) models predicted absorption, dis-
tribution, metabolism, and excretion (ADME) and physiologically based pharmacokinetic (PBPK)
parameters for the most promising compound, showing that it presents good physiologically based
pharmacokinetic properties both in rats and humans. Altogether, the in vitro parasite growth inhi-
bition results obtained from in silico screened compounds encourage the use of virtual screening
campaigns for identification of promising natural compound-based antimalarial molecules.

Keywords: Plasmodium falciparum; natural products; virtual screening; experimental validation;
QSAR; ADME

1. Introduction

Malaria is a mosquito-borne disease transmitted by the bite of Anopheles mosquitoes
infected with Plasmodium parasites. Mainly caused by Plasmodium falciparum and
Plasmodium vivax, malaria still imposes a heavy burden upon developing countries as
it is responsible for high rates of morbidity and mortality. In 2018, the World Health
Organization (WHO) recorded 228 million cases of the disease worldwide with an estimate
of approximately 400,000 malaria-related deaths [1].

The decreasing rate of cases tracked by the WHO in the last decade has stalled in the
last 5 years [1], portraying how fragile the gains achieved can be. The COVID-19 pandemic,
which arose in 2019, menaces these gains even further, as the spread of SARS-CoV-2 leads
to extra pressure on health systems, especially in low-resourced settings [2]. It is estimated
that disruption of malaria control endeavors in Africa due to the COVID-19 pandemic
could lead to a malaria burden in 2020 that is the double of that registered in 2019 [3].
Moreover, selection of parasite strains resistant to currently available antimalarial drugs [4]
has raised serious concerns about maintaining global achievements in the battle against
malaria. The scenario of parasite resistance has threatened the front-line treatment with
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Artemisinin Combined Therapies (ACTs), as the clinical efficacy of artemisinin (ART) and
its derivatives has been compromised by delayed parasite clearance in Southeast Asia [5].
Even more alarming is the recent evidence of de novo emergence of Pf kelch13-mediated
artemisinin resistance in Africa [6]. Together, these reports highlight the compelling call
for new therapies based on alternative molecules with potent activity against the malaria
parasite, especially drug-resistant Plasmodium strains.

The storyline of antimalarial drug development cannot be distinguished from the
relevance of biodiversity-derived molecules. One of the first antimalarial indications in
history, the use of Chinchona decoctions for recurring fevers even before the characterization
of malaria parasites [7], motivated the isolation of quinine—an alkaloid with antiplasmodial
properties and one of the most representative antimalarial drugs to date. Likewise, the
use of Artemisia annua decoctions for fever treatment inspired the description of its active
principle, artemisinin, which now constitutes the first line of malaria treatment indicated
by the WHO [8].

For decades, the discovery of therapeutic molecules derived from natural compounds
relied solely on laborious rounds of phenotypic screenings and subsequent cycles of
compound purification [9], which is an onerous and uncertain process. However, progress
in computational software and the availability of massive online commercial datasets of
chemical compounds with their biological properties annotated [10,11] have boosted the
development of computer-aided drug design (CADD). In this new setting of drug discovery
and development, CADD opens avenues for reducing time and costs associated with
identification of new drug candidates and consequent more effective pathways until the
workbench [12,13]. Among CADD techniques, quantitative structure–activity relationships
(QSARs) have been widely applied to hit identification by virtual screening [14–16] in order
to predict physicochemical properties and biological activity of molecules. Different QSAR-
based virtual screenings have been applied by our group for the effective description of
new candidate hits for neglected tropical diseases, including malaria [17–20]. In light of this,
commercial natural products libraries link virtual screening campaigns to the benefits of
natural product-based drug discovery. Even though such libraries tend to deliver molecules
not synthetically tractable due to their complex scaffolds, their advantages rely on the
higher structural and physicochemical diversity, and wider coverage of the chemical space
of natural products compared to synthetic drugs [21].

The goal of the present study was to develop a virtual screening pipeline for identi-
fying potent natural products and natural product-derived molecules with antimalarial
activity available in a commercial database by integrating QSAR-based virtual screening
and further experimental evaluation of chloroquine-sensitive and multi-drug-resistance
P. falciparum strains, in addition to testing their in vitro therapeutic indexes in human
hepatoma cells. Finally, we analyzed multiple absorption, distribution, metabolism, and ex-
cretion (ADME) and physiologically based pharmacokinetic (PBPK) parameters to ensure
drug efficacy and tolerability.

2. Materials and Methods

The workflow for the study design is summarized in Figure 1.
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Figure 1. General workflow of the virtual screening of natural compound database followed by experimental validation.
The following steps were conducted: (1) quantitative structure–activity relationship (QSAR)-based virtual screening of
MolPort natural products and derivatives database and selection of compounds with best predicted antimalarial activity;
(2) analysis of structural diversity by clustering; (3) visual inspection; (4) experimental validation against P. falciparum blood
stages and mammalian HepG2 cells and (5) quantitative structure–property relationship (QSPR) models for prediction of
absorption, distribution, metabolism, and excretion (ADME) and physiologically based pharmacokinetic (PBPK) properties.

2.1. Virtual Screening and Structural Diversity Clustering

Steps were performed in our in-house QSAR workflow implemented on KNIME
3.2.2 [22]. In-house QSAR models [23] were applied for virtual screening of the natural
products branch of MolPort commercial database (www.molport.com, accessed on 3 May
2019). The virtual screening aims to identify, within this database, a subset of compounds
with potential biological activity against P. falciparum chloroquine-sensitive (3D7) and
multi-drug-resistant (W2) strains. Prior to QSAR-based virtual screening predictions, the
compounds were curated according to data curation protocols established by Fourches and
colleagues [24–26]. Then, QSAR models were used to predict the P. falciparum 3D7 and W2
inhibition activities of compounds. The in-house QSAR models used for virtual screening
were previously developed for 3D7 and W2 strains using learning sets compiled from
PubChem database (PubChem IDs for 3D7 dataset: AID_1828, AID_449703, AID_524790,
AID_660866 and for W2 dataset: AID_1883, AID_449704, AID_524796, AID_606570). These
datasets were compiled and curated according to best practices of QSAR modeling and
after curation, the 3D7 learning set contained 7873 compounds (3497 actives and 4376
inactives) and the W2 learning set contained 7403 compounds (3637 actives and 3766
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inactives). Both datasets were then used to build consensus models with a Random Forest
algorithm and five different molecular descriptors (Avalon, MACCS, Morgan, FeatMorgan
and AtomPair) [23]. Three criteria were used for selection of virtual hits: (i) predicted pEC50
against P. falciparum 3D7 should be ≥6; (ii) probability of activity (p) against P. falciparum W2
should be ≥0.6 (p > 60%) and (iii) logP filters were also added to predict good lipophilicity
with logP < 3 using XLogP [27]. For prioritization of structurally diverse compounds,
molecules predicted to be active by the virtual screening were clustered through the Butina
method [28] implemented in Python 3.6 and using the workflow proposed by Sydow and
colleagues [29], which groups compounds based on Tanimoto similarity and picks a set of
diverse compounds from these groups. Finally, the selected virtual hits were purchased
and submitted to in vitro experimental evaluation. The similarity map and was generated
using OSIRIS DataWarrior software v.05.02.01 [30].

2.2. Compound Preparation

All natural compounds and derivatives selected were purchased from MolPort and
dissolved in DMSO at 10 mM. Chloroquine and artesunate (standard antimalarial drugs)
were purchased from Sigma-Aldrich (St. Louis, MO, USA) and prepared at 10 mM as well.

2.3. Plasmodium falciparum In Vitro Culture

Chloroquine-sensitive (3D7) and multi-drug-resistant (W2) P. falciparum strains were
cultured following the candle jar method as described by Trager and Jensen [31]. Briefly,
parasites were maintained in RPMI 1640 medium supplemented with 10% A+ human
plasma at 5% CO2 atmosphere. Ring stage synchronized cultures were obtained by two
consecutive treatments with a 5% D-sorbitol solution [32] in 48 h intervals.

2.4. In Vitro Assays for P. falciparum Growth Inhibition

Parasite growth inhibition assays were conducted by distributing ring stage synchro-
nized parasites at 2% hematocrit and 0.5% parasitemia in 96-well plates (NEST Biotechnol-
ogy Co., Ltd., Wuxi, Jiangsu, China). Parasites were incubated in the presence of drugs in a
two-fold 12-point serial dilution starting at 10 µM in duplicate. Chloroquine was used as
an antimalarial standard. At the end of a 72 h incubation, parasitemia was determined by
fluorescence reading at 490 nm excitation and 540 nm emission (BMG CLARIOstar, BMG
Labtech Inc., Durham, NC, USA) using SybrGreen fluorescent dye as described by Hartwig
et al. [33]. Parasite growth inhibition was determined as a percentage relative to drug-free
control. EC50 values were interpolated from log doses vs. inhibition curves in GraphPad
Prism 6 (GraphPad, La Jolla, CA, USA).

2.5. Citotoxicity Assays

Cytotoxicity of selected compounds was evaluated using the MTT reduction assay
(3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium chloride) [34]. Human hepatoma
(HepG2) cells were cultured in Dulbecco’s Modified Eagle Medium supplemented with
gentamycin (40 mg/L) and 10% heat-inactivated fetal bovine serum at 37 ◦C and 5% CO2.
Cells were seeded in 96-well plates (NEST Biotechnology Co., Ltd., Wuxi, Jiangsu, China)
at 105 cells per well and incubated in the presence of a serial dilution of the drugs starting
at 100 µM. After 72 h of incubation, MTT was added to the wells. The optical density was
measured at 570 nm (CLARIOStar, Labtech BMG Inc, Durham, NC, USA) and cell viability
was expressed as a percentage relative to the untreated control. CC50 values were calculated
by plotting a log dose vs. viability curve in GraphPad Prism 6 (GraphPad, La Jolla, CA,
USA). The selectivity index (SI) of the compounds was determined by the expression:

SI = (HepG2 CC50)/(Pf EC50),

where HepG2 CC50 corresponds to the cytotoxic concentration of compounds in HepG2
cells and Pf EC50 relates to the 50% inhibitory concentration on P. falciparum 3D7 strain.
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2.6. In Silico Predictions of Metabolism, ADME and PBPK

For the in silico predictions of the compound’s metabolism, we used the web tool
BioTransformer [35], which is a software tool that predicts small molecule metabolism
in mammals, their gut microbiota, as well as the soil/aquatic microbiota. The program
Detoxie® (http://insilicall.com/, accessed on 17 December 2020) was used to predict
absorption, distribution, metabolism, and excretion (ADME), and physiologically based
pharmacokinetic (PBPK) properties. This software is an artificial intelligence de-risking
application based on quantitative structure–property relationship (QSPR) models for each
endpoint and human PBPK model.

3. Results
3.1. QSAR-Based Virtual Screening

In-house built and validated QSAR models were used for virtual screening, whose
results are summarized in Figure 2. The entire MolPort database of commercially available
natural products and derivatives containing approximately 120,000 chemical compounds
was screened for identification of potentially active compounds against both P. falciparum
chloroquine-sensitive (3D7) and multi-drug-resistant (W2) strains. Compounds were down-
loaded and prepared for screening by analyzing their chemical structures according to
data curation protocols proposed by Fourches et al. [24–26]. Briefly, explicit hydrogens
were added, salts were removed and specific chemotypes were normalized. Moreover,
polymers, inorganic salts, organometallic compounds and mixtures were also removed.
The first filter applied, which predicted activity against P. falciparum 3D7 on a continuous
QSAR model (pEC50 ≥ 6) selected 41,207 compounds. Next, the binary model for activity
against multi-drug-resistant P. falciparum W2 (p ≥ 0.6) narrowed the list down to 1257 com-
pounds predicted to be active. Once poor physicochemical properties could be a relevant
bottleneck in late-stage drug development, we added a filter to select compounds with
good lipophilicity (logP < 3), which resulted in 265 compounds being selected after the
virtual screening pipeline (Supplemental File S1).

Figure 2. Virtual screening workflow for the identification of natural compounds and derivatives
active against P. falciparum.

3.2. Structural Diversity Clustering

Starting with the 265 virtual hits obtained from screening the MolPort natural prod-
ucts and derivatives database, we performed an analysis of structural diversity based on

http://insilicall.com/
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clustering of structurally similar compounds. The grouping search for a centroid com-
pound which consists of compounds containing bigger amounts of neighbor compounds
(or compounds that are structurally similar) and selects 10 of the nearest neighbor com-
pounds to form a cluster. We observed that among more than 120 clusters obtained, more
than half contained only one molecule—i.e., the chemical space itself is already diverse
(Supplementary Figure S1). Inside each cluster, a structure–activity relationship (SAR)
analysis was performed in order to identify the compounds predicted to be the most
active within each structural group. Afterwards, just a few compounds were selected from
each cluster in order to obtain the most structural diversity possible. Finally, we obtained
188 compounds with significative structural diversity. Among those, 28 were selected by
visual inspection.

3.3. In Vitro Screening against P. falciparum

The 28 virtual hits selected were purchased and experimentally evaluated. In order to
optimize the screening process, we carried out a preliminary in vitro screen to determine
each compound’s ability to inhibit the growth of the chloroquine-sensitive P. falciparum 3D7
strain at a concentration of 5 µM (Figure 3). Among the 28 compounds tested, 8 (LDT-598,
LDT-588, LDT-599, LDT-597, LDT-592, LDT-614, LDT-586 and LDT-601) inhibited more
than 70% of parasite growth at 5 µM. Therefore, we aimed to investigate the 50% inhibitory
concentration (EC50) of the eight most promising compounds against both chloroquine-
sensitive and multi-drug-resistant parasite strains (Table 1).

Figure 3. In vitro growth inhibition of asexual blood stage P. falciparum (3D7) for prioritized natural
compounds and derivatives from virtual screening. The inhibitory potential of different compounds
was tested at a concentration of 5 µM and the inhibition of parasitemia was measured after 72 hours
of incubation. The dashed line represents the cutoff used to highlight the most promising compounds
above 70% of inhibition.

Table 1 shows the five compounds (LDT-586, LDT-588, LDT-597, LDT-598 and LDT-
599) that demonstrated good antimalarial activity with EC50 < 5 µM for both P. falciparum
strains tested, including a multi-drug-resistant one (W2). It is worth noting that compounds
LDT-597 and LDT-598 showed remarkable activity with EC50 of 0.54 and 0.78 nM, respec-
tively, against P. falciparum 3D7 and EC50 of 0.56 and 0.59 nM against P. falciparum W2.
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Table 1. The most promising compounds predicted to be active against P. falciparum asexual stages selected by
virtual screening.

Compound Code
(MolPort ID)

2D Structure
(Biological Source of

NP Precursor)

EC50
a (µM) CC50

b (µM) In vitro
Therapeutic

Index cPf3D7 PfW2 HepG2

LDT-586
(MolPort-001-745-423)

(No data available)

4.52 ± 0.91 3.44 ± 1.30 98.59 ± 0 21.81

LDT-588
(MolPort-000-651-065)

(No data available)

3.84 ± 1.45 2.09 ± 1.17 67.04 ± 2.28 17.46

LDT-592
(MolPort-002-323-504)

(No data available)

9.09 ± 3.74 3.11 ± 0.54 17 ± 0 1.87

LDT-597
(MolPort-001-732-360)

(Artemesia annua)

0.0005 ± 0.00 0.0005 ± 0.00 18.29 ± 3.51 33,870.37

LDT-598
(MolPort-001-732-370)

(Artemesia annua)

0.0007 ± 0.00 0.0006 ± 0.00 25.94 ± 1.13 33,299.10

LDT-599
(MolPort-001-737-485)

(Aspergillus fumigatus)

3.68 ± 1.92 2.74 ± 0.78 20.96 ± 2.51 5.70

LDT-601
(MolPort-002-506-405) (Pachycereus weberi, Pachycereus

pringlei, Pachycereus pecten
-aboriginum, Backebergia militaris and

Carnegiea gigantea)

6.61 ± 3.20 0.65 ± 0.47 21.79 ± 4.16 3.30

LDT-614
(MolPort-044-180-513)

(Penicillium patulum)

5.26 ± 0.52 5.65 ± 3.11 23.55 ± 1.82 4.48

Chloroquine 0.0079 ± 0.00 0.147 ± 0.04 ND -
Artesunate 0.0016 ± 0.00 ND ND -

a EC50: half of the maximum inhibitory concentration in 3D7 and W2 strains and their respective standard deviations; b CC50: half the
maximum cytotoxic concentration in HepG2 cells; c SI: Selectivity index calculated from CC50/EC50 (3D7). NP: natural products. ND: not
determined. The data derive from at least two independent experiments.
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3.4. Cytotoxicity against Human Cells

Cytotoxicity was assessed in human hepatoma cells (HepG2). Among the eight
compounds tested, four of them showed favorable therapeutic indexes for hit compounds
with an SI > 10 (LDT-586, LDT-588, LDT-597 and LDT-598). Two compounds showed
interesting results as they were highly selective: LDT-597 and LDT-598 showed in vitro
therapeutic indexes of 33,870.37 and 33,299.1, respectively, likely due to their low nanomolar
half maximal inhibitory concentrations (EC50) in P. falciparum 3D7.

3.5. In Silico Predictions of Metabolism, ADME and PBPK

We have also analyzed the metabolism of LDT-597 and LDT-598 using the software
BioTransformer. The program showed that the carboxylic esters of these compounds might
be hydrolyzed into dihydroartemisinin (DHA) (Figure 4) by plasma carboxylesterases,
showing the same type of metabolization of artesunate [36].

Figure 4. Predicted metabolism of compounds LDT-597 and -598 via plasma carboxylesterases predicted using the software
BioTransformer.

Artesunate has significantly greater solubility in water than either artemisinin, dihy-
droartemisinin or artemether, which influences its diffusion across mucosal membranes
as well as other pharmacokinetic properties [37]. For this reason, we decided to com-
pare the in silico ADME and PBPK profiles of LDT-597 (Figure 5), Artesunate and DHA
(Supplemental Figures S2 and S3, respectively) using the program Detoxie®which is an
artificial intelligence de-risking application based on QSPR models for each endpoint and
human PBPK model. While compound LDT-597 was predicted to be slightly more soluble
than artesunate and a lot more soluble than DHA, its predicted intestinal permeability is
1.29 cm/s × 104, while artesunate’s predicted intestinal permeability is 2.29 cm/s × 104.
Moreover, the volume of distribution (VD) of compound LDT-597 was considerably higher
than that of artesunate. As compound LDT-597 showed to have good physiologically based
pharmacokinetic properties both in rats and humans, it was predicted to have a higher
fraction unbound to protein plasma (UF) when compared to artesunate and DHA, which
results in better compound bioavailability.
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Figure 5. ADME and PBPK multiparametric prediction of LDT-597 using the Detoxie® software (http://insilicall.com/,
accessed on 17 December 2020).

4. Discussion

Considering the relevance of natural products and derivatives for antimalarial drug
development, we have applied a QSAR-based virtual screening pipeline for identification
of potent antimalarial candidates against chloroquine-sensitive (3D7) and multi-drug-
resistant (W2) P. falciparum strains. Firstly, the MolPort database for natural compounds and
derivatives was screened with the aim of identifying molecules with predicted EC50 against
P. falciparum 3D7 ≤ 1 µM and predicted probability of being active against P. falciparum
W2 > 60%. These molecules were also passed by a lipophilicity prediction filter and
were verified for agreement within the applicability domain of QSAR models used in
this study. It is important to note that we did not use a molecular weight filter due
to large carbonic chains in natural products and derivatives, which could be a huge
restriction and lead to loss of potential candidate molecules. The selected virtual hits were
further divided into structurally diverse clusters and visually inspected for compound
prioritization. Experimental in vitro assays against intraerythrocytic P. falciparum 3D7 and
W2 strains were conducted to pinpoint active compounds.

Among the compounds evaluated, some of them do not show impressive phenotypic
activity (high EC50 values and consequent low in vitro therapeutic indexes), which might
be due to the limited size of natural products-based commercial databases compared to
those of synthetic drugs. Even though the universe of natural products covers a more
diverse chemical space, it is limited by being heavily dependent on the identification,
isolation, and characterization of bioactive natural products from the biodiversity. How-
ever, our QSAR models were able to identify compounds with relevant activity in vitro, as
highlighted by the nanomolar levels of parasite growth inhibition for compounds LDT-597

http://insilicall.com/
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and LDT-598 against multi-drug-resistant P. falciparum W2 strains. These two compounds,
which are artesunate derivatives, show activity about 10-fold more potent than artesunate
itself (EC50 = 5.7 nM) against this same multi-resistant strain [38]. The identification of
sesquiterpene lactones containing an endoperoxide bridge as the most promising anti-
malarial candidates within a diverse set of natural products and derivatives illustrates
the agreement in the results obtained with the virtual screening pipeline, as this class of
compounds has been widely characterized as potent antimalarial molecules [39–41]. By de-
scribing structural moieties that support antimalarial activity, HQSAR analysis performed
by Avery and colleagues [42] showed that the lactone ring has a strong positive contribution
for the antimalarial activity of artemisinin. Once this lactone ring is the main common
substructure among artemisinin, artesunate and compounds LDT-597 and LDT-598, the
robust potency of the latter two compounds can be explained by this shared feature that is
responsible for antimalarial activity even against drug-resistant P. falciparum parasites.

Since the pace of drug resistance selection in P. falciparum parasites has been as fast
as ever, there is an urgent need to ensure efficacy of compounds that stand out within
the pipeline of drug discovery. For this reason, in silico models for pharmacokinetic
antimalarial drugs have been developed, including those that have analyzed properties of
artemisinin derivatives [43–45]. Altogether, the results highlight a better pharmacokinetics
profile of LDT-597 when compared with artesunate, which might enhance efficacy of
treatments using this compound instead of the traditional artemisinin derivatives.

5. Conclusions

Herein, we report a QSAR-based virtual screening study for predicting the antimalarial
potential of a library of natural compounds and derivatives and explore the potential
molecular target for the most potent compounds. Aiming to validate our in silico approach,
we identified two compounds with low nanomolar inhibition levels against multi-drug-
resistant P. falciparum strain in vitro. Moreover, in silico ADME/PBPK analysis of one
of these compounds showed that it presents favorable physicochemical characteristics.
The work presented endorses the applicability of natural compound databases for virtual
screening campaigns and supports QSAR as a means of identifying potent and selective
compounds against the malaria parasite.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-2
73X/11/3/459/s1, Supplemental File S1: Virtual screening of selected hits. Supplemental Figure
S1: Structural diversity map of 265 virtual hits obtained from the virtual screening. Compounds
were clustered based on their Tanimoto similarity. Grey circles show compounds that were removed
during the clusterization process; these compounds mostly belong to bigger clusters where the
structural diversity is small. The green circles and rectangles show compounds that were kept by
the clusterization algorithm. Green rectangles are the compounds selected from different clusters
for visual inspection and acquisition. Supplemental Figure S2: ADME and PBPK multiparametric
prediction of artesunate using the Detoxie® software. Supplemental Figure S3: ADME and PBPK
multiparametric prediction of dihydroartemisinin using the Detoxie® software.
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