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Abstract: Small cell lung cancer (SCLC) is a particularly aggressive tumor subtype, and dihydrooro-
tate dehydrogenase (DHODH) has been demonstrated to be a therapeutic target for SCLC. Network
pharmacology analysis and virtual screening were utilized to find out related proteins and investigate
candidates with high docking capacity to multiple targets. Graph neural networks (GNNs) and
machine learning were used to build reliable predicted models. We proposed a novel concept of
multi-GNNs, and then built three multi-GNN models called GIAN, GIAT, and SGCA, which achieved
satisfactory results in our dataset containing 532 molecules with all R? values greater than 0.92 on
the training set and higher than 0.8 on the test set. Compared with machine learning algorithms,
random forest (RF), and support vector regression (SVR), multi-GNNs had a better modeling effect
and higher precision. Furthermore, the long-time 300 ns molecular dynamics simulation verified
the stability of the protein-ligand complexes. The result showed that ZINC8577218, ZINC95618747,
and ZINC4261765 might be the potentially potent inhibitors for DHODH. Multi-GNNs show great
performance in practice, making them a promising field for future research. We therefore suggest
that this novel concept of multi-GNNss is a promising protocol for drug discovery.

Keywords: dihydroorotate dehydrogenase; graph neural networks; deep learning; machine learning;
molecular dynamics simulation

1. Introduction

Small cell lung cancer (SCLC) is particularly aggressive and the most malignant
subtype of lung cancer [1]. The clinical treatment of SCLC is mainly chemotherapy, but
the choice of chemotherapy drugs is limited. In recent years, compared with the rapid
development of targeted drugs for non-small cell lung cancer (NSCLC), research on targeted
drugs for SCLC has developed slowly, and the difficulty is that no direct therapeutic target
has been found. Therefore, it is of great significance to develop a treatment regimen for
small cell lung cancer [2]. Li et al. used a CRISPR screening approach to identify a metabolic
vulnerability and determined that the dihydroorotate dehydrogenase (DHODH) protein is
one of the therapeutic targets for SCLC [3].

DHODH, a flavin mononucleotide (FMN) flavoenzyme [4], is a key enzyme crucial
for de novo pyrimidine synthesis located on the outer surface of the inner membrane
of the mitochondrion [5]. The pyrimidine nucleotides in most organisms are centrally
derived from the salvage pathways and the de novo synthesis. For malignant proliferating
cells, the amount of pyrimidine nucleotides from the salvage pathway cannot sufficiently
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maintain their survival, and then to some extent, they are relied on in the de novo syn-
thesis pathway [6]. Therefore, inhibiting the activity of DHODH means preventing the
synthesis of biological macromolecules, such as DNA, RNA, and glycoprotein, and reg-
ulating the abnormal proliferation and metabolism of cells [7]. In recent years, DHODH
has been proved to be a successful therapeutic drug target for a variety of diseases [8],
such as cancer [3,9], viral infections [10], parasitic diseases [11], bacterial diseases [12], and
autoimmune diseases [13].

Network-pharmacology-based analysis provides a novel approach to screen and
discover drugs for multiple targets [14]. The effects of drugs that act on multiple targets not
only combat complex systemic diseases [15] but also overcome challenges, such as emerging
resistance or lack of efficacy due to single targeted drugs [16,17]. Several related target
proteins, such as uridine 5’-monophosphate synthase (UMPS) and CAD protein, which
are downstream and upstream of DHODH, respectively, on the pyrimidine biosynthesis
pathway, should be focused on as well [18].

Artificial intelligence (Al) is a new technical science that researches and develops
the intelligent theory, technology, and application for simulating and extending human
intelligence [19-21]. Machine learning (ML) has shown its enormous potential to revolu-
tionize drug discovery, and drug discovery is an extremely long, expensive, complex, and
inefficient process that typically costs 2.6 billion USD and takes 12 years on average [19-22].
Quantitative structure—activity relationship (QSAR) models can predict the properties of
molecules through mathematical models to describe the relationship between the struc-
tures of molecules and their biological activities [23]. Studies show that the application
of machine learning on QSAR models, including support vector machines (SVMs), ran-
dom forest (RF), and gradient boosting algorithm (GBR), has shown good performance in
molecular property prediction. ML is also able to predict the effects of drugs on specific
cancers [22]. Iorio et al. used ML algorithms to identify molecular features that predict
drug response [24], and Christian et al. confirmed the presence of structural relationships
that differentiate promiscuous and nonpromiscuous compounds via diagnostic machine
learning [25].

Deep learning (DL), an area of machine learning where models extract latent message
over many different layers and then learn the features represented in the data, has achieved
remarkable success in drug discovery [26,27]. A deep neural network (DNN) is the founda-
tion of a deep learning architecture, containing input, hidden, and output layers. Satoshi
et al. developed novel unsupervised learning techniques to accurately predict the survival
of patients with lung cancer using multiomics data, and first detected survival-associated
subtypes in non-small cell lung cancer [28]. A drug-target interaction (DTI) model of
a deep-learning-based algorithmic framework was developed by Wen et al. [29]. In the
latest reviews, Shozu et al. proposed a novel model-agnostic method using deep learn-
ing techniques, the multiframe + cylinder method (MFCY), to improve the segmentation
performance of the thoracic wall in fetal ultrasound videos [30].

For molecular graph structure, graph neural network (GNN) provides a method
for directly extracting features from non-Euclidean structural data, and has achieved
state-of-the-art performance on some molecular property prediction tasks [31]. First,
the 2D molecular graph structures need to be transformed into adjacency matrices as
graph representations of molecules, containing atoms and bonds information. The graph
representations of molecule then go through a convolution operation to aggregate the
neighboring atoms and bonds information. After passing through several fully connected
neural layers, the final output is generated. It was reported that Xiong et al. [32] proposed
a new GNN architecture that used a graph attention mechanism to learn from drug
discovery datasets. Many other creative graph convolution neural networks were reported
by Wen et al. [33], Jaechang et al. [34], and Wang et al. [35].

This article focuses on the DHODH protein and its related target, the UMPS protein,
identified via network pharmacology in order to screen potential lead compounds from
small molecular databases. Here, we introduce several composite architectures of GNN
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(GIAN, GIAT, and SGCA) and two machine learning methods (RF and SVR (support
vector regression)) for the prediction of molecular biological activity. The docking results,
GNN models, and machine learning could help us to identify the most promising lead
compounds. The flowchart of our study is shown in Figure 1.
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Figure 1. Flowchart of the experiment.

2. Materials and Methods
2.1. Network Pharmacology Analysis

To seek out the related targets of DHODH, the STRING database (version 11.0) [36]
was used for network analysis of biological systems. Specific signal proteins were selected
to screen molecules that could dock well with them. It provided biological signal pathways
among the related proteins, and the protein—protein interaction (PPI) information was
obtained from several databases of curated biological pathway knowledge, such as Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Reactome. The top 10 proteins with an
interaction score of more than 0.400 were used to construct the PPI network, which was
generated and visualized from the STRING database. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) database can provide the biological pathways data for functional
enrichment analysis, and the multitarget can be found in this pathway.

2.2. Virtual Screening and Molecular Docking

The three-dimensional structures of two related target proteins, DHODH protein and
UMPS protein, were acquired from the Protein Data Bank (PDB). The crystal structure
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of human DHODH (PDB: 6QU7) was complex with BAY 2402234 with cogent resolution
(1.53 A), and the crystal structure of human UMPS (PDB: 3L0K) was complex with 6-acetyl-
UMP with 1.34 A resolution. We used the BIOVIA Discovery Studio 2017 R2 Client software
(created for Windows by Dassault Systemes in Paris, France) in this part. Before carrying
out the docking protocol, we used the “Remove Cell” protocol to remove all top-level
cells while keeping their constituent contents intact. Then the “Prepare Protein” protocol
was employed to prepare the protein, performing tasks such as inserting missing atoms
in incomplete residues, removing crystal waters, and standardizing atom names. After
that, the “Define and Edit Binding Site (Advanced) tools” protocol was used to calculate a
binding site of DHODH from a selected ligand and display the receptor sphere; the selected
ligand was a DHODH inhibitor named BAY 2402234 on the basis of Christian’s study [37].
A total of 10,152 molecule compounds obtained from the ZINC database [38] were utilized
for docking so that we were able to find some of these approved drugs that could inhibit
the DHODH protein and act on the UMPS protein at the same time.

The “Dock Ligands (LigandFit)” protocol followed three stages: docking, in situ
ligand minimization, and scoring. During the docking process, the docked poses were used
to be minimized with the Chemistry at Harvard Molecular Mechanics (CHARMM) and
evaluated with a set of scoring functions, including LigScorel, LigScore2, PLP1, PLP2, Jain,
PMF, PMFO04, Ludi energy estimate 1, Ludi energy estimate 2, and Ludi energy estimate 3.
Here, we also illustrated some other parameter settings. The DREIDING force field was
chosen for calculating interaction energies for each ligand and the specified receptor. The
numbers of Monte Carlo trials were set to “2500 120, 4 1200 300, 6 1500 350, 10 2000 500, 25
3000 750”7, and the minimization algorithm was set to “Do not minimize”. Lastly, we set
the parallel processing as “True” and the batch size as 25 in order to speed up the docking
process.

2.3. Graph Neural Networks (GNNS)

GNNSs are divided into two main domains: the spectral-based approaches and the
spatial-based approaches. The spectral-based approaches compare the graph with signal
processing and introduce a filter to realize the graph convolution. Graph convolution can
be interpreted as the removal of noise from graph signals. The spatial-based approaches
apply graph convolution through updating the representation for the central node by
convolving the central node’s representation with its neighbors’ representations [39].

The spectral-based GNN is implemented in graph signal processing by mathematical
operation. The graph convolution of the input signal x with a filter g € R" is defined as:

x+ g = F'(F(x) 0 F(g)) = U(Ux o UTg) M

where ® denotes the elementwise product, U is the matrix of eigenvectors ordered by
eigenvalues, and F(x) is the graph Fourier transform to a signal x.

As for the spatial-based GNN, given that G = (V, E) denotes a graph with node feature
vectors x, for v € V, we suppose that each node and its adjacent nodes and even the edge
indicate some latent message. The feature of the graph G is generated by learning from the
representations of nodes h, for v € V, or the entire graph structure. Spatial-based GNNs
follow three phases: aggregate, combine, and readout. GNNs encompass an iterative
procedure using a neighborhood aggregation strategy so that the representation of each
node is iteratively updated, and then combine the feature of neighbor aggregation with the
feature of the current node to update the feature of the current node. Readout is used for
the classification task to transform all node features of the graph into graph features, but
we used a fully connected network to carry out the regression task in our study. As per the
existing GNN architectures [40], our GNN models are formulated as follows:

Aggregate:

2% — AGGREGATE®) ({hg’“l) ‘ we N (v)}) )
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Combine:
n¥ = COMBINE®) (hg"‘”, ag")) 3)
where NV (v) is a set of nodes adjacent to v and e
k-th iteration.

Several GNN models and training strategies used in this study are introduced as
the following, including two spectral-based GNNs (simple graph convolution (SGC) and
autoregressive moving average (ARMA)) and two spatial-based GNNs (graph isomorphism
network (GIN) and graph attention network (GAT)).

represents the features of node v at the

2.3.1. Graph Isomorphism Network (GIN)

Recently, Keyulu Xu et al. proposed an expressive model called graph isomorphism
network (GIN) [40]. The GIN applies a novel neighborhood aggregation method rivaling
the Weisfeiler-Lehman test (WL test) [40,41], which is the upper limit of GNN performance
proved in the research (Figure 2). The GIN updates the node features at the k-th layer as:

B — MLp®) ( (1 + e<")) D ¢ YoueN() hik_l)) @

where hz(,k) represents the features at node v for the k-th iteration, N (v) is a set of nodes

adjacent to v, and € is a learnable parameter. The multilayer perceptron (MLP) is applied
to approximate any function so as to learn injective functions to achieve a performance
similar to that of the WL test.

4 I
Aggregation 1

Subtrees Feature vector representations of §

Figure 2. Overview of the graph isomorphism network (GIN) framework. The GIN model applies an injective aggregation

function to capture the full multiset of node neighbors, which is similar to the Weisfeiler-Lehman test (WL test). Molecules

with similar structures may have similar functional properties. The network has a strong ability to distinguish different

graphs because each point has a unique representation.

2.3.2. ARMA Filter Network

Filippo Maria Bianchi introduced a GNN with the ARMA (autoregressive moving
average) filters [42]. The advantage of the ARMA filters is that the resulting filters are
localized in the node space and independent from the underlying graph structure instead
of learning in the Fourier space. The ARMAk layer uses a graph convolutional skip (GCS)
layer to implement one recursive update, and the output of the ARMA convolutional layer
is obtained by combining K parallel stacks of T GCS layers. The GCS layer and the output
of the ARMA convolutional layer are defined respectively as:

XD a(ZY“)W(ﬂ + Xv(f>)
v _ 1K (T ®)

k=1

~

where W) and V() are trainable parameters, X are the initial node features, and L=1-1L
is the modified Laplacian matrix.
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2.3.3. Graph Attention Network (GAT)

The core objective of the attention mechanism is to focus on the high-value information
that is more critical to the current task from the neural network. At present, the attention
mechanism has been widely used in various types of deep learning tasks, including but
not limited to natural language processing, image recognition, and speech recognition.
It is one of the most noteworthy core technologies in deep learning. Recently, Petar and
Guillem et al. presented GATs that applied the attention mechanism to the GNN [43]. Such
model defines the attention coefficients and learns the latent important features among a
neighborhood of nodes (Figure 3). The process follows three steps: (1) defining the attention
coefficients, (2) weighting and normalization, and (3) output features, as formulated below:

H3C:0 \c:ls;c.zu
CH:9-CH:8 cH:s-cffT C1fc2e
4\
C\I/lu \ C:T—C':/( (,3—C./{ C:23—-CH:22
CH:11 C{ll CH:14 CHELS Mlcdc:17 \ C:20-

CH:18 CH:19

®c
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Z,‘EN‘[[‘)eX p( f-’njl e

- ~.

f @ node embedding

. output features

€

-

;
{

i

1 B

i -

i s .

E [y = suftmax(eij) =
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H
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\

....................
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@; normalized attention
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Figure 3. Illustration of the graph attention mechanism.
(1) Defining the attention coefficients:
ejj = LeakyReLu (a [Wh;-Wh;]) (6)
(2) Weighting and normalization:
exp (e;j
aj; = softmax (ej;) = —p( i) )
Yienti) exp (eif)
(3) Output features:
h; =0 Z al-]-Wh]- (8)

JEN (i)
where i is the target node and #; is the input features vector of node i, as is h]- to the
neighbor node j. Here, LeakyReLu and ¢ are both nonlinear activation functions that could
consistently perform better. During the first step, the input features vectors of the target
node and its neighbor node perform a linear transformation with a trainable weight matrix
W, followed by a weight vector a and applying the LeakyReLu nonlinearity. e;; is the
attention coefficient for each target-neighbor pair. During the second step, the coefficients
are normalized using the softmax function to make them easier to calculate and easily
comparable across overall nodes. 4;; is a normalized attention coefficient that represents
the importance of neighbor node j to target node i. During the third step, h; preforms a
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linear transformation with W, followed by a weighted sum and a nonlinear activation
function ¢, and finally, the output features of the target node k; are obtained.

2.3.4. Simple Graph Convolution (SGC)

The SGC model was proposed to reduce the excess complexity of graph convolution
networks [44]. Such model considers that the nonlinearities between the GCN layers are
not the most critical, but rather the feature propagation of the local neighbors. Therefore,
the linear model is obtained by repeatedly removing the nonlinear transformation func-
tion between each GCN layer and collapsing the resulting function into a single linear
transformation, as formulated below:

Y = softmax(SKlewz...WK) 9)

S=D2AD": (10)

where A = A 41, A is a symmetric adjacency matrix and D is the degree matrix of A.
S denotes the “normalized” adjacency matrix with added self-loops. The feature matrix
X performs the repeated multiplication with the normalized adjacency matrix S and the
learnable weights W for the k-th iteration. The resulting Y represents the class prediction
for all nodes.

2.3.5. Batch Normalization (BN)

As the depth of the network increases, the eigenvalue distribution of each layer will
gradually get closer to the saturation interval of the output interval of the activation func-
tion, which may result in gradient vanish and slow convergence. Batch normalization
(BN) was used to solve the internal covariate shift problem, avoid gradient vanish, and
accelerate the convergence process [45]. By means of normalization, BN enhancing trans-
forms the distribution of the input value of any neuron in each layer of a neural network
back to the standard normal distribution with a mean value of 0 and a variance of 1 so
that the eigenvalues will fall in the interval where the activation function is more sensitive
to the input. In this way, a small change in the input can lead to a large change in the
loss function, which can make the gradient bigger and avoid gradient vanish and over-
fitting to some extent. The batch normalization (BN) algorithm is given in Algorithm 1.

Algorithm 1. Batch Normalization

Input:Values of x over a minibatch: B = {x1_,, };
Parameters to be learned: v, B

Output: {yi = BN'y,ﬁ(xi)}

m

pp — = Y x / /minibatch mean
i=1
m
17123 — % 121 X / /minibatch variance
i=
X = —Zu B / /normalize
V..
yi < %+ =BN, p(x;) / /scale and shift

2.4. Early Stopping

Early stopping terminates the training process to avoid overfitting and save training
time when the performance of the model on the verification set starts to decline. It can
also be considered as a regularization method similar to L1/L2 weight attenuation and
discarding. In our training process, we set a maximum epoch of 1000 and a threshold of
early stopping process of 60, which means that if the assessment criteria had not improved
in 60 epochs, the training process was terminated early. However, the threshold setting of
the early stopping process is empirical and could be variant on different training sets and
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tasks. We selected the appropriate threshold to make the model performance relatively
better in our task.

2.5. Cross-Validation (CV) and Model Evaluation

Cross-validation (CV) was applied to assess the performance of the model, and model
hyperparameters were optimized through internal 10-fold cross-validation. A single
subsample was retained as data for the validation of the model, and the other nine samples
were used for training. CV was repeated 10 times, and each subsample was validated
once. Best hyperparameters were selected according to the average value of the 10-times
validation root mean square error (RMSE; Equation (11)). We applied the RMSE as an
evaluation criterion to measure the predictive results of each model. The RMSE is a
frequently used measure of the differences between values (sample or population values)
predicted by a model or an estimator and the values observed.

RMSE(X, h) = \/;1 i(h(xi) —yi) (11)

2.6. Multi-GNN Models

GNN’s show a variety of distinguishing characteristics and bring about an effect on
account of their different aggregating or combining strategies. Individual models have
different characteristics and focus on different domains, so we combined them to enhance
the performance of the overall models.

Here, we propose several multi-GNN models, including GIAN, GIAT, and SGCA,
for our task through the combination and restructure of the different GNN models. We
present the three overall architectures and provide details about some of the construction
and modification processes in the following (Figure 4).

|
|
|
Fol ,
| ;
\ GIN Layer ~ARMA Layers

/ |/ //f/
o | 77 N
! Bioactivity of
SMILES — | | | 1"~ — : y candidates
' 4 / #iti
GIN Layer
N\ \Un T e il _
Graph representation
W'y ey
‘ vy

|
|
|
|
|
\

SGC Layers ARMA Layer BN Layer

SGCA model

Figure 4. The overall architectures of the three multi-GNN models named GIAN, GIAT, and SGCA,
respectively.

2.6.1. Graph Representation of Molecules

Molecular graphs first needed to be transformed to a suitable input for GNN so that
the model could availably extract a spatial feature for learning. Specifically, the graph
structure of each molecule G was denoted with an edge connection matrix A and a node
feature matrix X. The edge connection matrix A € R?*", where n denotes the number of
edges in a molecule, represented the connection information between atoms in coordinate
(COO) format. For example, A; for i € n indicated that there was an edge connection
between two nodes, which were represented as Aj; and Ajy; in i-th column, respectively.
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The node feature matrix X € R"*™, where n denotes the number of nodes and m
denotes the number of node features, represented the information of each node feature.
The features include atom symbol, degree, hybridization, valence, formal charge, atom in
ring of size, aromatic, and explicit hydrogen, which are introduced in Table 1. We used
one-hot encoding for most of these features, except for aromatic, which was encoded as
integers. After one-hot encoding, all categories of each feature were listed and sorted, and
marked as either 0 or 1 by atomic category (Figure 5). For example, atom symbol was
encoded as a vector of 12 bits, and degree was encoded as a vector of 7 bits. If the atom
was a carbon atom and the number of its covalent bonds was 2, the first site of the atom
symbol vector and the third site of the degree vector were marked as 1; the other sites in
both vectors were marked as 0.

Table 1. Description of atom features.

Feature Description Size
Atom symbol (C,N, O, S, E Si, B, Cl, Br, I, H, other) (one-hot) 12
Degree Number of covalent bonds (0, 1, 2, 3, 4, 5, 6) (one-hot) 7
Hybridization (sp, spz, sp3, spad, sp3cl2) (one-hot) 5
Valence Number of implicit valence (0, 1, 2, 3, 4, 5, 6) (one-hot) 7
Formal charge Integer electronic charge (—1, 0, 1) (one-hot) 3
Atom in ring of size (3,4,5,6,7,8) (one-hot) 6
Aromatic Whether the atom is part of aromatic systems (0, 1) (integer) 1
Explicit hydrogen Number of explicit hydrogen (0, 1, 2, 3, 4) (one-hot) 5
46
o
. S
o R - o
“% o encode node [ decode neighborhood
L O] e — -
ANV " X decode node label
/ -y o ecode node labe
/ C o

Brequinar structure
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Figure 5. The construction of the molecules’ graph representation and initial feature matrix of the molecules. Atoms are

coded to indicate

the feature vector corresponding to atoms.
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2.6.2. GIAN Model

The model was constructed by applying GIN and ARMA filters. Spatial-based ap-
proaches perform graph convolution locally at each node, making it easy to share weights
among different locations and structures, while spectral-based approaches use the graph
signal filtering method to convolve. Spatial-based GIN, which is one of the most powerful
models in recent years, was chosen as the base model, and given that GIN’s strategy focuses
on global structure, we chose spectral-based ARMA filters to implement local attention.
GIAN is a combination model of a spatial-based approach and a spectral-based approach.

2.6.3. GIAT Model

GIN can theoretically distinguish between each of the different graph structures, so
it focuses on the entire molecular structures. GAT borrows the attention mechanism to
achieve better neighbor aggregation and is able to update the target node’s representation
by learning from its neighbors and local environment, which means paying more attention
to local features. The combination of a global approach and a local approach is able to
improve the performance of the prediction model. GIAT is a combination model of two
spatial-based approaches.

2.6.4. SGCA Model

SGC, reducing the complexity of the graph convolution network by removing the
weight matrix between the nonlinear transformation and the compressing convolutional
layer, was also an available option. SGCA is a combination model of two spectral-based
approaches.

In all of our models, each molecule and its atomic features were first extracted with
RDkit and encoded in a one-hot fashion. Then, to focus on the most relevant information
on its neighbors and gain the final latent features embedded in each molecule, we used
different GNN models described previously and integrated them. Moreover, the batch
normalization (BN) layer connected these different GNN layers to accelerate the training
speed, avoid the vanishing gradient problem, and improve the generalization ability of
the network. Finally, the last embedding containing the structural information about the
molecular graph was used to predict the biological activity of each molecule through four
fully connected layers. Specifically, the input unit and output unit of the first layer were set
to 100 and 200, respectively. The output units of the second and third layers were set to 300
and 200, respectively. For our regression tasks, the last layer had only one unit and was not
activated.

2.6.5. Datasets of DHODH Inhibitors

The SMILES (simplified molecular input line entry specification) information of hun-
dreds of compounds with an inhibited effect on DHODH was acquired from the ChEMBL
database (Table S1) [46]. We filtered the raw data by removing some data without a 2D
molecular structure or biological activity information. In order to enhance the generaliza-
tion ability and reliability of the model, after filtering, 20% of the remaining 532 compounds
were randomly set to a test set, and the rest to a training set. In addition, we counted the
biological activity value distributions of DHODH inhibitors and the distributions of the
training set and testing set.

2.6.6. Training Protocol

PyTorch Geometric [47], a library for deep learning on irregularly structured in-
put data, such as graphs, was implemented to construct the graph representation of
molecules and train our models using the Adam optimizer for gradient descent optimiza-
tion. Modeling experiments were carried out using a machine with an Intel® Core™
i7-9700K at 3.60 GHz x 8 CPU, 15.6 GiB of RAM, and an NVIDIA GeForce RTX 2060
SUPER/PCle/SSE2 graphics card. Our code and dataset are available on GitHub.
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2.7. Construction of 2D-QSAR Model

A total of 532 compounds were also applied to build 2D-QSAR models. The “Calculate
Molecular Properties” protocol of the DS software was used to calculate the 204 properties
of the DHODH inhibitors for creating a 2D-QSAR model. All IC5y values and pICsy
values of the 532 compounds (Table S1) retrieved from the ChEMBL database represent
the bioactivities of the compounds. The 204 calculated properties of the compounds
were treated as feature vectors, pIC50 as training label, and the precision of the predicted
bioactivities from different models as an assessment of each model. Then we employed
the Pearson correlation coefficient matrix to examine the correlation and orthogonality
between each feature. Additionally, principal component analysis (PCA) and Lasso feature
selection were used for data preprocessing by following this step: Feature selection and
standardization of datasets. Features with a variance higher than 0.01 were selected and
standardized to a mean of 0 and a variance of 1. The Lasso feature selection was used to
further filter the features. Finally, the predicted bioactivities trained by the QSAR models
were the evaluation of ZINC database candidates. The Pearson correlation coefficient was
calculated with Equation (12):

. NY xyi— YL xi ) Vi
YNE 22— (T %) /NE v — (T v

(12)

2.8. Molecular Dynamics (MD) Simulation

The protein-ligand complexes of all candidates were used for MD simulation in 300 ns
with the Gromacs 2020 software. The candidates were processed by SwissParam [48]
to receive the topology and parameters file. In the MD process, the leapfrog algorithm
was utilized to integrate Newton’s laws, and the energy was optimized by the steepest
descent minimization algorithm in 5000 steps. The MD simulation system employed a
CHARMM?27? force field and a periodic cubic box with a margin of 1.2 nm. In addition,
the explicit solvent water model TIP3P and 0.145 M Na* and Cl~ ions were added to the
system to mimic the physiological conditions. The canonical ensemble (NVT) balanced the
system with position constraints by keeping the system volume and temperature constant,
and then the isothermal-isobaric ensemble (NPT) modified the density of the system by
keeping the system temperature and pressure constant. The NVT and the NPT were both
processed for a total of 10 ns. All bonds were constrained with the Lincs algorithm, and
temperature coupling was on with a setting of 310 K for each group. The Verlet scheme
was applied for neighbor search cutoff, and the pressure coupling was on with Parrinello—
Rahman coupling. The MD simulation was performed in 150,000,000 steps with 2 fs for
each step. Through MD analysis, we could acquire the calculated results, including the
molecular framework, root-mean-square deviation (RMSD), total energy, root-mean-square
fluctuation (RMSF), radius of gyration (gyrate), solvent accessible surface area (SASA), and
mean square displacement (MSD).

3. Results and Discussion
3.1. PPI Network Analysis for Potential Target Proteins Related to DHODH

To identify the potential target proteins that could work together with the DHODH
protein, the PPI network (Figure 6) was constructed through STRING v11.0, where the
functional enrichment analysis of this network was performed. The average local clus-
tering coefficient of the PPI network is 0.816. Based on the analysis above and the action
mechanism of the DHODH protein, the pyrimidine metabolism pathway (colored in
red; hsa00240) from the KEGG database with false discovery rate (FDR) values of only
1.8 x 10~* was worthy of attention. The pyrimidine biosynthesis (Figure 7) in the pyrimi-
dine metabolism pathway containing mainly three proteins, DHODH, CAD, and UMPS,
plays a significant role in the de novo pyrimidine synthesis. As mentioned above, inhibiting
the DHODH protein or the pyrimidine biosynthesis is able to regulate the abnormal cell
proliferation and metabolism, so it achieves the anticancer effect. In addition, the combined
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score between DHODH and UMPS was 0.99, which indicates that drugs acting on them
at the same time may have a greater effect. Therefore, two proteins, DHODH and UMPS,
which should be inhibited, were focused on as potential targets in this research.
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Figure 6. PPI network.
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3.2. Docking Results

The whole molecular docking protocols of the DHODH protein and the UMPS protein
were applied with the same parameters and accomplished in 9.0 h and 11.5 h, respectively.
It needs to be noted that for the UMPS protein, the inhibited site for docking was defined in
the crystal structure based on the related research. As for the DHODH protein, there were
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20,793 poses docked, and 5586 poses filtered or failed to dock. One the other hand, for the
UMPS protein, there were 43,317 poses docked, and 1289 poses filtered or failed to dock.

The compound-target interaction network displayed the interaction of the top 150 can-
didates of the corresponding proteins, where the potential multitarget compounds were
focused on (Figure 8). The blue points denote the different compounds of the correspond-
ing proteins, the yellow points denote the target proteins, and the green points expressed
specially in the middle denote the potential multitarget compounds. The results show that
several molecules were associated with DHODH and also relevant to UMPS. Therefore,
based on the interaction between two proteins and the docking results, we believe that it
was credible to focus our drug selection on them.
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Figure 8. The compound-target interaction network.

3.3. Multi-GNN Models

Three multi-GNN models were constructed based on 532 compounds containing the
SMILES information and their biological activity values. The dataset was randomly split
with the ratio of train/test at 8:2. The histogram of DHODH inhibitors and the distributions
of the training set and testing set are shown in Figure 9.

We trained our model for a maximum of 1000 epochs or until convergence (i.e., none
of the metrics improved after 60 epochs) with early stopping operation. Then, the Adam
optimizer with a learning rate of 0.001 was applied in the training process. In addition,
dropout is one of the most effective and commonly used regularization methods for neural
networks. The dropout technique was also applied in the GNN layers (with a rate of
0.35 for the ARMA layers and 0.06 for the GAT layers) to reduce overfitting. RMSE and
R-squared were applied to evaluate the model accuracy. R-squared is a statistic used in
the context of statistical models and provides a measure of how well observed outcomes
are replicated by the model based on the proportion of the total variation of outcomes
explained by the model. The better the linear regression fits the data in comparison with
the simple average, the closer the value of R-squared is to 1. A dataset has n values marked
yi for i € n, each associated with a predicted value f; for i € n. R-squared was defined as
formulated below:

R2—1— SSpes _q_ Yilyi _fi)2 5 (13)
SS
fof Y (]/i -1y, ]/i)

We got satisfactory results, shown in Figure 10. The RMSE of the GIAN model on test
sets was 0.476, and the R-squared on the training and test sets reached 0.919 and 0.818,
respectively. As for the GIAT model, the RMSE on the test sets was 0.497, and the R-squared
on the training and test sets reached 0.927 and 0.801, respectively. The R-squareds of the
SGCA model on the training and test sets were 0.942 and 0.796, respectively, and the RMSE
was 0.503. The performances of these models were satisfying and inspiring.
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Figure 9. Dataset used for building prediction models. (a) The histogram of DHODH inhibitors. (b) The distributions of the
training set and testing set.

We also trained several single-GNN models as comparisons of multi-GNNs models,
with specific results shown in Table 2.

Table 2. Results of graph neural network (GNN) models and Multi-GNN models.

Name RMSE on Training Set  R? on Training Set RMSE on Test Set  R? on Test Set

GIN 0.274 0.953 0.563 0.745
GAT 0.102 0.989 0.606 0.704
ARMA 0.118 0.986 0.604 0.706
SGC 0.092 0.991 0.578 0.731
GIAN 0.323 0.919 0.476 0.818
GIAT 0.316 0.927 0.497 0.801

SGCA 0.277 0.942 0.503 0.796
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Figure 10. Results of three multi-GNN models. (a) Result of GIAN model; (b) Result of GIAT model;
(c) Result of SGCA model.

3.4. RF Model and SVR Model

The Pearson correlation coefficients of 204 features were first to be calculated to figure
out the correlation between features before building the predicting model. Additionally, the
Pearson rankings of 204 features indicated that some of the features had a high correlation,
with correlation coefficients greater than 0.4 (Figure 11a). We used principal component
analysis (PCA) to reduce the dimensionality of our dataset while maintaining the features
of the dataset that contribute the most to each other by retaining the lower-order principal
components and ignoring the higher-order principal components. The 2D and 3D principal
component plots displayed the result of dimensionality reduction (Figure 12). In these two
principal component plots, the color of each point on the plots was based on the value of
the target. In data preprocessing, 204 features with a variance higher than 0.01 were filtered
out and 160 features were chosen. Then, the selected features were standardized to a mean
of 0 and a variance of 1. Lasso feature selection was performed to further filter 160 features,
and finally, 90 features with small correlation coefficients and good orthogonality were
obtained (Figure 11b). In this process, we found that the smaller number of features would
not lead to a better predicting effect. We believe the reason is that our dataset was relatively
large, and the number of features was small, which may easily lead to indistinguishable
features and data overlap. The same preprocessing step was used for the RF model and
SVR model. Finally, the known experimental activity values and the predicted activity
values of our dataset were used for calculating the correlation coefficient (R?) to validate
the prediction accuracy.
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Figure 11. (a) Result of the Pearson correlation coefficient of 204 features; (b) 90 features with small
correlation coefficients.

With regard to the RF model, the main parameter was n_estimators, which was the
number of trees in the forest, which was set as 225, and the size of the random subsets of
features to consider when splitting a node, max_features, was set as “None,” which meant
that all features, instead of a random subset, were always considered. In addition, the
parameter random_state was set as 2, and min_samples_split was set as 2. On the training
set, the RMSE was 0.266 and the R? value was 0.945. On the test set, the RMSE was 0.56
and the R? value was 0.783. Overall, the performance of this model was good, and the
predicting results were credible (Figure 13a).
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Figure 12. The results of the 2D principal component analysis (a) and the 3D principal component

analysis (b).

For the SVR model, the parameter kernel standing for the kernel type used in the
algorithm was set as “rbf.” The other three parameters, tol, epsilon, and random_state, were
set as 0.0017, 0.1, and 55, respectively. The validated results display that the RMSE of the
training set was 0.505, and that of the test set was 0.573. The R? value was 0.791 on the

training set, and 0.756 on the test set (Figure 13b).
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Figure 13. Results of traditional machine learning models. (a) Result of RF model; (b) Result of
SVR model.

3.5. Discussion of Multi-GNNs

Different from machine learning algorithms, the 2D-QSAR model needed to be con-
structed to obtain the properties of candidates as input. GNNs captured the internal
information directly from the graph structure, which means the SMILES of the molecules
are transformed to a graph representation of molecules. The results show that the multi-
GNN models had a better modeling effect and higher precision and lower RMSE value
in the testing process than the two machine learning algorithms, RF and SVR models.
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During the experiment, we found that for large datasets, the 2D-QSAR model and the
hyperparameter setting of the machine learning algorithms took a long time to construct
and search. Moreover, when only a few properties were selected through PCA and Lasso
feature selection, the model fitting results would be poor.

On the other hand, the construction of the graph representation of molecules was
more flexible and diverse. Specifically, we were able to not only select flexibly the features
of nodes and edges but also use a variety of strategies for aggregation and combination.
Related studies have also reported that a lot of novel GNN architectures have proposed
and achieved state-of-the-art performance in several bioinformatics datasets, such as
PROTEIN [49], NCI-1 [50], QM9 [51], and PPI [52].

In our study, we applied several existing GNNs and some deep learning strategies
to combine and construct regression models for our dataset. The concept of multi-GNNs
may put forward an original train of thought to construct the GNN architectures. The
performance of the multi-GNNs was reliable and was better than that of the machine
learning and single GNN (Table 2). The strategy of combining a global approach and a
local approach achieved a model performance improvement.

However, how to select and combine different GNNs and even the hyperparameter
setting was based on technique, experience, and task requirements. Although many
existing GNNs could achieve state-of-the-art performance on public datasets, they may
lack performance in some practice, like the dataset we built for predicting the biological
activities of DHODH inhibitor candidates. One the other hand, according to our learning
curve, the validation curve did not plateau at the maximum training set size used, and it
still had potential to decrease and converge toward the training curve. Therefore, adding
more training instances was very likely to improve our current models. Therefore, what
we suppose to further study is how to apply the GNNs in drug discovery better.

In conclusion, the model generated by multi-GNNs and machine learning algorithms
provided a credible referenced indicator for drug screening in our study. Additionally,
multi-GNN still has a lot of potential to be explored and exploited.

3.6. Selection of ZINC Candidates

According to the docking score and the bioactivity prediction results generated from
multi-GNN models and 2D-QSAR models (Table 3), the ZINC candidates were screened
out convincingly and reasonably. The compound-target interaction network (Figure 8)
showed that several ZINC candidates, including ZINC4261765 and ZINC95618747, had
the potential to act on multiple proteins. Considering the docking score, all the five
methodologies, and the drug-target interaction, we voted for these factors, and the voting
score results are displayed in Table 4. ZINC8577218, ZINC4261765, and ZINC95618747
had great performance with high vote scores among the top 10 candidates and thus were
determined as candidates; the last two target multiple proteins. Their chemical scaffolds
are displayed in Figure 14.

Table 3. Docking score and predicted activity value for the top 10 ZINC candidates.

Rank Compound Docking Predicted Activity

Score GIAN GIAT SGCA RF SVR
1 ZINC8577218 64.296 7.301 7.765 7.235 6.613 5.790
2 ZINC15919406 63.009 6.724 5.593 6.858 6.002 6.384
3 ZINC2036915 62.93 7.608 7.820 6.586 6.611 5.619
4 ZINC3952167 62.463 6.645 6.336 5.167 5.661 6.242
5 ZINC43100953 61.858 5.847 7.543 7.401 5.710 7.242
6 ZINC3831490 61.751 6.627 7.417 7.191 6.074 6.129
7 ZINC4261765 60.522 8.058 10.816 12.787 5.873 5.991
8 ZINC1530605 60.384 5.740 7.980 6.135 7.431 6.689
9 ZINC1587572 59.994 7.608 7.820 6.586 6.664 5.595
10 ZINC95618747 59.621 7.532 10.966 12.392 5.846 6.141
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Table 4. Vote scores of the top 10 candidates ?.

Compound  Docking Score PICs0 Multi-Target  Total Score
GIAN GIAT SGCA RF SVR
ZINC8577218 1 1 0 1 1 0 0 4
ZINC15919406 1 0 0 0 0 1 0 2
ZINC2036915 1 1 1 0 1 0 0 4
ZINC3952167 1 0 0 0 0 1 0 2
ZINC43100953 1 0 0 1 0 1 0 3
ZINC3831490 0 0 0 1 1 0 0 2
ZINC4261765 0 1 1 1 0 0 1 4
ZINC1530605 0 0 1 0 1 1 0 3
ZINC1587572 0 1 1 0 1 0 0 3
ZINC95618747 0 1 1 1 0 1 1 5

2 Vote score: for all activity values predicted by one algorithm, the top 50% were voted as 1 point, and others were voted as 0 point.

(a) (b)
NH,
oH HOQ, OH 2
N= I HN" vy
N1 %N o 9, on 0\\P".\‘D E-o\\_._,.zzj_ww M
HZN_<}V / N —< :)—4 -~ o/ \UH A S
OH OH o =\P,0H N
© b
ZINCS577218 ZINCY95618747
(c) (d .
F_r F
HO oH j,
Cl .
o LT I~
o o \\o o Ny b o
> = 1
J ~oH g 'fJ(N _Jl
,‘p—OH \L_N F o ONx%
o=
OH o
ZINC4261765 BAY2402234

Figure 14. Chemical scaffolds of (a) ZINC8577218, (b) ZINC95618747, (c) ZINC4261765, and (d) BAY
2402234.

The interactions between key residues and candidates within macromolecules are pre-
sented in 2D and 3D horizons (Figure S1 and Figure 15). Analysis of the hydrogen bonding
status, a significant reference of binding capacity, showed that these three chosen candi-
dates and a control set have H-bonding interactions with TYR356 and GLN47 of DHODH
in common. Moreover, both ZINC8577218 and ZINC4261765 form an H-bond with AL55;
both ZINC95618747 and ZINC4261765 form an H-bond with TYR147. ZINC8577218 and
ZINC42617 form a hydrogen bond with ARG136 and LEU47, respectively. Furthermore,
besides a hydrogen bond, each ligand engages with different residues through diverse
binding interactions, including van der Waals, pi interaction, and salt bridge, which might
enhance the binding affinity with DHODH. Each of these hydrogen bond lines (green) and
their lengths (A) are displayed in the 3D docking interactions diagram. Therefore, three
candidates were used for further MD simulation.
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Figure 15. (a) Three-dimensional horizon of molecular docking result of ZINC8577218; (b) Three-dimensional horizon of molecular docking result of ZINC95618747; (c) Three-dimensional
horizon of molecular docking result of ZINC4261765; (d) Three-dimensional horizon of molecular docking result of BAY 2402234. Each of these hydrogen bond lines (green) and their
lengths (A) are displayed. The green lines stand for H-bonds.
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3.7. Molecular Dynamics Analysis

The protein-ligand systems of the top 3 candidates were validated through 300 ns
MD simulations. It was exciting that two proteins remained combining well with all these
candidate ligands at the end of the MD simulation, and the following analyses provided
sufficient validations.

The RMSD changes (including complexes, proteins, and ligands) were calculated and
then analyzed to not only reveal the position change between the conformation and the
initial conformation of the protein during the simulation, but also determine whether the
simulation was stable. It was obvious that the complex RMSD of DHODH-ZINC4261765
(Figure 16a, blue) was stable during the entire MD period. The complex RMSDs of the
other two candidates were bumped up in 125 ns (Figure 16a, black) and 175 ns (Figure 16a,
red), respectively, which suggests that the interactions changed in the conformation. They
both tended to stabilize after the fluctuations. The trend of the protein RMSD value was
similar to that of the complex RMSD value. Moreover, in general, the ligand RMSD tended
toward a stable range over time, although it rose at some time. As for the UMPS protein,
both ZINC95618747 (Figure 16b, red) and ZINC4261765 (Figure 16b, blue) showed good
interactions with the receptor. The Ligand RMSD was in a dynamic equilibrium as well.
The RMSD analysis indicated preliminarily the reliable stability of the protein structures
with the binding candidates.

Further analyses of the total energy (Figure 16¢,d) and the radius of gyration (gyrate;
Figure 16¢,d) provided the complexes state information during the MD process. We
found that the total energies of all the systems were stable and the total energy values
of the same protein were similar. The radius of gyration can be used to characterize the
compactness of a protein structure and represent the change of peptide chain looseness
in the simulation process. In general, the bulkier the protein, the smaller the gyrate
value and the more difficult it would be for the ligand to “escape.” Both DHODH and
UMPS had the relatively highest protein gyrate value when combined with ZINC95618747
(Figure 16¢, red), indicating that their protein structures were relatively loose and less
stable. The other gyrate value curves (including protein and ligand) were relatively flat,
which was consistent with the RMSD analysis.

Mean square displacement (MSD) and solvent accessible surface area (SASA) analysis
of each protein and ligand are shown in Figure 17. MSD is a measure of the position devia-
tion of the particle over time relative to the reference position, following the logarithmic
transformation function Yyisp = 2 + log;, MSD (nmz). The analysis illustrates that all
protein MSD values were low (less than 0.2), suggesting that all of the simulation systems
were stable during MD. Except for ZINC8577218 (Figure 17a, black), the low ligand MSD
values also showed good affinity of the ligands staying with protein complexes. This might
be caused by the poor binding capacity of ZINC8577218 with some residues of protein
so that the ligand would have a relatively higher displacement. SASA analysis provided
information about the hydrophilic and hydrophobic abilities of the system. The SASA
values of both proteins and ligands changed little during the MD period, and there were
no significant differences in hydrophilicity and hydrophobicity.
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ligand complex in molecular dynamics simulation. (a) RMSD of the complex, protein, and ligand of
DHODH complexes. (b) RMSD of the complex, protein, and ligand of UMPS complexes. (c) Total
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Figure 17. Mean square displacement (MSD) and solvent accessible surface area (SASA) analysis of each receptor-ligand
complex in molecular dynamics simulation. (a) MSD of the protein and ligand of DHODH complexes. (b) MSD of the
protein and ligand of UMPS complexes. (c) SASA of the protein and ligand of DHODH complexes. (d) SASA of the protein
and ligand of UMPS complexes.

The root-mean-square fluctuation (RMSF) shown in Figure 18 calculated the fluctua-
tions of each residue relative to its average position, which could represent the flexibility
and motion intensity of protein amino acids in the whole simulation process. All DHODH
complexes displayed a similar residue fluctuation trend with the same fluctuation peaks
and valleys. The RMSF values of DHODH complexes were higher in the ranges of 31-50,
215-230, 285-300, and 390-396, suggesting that the residues here fluctuated and the stability
was poor (Figure 18b). However, the residues encoding 50-150 were a key binding region,
where ligands bind to the protein, signifying good stability due to the low RMSF value. As
for the UMPS protein, the difference between these complexes was the variation of degree,
and the key binding region (residues encoding 50-90) was also stable. The residue distance
matrix (Figure S2) showed the distance between all the residual pairs in the trajectory. We
found that the protein binding with different ligands showed a similar residue distance.
The reason could be that all these ligands stay steady inside the protein. Furthermore, it
was surprising to note that a lot of similarity was revealed between the residue distance
matrixes of different proteins.

In addition, we focused on the superimposed average protein structures to assess
whether the binding sites were stable and reasonable. Both the average structures of
DHODH and UMPS reacted with different ligands were nearly superimposed on one
structure, with RMSD values of 1.075 and 0.582, respectively (Figure 19). The result
illustrates that residues near binding sites were highly overlapped, further demonstrating
strong stability and reliability. The areas with less overlapping, where the fluctuations
of residues were low, would not affect ligand binding, which was consistent with the
RMSF analysis.



Biomolecules 2021, 11, 477 27 of 37

/;% / Binding pocket
Y =
’é‘ ZINC95618747 \
=
:;: 6l J ) Residue
-;'l 31-50
% 03
0.0 .
ZINC4261765 I
04+F Residue Residue
. 215-230 \ 285-300
0.0 o Residue
50 100 150 200 250 300 350 400 390 396
Residues
(a) (b)
0.8
ZINC95618747 I Residu /
0.6f 521 \ S
Residue . # /!
0.4/ 105-110 j

ZINC4261765

Residue
145 160

Residue

Binding

) 50 100 150 200 250 Tt e rese

Residues
() (d)
Figure 18. Root-mean-square fluctuation (RMSF) analysis of each receptor-ligand complex in molecular dynamics sim-

ulation. (a) RMSF of DHODH complexes. (b) The unstable region of the DHODH protein combined with ZINC8577218.
(c) RMSF of UMPS complexes. (d) The unstable region of the UMPS protein combined with ZINC95618747.

Finally, changes in the initial and last conformations in MD simulations are shown in
Figure 20. As for the DHODH-ZINC8577218 complex, although the ligand was connected
with different residues at the beginning and end of the simulation, the critical residue
GLN74 was still connected at the end. The other two ligands stayed in the same pocket
of the DHODH protein biding with key residues, including GLN74, HIS56, and ARG136,
throughout the simulation.
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Figure 19. Average structure of each protein reacted with different ligands. The ligand is shown in
the figure. (a) DHODH protein. (b) UMPS protein.
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Figure 20. Changes in the initial and final conformations in molecular dynamics simulations. (a) DHODH protein with ZINC8577218. (b) DHODH protein with ZINC95618747.
(c) DHODH protein with ZINC4261765.
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4. Conclusions

Overall, in this paper, several potential inhibitors for the DHODH protein were ob-
tained by computer-aided computation. The PPI network revealed that two mainly related
proteins, DHODH and its downstream effector protein UMPS, should be focused on in
the pyrimidine metabolism pathway. Candidate compounds with strong binding stability
screened from molecular docking were further used for multiple artificial intelligence
models. We proposed the concept of multi-GNNs and applied it to predict the candidate
biological activities with satisfactory results. Additionally, 2D-QSAR models were used
to build machine learning prediction models. Furthermore, we expounded the principles
and reasons of constructing the multi-GNN models and compared and discussed the
performances of multi-GNNs and machine learning models. The results showed that multi-
GNNs have great prospects in molecular property prediction and compound screening,
attributed to the peculiarity that can capture information from a molecular graph structure
directly. How to design and improve the graph information extraction and the model
structures could be the key to improve the prediction accuracy of multi-GNNs. Integrating
all methodologies and docking results, we finally found that ZINC8577218, ZINC95618747,
and ZINC4261765 could be the potentially potent inhibitors for DHODH. MD analysis
verified that these compounds show good interactions with both targets. By consulting
relevant researches, ZINC8577218 is also known as folic acid that might have some effect
on the treatment of cancer. Therefore, the application of artificial intelligence models,
especially GNNSs, to the discovery and development of multitarget drugs is feasible and
reliable and provides a good basis for our further biological experiments to identify and
validate the above three inhibitor candidates for DHODH.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2218-273
X/11/3/477/sl. Figure S1: 2D horizon of molecular docking results, Figure 52: Residue distance
matrix, Table S1: Data sets of dihydroorotate dehydrogenase inhibitors, Table S2: Docking score and
predicted activity value for the top 200 zinc candidates.
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