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Abstract: Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids,
which are common simple chemical scaffolds found in many naturally occurring compounds. Many
chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic
analogues have attracted much interest due to their broad biological activities with clinical potentials
against various diseases, particularly for antitumor activity. The chalcone family has demonstrated
potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle
disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory
mediators. It represents a promising strategy to develop chalcones as novel anticancer agents.
In addition, the combination of chalcones and other therapies is expected to be an effective way to
improve anticancer therapeutic efficacy. However, despite the encouraging results for their response
to cancers observed in clinical studies, a full description of toxicity is required for their clinical use
as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of
the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future
applications and scope of the chalcone family toward the treatment and prevention of cancer are
brought out.

Keywords: chalcone; anticancer; molecular targets; bioactive dietary compounds

1. Introduction

Cancer is caused by the uncontrolled growth of cells and is a multifactorial disease
that claims millions of lives each year worldwide. Its genesis and progression are extremely
complex. A variety of strategies are applied to anticancer treatments, including surgery,
chemotherapy, and radiotherapy used alone or in combination. However, multidrug resis-
tance (MDR) and side effects constitute major impediments to effective cancer therapy [1].
Phytochemicals, such as chalcones, have been shown to be inexpensive, readily available
and relatively nontoxic. Certain chalcones can target key molecular reactions that may
induce the genesis and progression of cancer [2]. Thus, scientists are using traditional
knowledge of medicinal plants and the sustainable exploitation of marine natural products
to synthesize new, more powerful and effective therapeutic antitumor drugs by leveraging
different molecular mechanisms [3–5].

A chalcone is a simple chemical scaffold in many natural plant products, including
spices, vegetables, fruits, teas [6–9]. Chalcones, which belong to the flavonoid family and
act as intermediates in the biosynthesis of flavonoids, exhibit structural heterogeneity and
can act on various drug targets. Chalcone family members have received considerable
attention not only because of the possibilities for their synthetic and biosynthetic produc-
tion but also because of the scope of their biological activities, including anticancer [10],
anti-inflammatory [11], antidiabetic [12], cancer chemopreventive [13], antioxidant [14],
antimicrobial [15], antileishmanial [16] and antimalarial activities [17]. More importantly,
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several chalcone compounds have been approved for market and clinical use for var-
ious health conditions [e.g., as metochalcone-choleretic/diuretics (1); sofalcone-based
anti-ulcer/mucoprotectives (2); and hesperidin methylchalcone-vascular protectives (3)],
exemplifying the clinical potential of chalcones [2,8,9,18] (Figure 1).
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Chalcone compounds have a chemical scaffold of 1,3-diaryl-2-propen-1-one, which
can be conveniently modified to alter the biological activities of these molecules. By adding
various functional groups (aryls, halogens, hydroxyls, carboxyls, phenyl, etc.) [18], which
enable chalcone binding with different molecular targets and, as compounds, interaction
with other molecules, chalcones exhibit a broad spectrum of biological activities. Therefore,
chalcones are useful templates for the development of novel anticancer agents. Moreover,
hybridization of the chalcone moiety with other anticancer pharmacophores produces
hybrids that have the potential to overcome drug resistance and improve therapeutic
specificity, rendering it a promising strategy for developing novel anticancer agents. In this
review, we focus on the medicinal chemistry strategies employed for the design and
development of anticancer chalcones. The multiple mechanisms of anticancer activities
exhibited by chalcones and their therapeutic potential are also summarized herein.

2. Strategies Employed to Produce Anticancer Chalcones

Chalcone compounds have a chemical scaffold of 1,3-diaryl-2-propen-1-one in trans-
(4) or cis- (5) isomers with two aromatic rings (rings A and B) that are joined by a three-
carbon unsaturated α,β-carbonyl system (Figure 2). In most cases, the trans isomer is
thermodynamically more stable, and therefore, it is the predominant configuration among
chalcones [19]. In addition, chalcones contain many replaceable hydrogens, which enables
the use of various methods and schemes for the synthesis of chalcone derivatives [20].
In each of these methods, the most important part is the condensation of two aromatic
systems (with nucleophilic and electrophilic groups) to yield the chalcone scaffold. The re-
action scheme used in the synthesis of the standard scaffold of chalcones (1,3-diphenyl-
2-propen-1-one) includes Claisen–Schmidt condensation, carbonylative Heck coupling
reaction, coupling reaction, Sonogashira isomerization coupling reaction, continuous-flow
deuteraction reaction, Suzuki–Miyaura coupling reaction, one-pot synthesis and solid acid
catalyst-mediated reaction [9,18]. Amongst all methods, the Claisen–Schmidt condensation
(Scheme 1) is one of the most common. Thus, the chalcone moiety is a useful template for
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the development of novel anticancer agents. In addition to the potent anticancer activity
of naturally occurring chalcones, three-pronged strategies are employed for the synthesis
of anticancer chalcone: structural manipulation of two aryl rings, the substitution of aryl
rings to generate heteroaryl scaffolds, and/or molecular hybridization through conjugation
with other pharmacologically interesting scaffolds to enhance the molecular anticancer
properties [6,10] (Figure 3).
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2.1. Naturally Occurring Chalcones

Chalcones constitute the core of many natural biological compounds and have been
extensively studied for decades. The chalcone family has a wide range of structural
diversity and can be roughly classified into two categories: simple/classical chalcones
and hybrid chalcones with the core 1,3-diaryl-2-propen-1-one scaffold. They are widely
distributed in various parts (roots, rhizomes, heartwood, buds, leaves, flowers, and seeds)
of species of genera Angelica, Sophora, Glycyrrhiza, Humulus, Scutellaria, Parartocarpus,
Ficus, Dorstenia, Morus, Artocarpus, and so forth [21,22]. Most natural chalcones occur in
monomeric form. Their great structural diversity stems from the number and position of
various substituents. Some prominent examples of this class of anticancer chalcones have
been isolated from natural sources, such as isoliquiritigenin, butein, and isobavachalcone,
and their potential anticancer activities are described herein (Figure 4).
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Isoliquiritigenin (6) (2′,4′,4-trihydroxychalcone, ISL) is one of the most important
bioactive compounds with a chalcone structure isolated from licorice roots. ISL is known
to have therapeutic potential against various cancers, including breast cancer, colon can-
cer, gastrointestinal cancer, lung cancer, ovarian cancer, leukemia, and melanoma [23].
Furthermore, ISL not only inhibits cancer cell migration and invasion by suppressing
cell proliferation [24], inducing apoptosis and autophagy [25,26], arresting the cell cy-
cle [27], inhibiting angiogenesis [28] and obstructing metastasis [29], but can also enhance
chemosensitivity [30].

Butein (7), a biologically active flavonoid, is derived from the bark of Rhus verniciflua
Stokes and exhibits significant anticancer activity in many types of cancers [31,32]. Butein
shows anticarcinogenic action in non-small cell lung cancer (NSCLC) through endoplasmic
reticulum stress-dependent Reactive Oxygen Species (ROS) generation and an apoptosis
pathway both in vivo and in vitro [33]. In addition, butein induces G2/M phase cell cycle
arrest by inhibiting Aurora B and histone H3 phosphorylation in hepatocellular carcinoma
(HCC) [34]. Butein is also involved in G2/M phase arrest and apoptosis by increasing the
phosphorylation of ataxia telangiectasia mutated (ATM) and checkpoint kinase-1 and 2
(Chk1/2), thereby reducing cell division cycle 25C (cdc25C) levels in HCC [35]. Moreover,
butein can attenuate angiogenesis [36], cell invasion/metastasis, and inflammation [37,38]
by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
signal pathway [39].

Isobavachalcone (8) (IBC) is one of the most useful active compounds among numer-
ous chalcones, and it is predominantly found in plants of the Fabaceae and Moraceae
families [40]. IBC exhibits antitumor activity against numerous cancer types. IBC has
been found to exhibit antiproliferative and proapoptotic activities in HCC by targeting the
extracellular signal-regulated kinases (ERKs)/ribosomal S6 kinase 2 (RSK2) signaling path-
way [41]. Moreover, IBC has been found to induce ROS-mediated apoptosis by targeting
thioredoxin reductase 1 (TrxR1) in human prostate cancer [42]. IBC has also been demon-
strated to inhibit cell proliferation and induce apoptosis by suppressing the AKT/glycogen
synthase kinase 3β (GSK3β)/β-catenin pathway in colorectal cancer cells [43]. Addition-
ally, IBC can inhibit estrogen receptor alpha (ERα) and decrease CD44 antigen expression,
which leads to decreased paclitaxel resistance in ER+ breast cancer [44]. Studies have also
reported that IBC inhibits tumor formation in mouse skin cancer [45] and induces apoptosis
in neuroblastoma [46].
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2.2. Synthetic Chalcone Derivatives

The successful and significant use of naturally occurring chalcones as potential anti-
cancer agents has inspired many efforts directed to developing novel synthetic chalcones
with anticancer properties. Furthermore, investigations into the molecular modification of
the chalcone structure have promoted chemical alterations, which lead to improved chal-
cone physicochemical properties and biological profiles. Among the molecular modification
strategies used, structural manipulation of both aryl rings, replacement of aryl rings with
heteroaryl/alicyclic/steroidal scaffolds and molecular hybridization are the most widely used
examples [6]. The standard scaffold in chalcones (1,3-diphenyl-2-propen-1-one) is the most
widely researched chalcone structure for its potential anticancer activity. Structural manipula-
tions of 1,3-diphenyl-2-propen-1-one are mostly focused on the phenyl rings (A and B). We
summarize the effects of structure–activity relationship (SAR) substitution patterns on chal-
cone anticancer properties in the next section, including electron-donating (-OH and -OCH3),
electron-withdrawing (-Cl, -Br, and -F) and chalcone–metal complexes (Figure 5).

Similar to naturally occurring chalcones, hydroxyl and methoxy groups added to
specific positions on the phenyl ring contribute to the anticancer activity of synthetic com-
pounds. A recent study found that 2′-hydroxy-2,5-dimethoxychalcone (9, half-maximal
inhibitory concentration [IC50]: 9.76-40.83 µM) and 2′-hydroxy-4′,6′-dimethoxychalcone
(10, IC50: 9.18–46.11 µM) exhibit antiproliferative and proapoptotic activity in a panel of
canine lymphoma and leukemia cell lines [47]. Elkhalifa et al. reported that ((E)-3-(4-(Bis(2-
chloroethyl)amino)phenyl)-1-(3-methoxyphenyl)prop-2-en-1-one) (11, IC50: 3.94–9.22 µM)
significantly inhibit tumor invasion and migration in triple-negative breast cancer (TNBC)
by inducing cell cycle arrest and promoting apoptosis [48]. Moreover, Kachadourian et al.
demonstrated that (E)-3-(2-chlorophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-
one (12), an alternate structure of 30 synthetic chalcone derivatives, can induce NF-E2-
related factor 2 (Nrf2) transcriptional activity and increase intracellular levels of glutathione
(GSH) [49]. Kong et al. sought to determine whether methoxylated chalcone analogs of
combretastatin A-4, the boronic acid chalcone (13, the concentration that causes 50% growth
inhibition [GI50]: 10–200 nm), which involve reversible, high-affinity binding at the colchicine
site of tubulin, show prominent anticancer activity in a variety of cancer cell lines [50,51].
These methoxylated chalcone studies indicated that the number and position of methoxy
substituents on the aromatic rings seem to play important roles in cytotoxicity.

A series of halogen-bearing chalcones (14, the median cytotoxic concentration [CC50]:
1.6–18.4 µM) that combine a basic chalcone framework with a halogen moiety (F, Cl, Br, etc.)
have been found to exhibit significant, remarkable cytotoxic potencies and selective toxicity
for tumors [52]. Zhang et al. reported a novel brominated chalcone derivative (15, IC50:
3.57–5.61 µM) with antiproliferative activity in gastric cancer cells in vitro and in vivo
involving ROS-mediated upregulation of death receptors death receptors 5 (DR5) and DR4
expression and apoptosis [53]. Moreover, Padhye et al. found that fluorinated chalcones
(16, IC50: 18.67 µM and 26.43 µM) show more potent antioxidant and antiproliferative
activity against human pancreatic BxPC-3 cancer cells and human breast cancer BT-20 cells
than their hydroxyl counterparts [54].

In recent years, chalcone–metal complexes have attracted widespread attention in
bioinorganic medicinal chemistry due to their chelation/coordination properties with vari-
ous metals and their regulatory effects on various anticancer targets [55]. A recent study
found that new Ru(II)-DMSO (17, IC50: 15–28.64 µM) complexes with substituted chalcone
ligands show significant anti-breast-cancer activity by inhibiting DNA topoisomerase [56].
Similarly, Jovanovic et al. reported that two thiophene-substituted chalcone–ruthenium
complexes with the general formula cis-[Ru(S-DMSO)3(R-CO-CH=CH-R’)Cl] (18, IC50:
22.9–76.8 µM) act as anticancer agents in HeLa cells (human cervical cancer cells) with cy-
totoxic and proapoptotic activity that can remarkably inhibit topoisomerase II and strongly
bind with DNA [57]. Moreover, Samia et al. synthesized palladium (19a), platinum
(19b), gold (19c), and copper (19d) complexes with (E)-3-(4-bromophenyl)-1-(pyridin-2-
yl)prop-2-en-1-one thiosemicarbazone (HPyCT4BrPh) and explored the cytotoxic potential
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against HL-60 (human promyelocytic leukemia), THP-1 (human monocytic leukemia) cells,
MDAMB-231 (human metastatic breast cancer cell line) and MCF-7 (Michigan Cancer
Foundation-7 human breast adenocarcinoma) cell lines (IC50: 0.16–1.27 µM). The coordi-
nation of HPyCT4BrPh complexes to copper and gold has been proven to lead to high
antitumor activity [58,59].
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2.3. Chalcone Hybrids

Hybrid molecules have the potential not only to overcome drug resistance but also
to exhibit increased activity and enhanced specificity [60–62]. Therefore, hybridization
of the chalcone moiety with other anticancer pharmacophores is a promising method for
developing novel anticancer agents [10]. Recently, a number of chalcone hybrids have been
prepared and evaluated for their anticancer activity; some were found to have remarkable
activity both in vitro and in vivo, exhibiting their potential as anticancer drugs.
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2.3.1. Artemisinin–Chalcone Hybrids

Artemisinin derivatives bear a peroxide-containing sesquiterpene lactone moiety and
can produce highly reactive free radicals (peroxyl free radicals and ROS) in the presence
of ferrous ions (Fe[II]) [63,64]. As tumor cells contain a much higher level of Fe[II] ions
than healthy tissue cells, artemisinin derivatives can induce the formation of peroxyl
free radicals and ROS and oxidative stress, DNA damage and selective apoptosis of
cancer cells [65]. Therefore, hybridization of artemisinin and chalcone may provide novel
anticancer candidates that not only induce potent toxicity in cancer cells but also exhibit
high safety levels in normal cells. The chemical structures of artemisinin–chalcone hybrids
are shown in Figure 6.

Smit et al. synthesized a series of artemisinlcone hybrids (20, IC50: 1.02–53.7 µM) and
found not only a potent effect against intraerythrocytic Plasmodium falciparum parasites but
also considerable activity against TK-10 (renal), UACC-62 (melanoma), and MCF-7 cancer
cell lines [66]. α-Configurated artemisinin–chalcone hybrids (22, IC50: 0.10–29 µM) and
β-configurated analogs (21, IC50: 1.7–27 µM; 23, IC50: 0.09–23 µM) also showed greater
antiproliferative and cytotoxic effects than dihydroartemisinin against HT-29 (human
colon cancer cell), A549, MDA-MB-231, HeLa, and H460 (human lung cancer cell) cancer
cell lines [67,68]. Similarly, a novel series of artemisinlcone hybrids (24, 25) prepared
by Gaur et al. showed potent activity against HL-60 (leukemia), Mia PaCa-2 (pancreatic
cancer), PC-3 (prostate cancer), LS180 (colon cancer) and HEPG2 (hepatocellular carcinoma)
cancer cell lines with a high selectivity index [69]. Kapkoti et al. designed 1,2,3-triazole-
containing artemisinin–chalcone hybrids (26, IC50: 7.16–57.18 µM; 27, IC50: 17.14–69.67 µM)
displaying remarkable activity against K562 (human chronic myeloid leukemia cell), PC-3
(human prostate cancer cell), A431 (human skin squamous cell carcinoma), MDA-MB-231
(human metastatic breast cancer cell line), COLO-205 (human colon cancer cell), A549
(human lung cancer cell), and HEK-293 (human embryonic kidney cell) cancer cell lines
with significant induction of ROS formation [70]. Moreover, a toxicity study on human
erythrocytes revealed that these molecules are nontoxic (IC50: >100µg/mL).



Biomolecules 2021, 11, 894 8 of 36
Biomolecules 2021, 10, x  9 of 38 
 

 

  
Figure 6. Chemical structures of artemisinin–chalcone hybrids. 

2.3.2. Chalcone–Azole Hybrids 
Azoles constitute a class of five-membered nitrogen-containing heterocyclic com-

pounds with electron-rich properties [71] that includes imidazole, oxadiazole, pyrazole, 
tetrazole, thiazole, 1,2,3-triazole, and 1,2,4-triazole. Azoles are common pharmacophores 
used in the development of novel anticancer agents. Recently, a chalcone hybridized with 
an azole moiety showed significant potential as a novel anticancer agent (Figure 7). A 
series of chalcone–imidazole hybrids (28, IC50: 1.123–20.134 µM) bearing benzamide or 
benzenesulfonamide moieties (29, IC50: 0.597–19.995 µM) synthesized by Wang et al. dis-
play potential activity against HCT116, MCF-7, and 143B cancer cell lines in vitro. Molec-
ular docking studies and enzymatic assays demonstrated that cathepsin (Cat) L and Cat 
K might be potential targets for these hybrids [72]. Chalcone–oxadiazole hybrids (30, GI50: 
0.32–11.0 µM) have also shown broad spectrum activity against a series of 60 cancer cell 
lines, particularly leukemia cells. Furthermore, these synthesized compounds can inhibit 
epidermal growth factor receptor (EGFR) (IC50: 0.24 µM), proto-oncogene tyrosine-protein 

Figure 6. Chemical structures of artemisinin–chalcone hybrids.

2.3.2. Chalcone–Azole Hybrids

Azoles constitute a class of five-membered nitrogen-containing heterocyclic com-
pounds with electron-rich properties [71] that includes imidazole, oxadiazole, pyrazole,
tetrazole, thiazole, 1,2,3-triazole, and 1,2,4-triazole. Azoles are common pharmacophores
used in the development of novel anticancer agents. Recently, a chalcone hybridized with
an azole moiety showed significant potential as a novel anticancer agent (Figure 7). A series
of chalcone–imidazole hybrids (28, IC50: 1.123–20.134 µM) bearing benzamide or ben-
zenesulfonamide moieties (29, IC50: 0.597–19.995 µM) synthesized by Wang et al. display
potential activity against HCT116, MCF-7, and 143B cancer cell lines in vitro. Molecular
docking studies and enzymatic assays demonstrated that cathepsin (Cat) L and Cat K
might be potential targets for these hybrids [72]. Chalcone–oxadiazole hybrids (30, GI50:
0.32–11.0 µM) have also shown broad spectrum activity against a series of 60 cancer cell
lines, particularly leukemia cells. Furthermore, these synthesized compounds can inhibit
epidermal growth factor receptor (EGFR) (IC50: 0.24 µM), proto-oncogene tyrosine-protein
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kinase (Src) (IC50: 0.96 µM), and interleukin-6 (IL-6) (% of control: 20%) and might play
anticancer roles in various cancers [73].

Moreover, Hawash et al. reported that chalcone-pyrazole hybrids (31, IC50: 0.5–4.8 µM)
cause cell cycle arrest in G2/M phase followed by apoptotic cell death and impaired cell
growth in HCC cell lines [74], indicating that these hybrids may be considered potential
chemotherapeutic agents for the treatment of HCC. A majority of chalcone–tetrazole
hybrids (32, IC50: 0.6–3.7 µg/mL; 33, IC50: 2.5–31.4 µg/mL; 34, IC50: 12.0–42.4 µg/mL)
have been shown to exert superior activity against colon HCT116, prostate PC-3, and breast
MCF-7 cancer cell lines than cisplatin or fluorouracil [75].

Treatment with drug-resistant cell lines (CEM/ADR5000, MDA-MB-231/BCRP,
HCT116(p53−/−), and U87MG/∆EGFR cells) with thiazole-containing chalcone derivatives
(35, IC50: 2.72–41.04 µM) was found to induce significant hypersensitivity effects, suggesting
that these compounds are suitable molecules to combat the drug resistance of cancer cells [76].
Triazole has two structures: 1,2,3-triazole and 1,2,4-triazole. Both of these forms have shown
potential as novel anticancer candidates. Both of them have shown their potential as novel
anticancer candidates. Hussaini et al. synthesized a series of chalcone-1,2,3-triazole hybrids
(36, GI50: 1.3–186.2 µM) with the same substituents as combretastatin-A4, which can lead to the
accumulation of A549, HeLa, DU145, and HepG2 cancer cell lines in the G2/M phase, inhibit
tubulin polymerization, and trigger apoptosis by inducing changes to the mitochondrial mem-
brane potential and activating caspases 3 and 9 [77]. Moreover, Ahmed et al. prepared a series of
novel 1,2,4-triazole/chalcone hybrids (37, IC50: 4.4–16.04 µM) that can induce the apoptosis of
human lung adenocarcinoma A549 cells through a caspase-3-dependent pathway [78].
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2.3.3. Chalcone–Coumarin Hybrids

Coumarin derivatives have been shown to exhibit a variety of anticancer mechanisms,
and some of these derivatives, such as irosustat, are in clinical trials for multiple cancer
treatments, exhibiting their potential as putative anticancer drugs [79]. Thus, hybridization
of chalcone with coumarin may produce attractive novel anticancer candidate agents
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(Figure 8). A recent report by Wang et al. demonstrated that a series of coumarlcone hybrids
can decrease TrxR expression and significantly induce ROS accumulation to activate the
mitochondrial apoptosis pathway. The representative hybrids (38, IC50: 3.6 µM) have
exhibited higher antitumor activity against HCT116 cells than xanthohumol (Xn) [80].
Sinha et al. also reported chalcone–coumarin hybrids (39, S009-131) that show potential
antiproliferation activity against cervical cancer cells (HeLa (IC50: 4.7 µM) and C33A (IC50:
7.6µM)) by inducing apoptosis and arresting the cell cycle at G2/M phase [81–83]. This
molecule induces an increase in the Bax/Bcl-2 ratio and intracellular ROS and then releases
cytochrome c into the cytosol to activate the initiator caspase-9 and executioner caspase-3/7.
Moreover, the tumor suppressor protein p53 and its transcriptional target p53 upregulated
modulator of apoptosis (PUMA) are upregulated, suggesting their role in mediating cell
death. In addition, chalcone–coumarin hybrids (40, IC50: 0.65–2.02 µM) have been shown
to exert significant cytotoxic activity against HEPG2 liver cancer and K562 leukemia cells.
Interestingly, these hybrids can also induce apoptosis by activating caspases 3 and 9 [84].
In addition, chalcone–coumarin hybrids (41, GI50: 22.11–41.08 µM) have been found to
have antiproliferative activity in breast cancer cell lines (MDA-MB231, MDA-MB468, and
MCF7 cells), which is comparable to cisplatin (GI50: 23.65–31.02µM) [85,86].
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2.3.4. Chalcone–Indole Hybrids

Due to the versatile nature of indoles, a variety of indole derivatives have been recently
designed as anticancer agents that act via different mechanisms of action as histone deacety-
lases (HDACs), sirtuins, and DNA topoisomerase, etc. [87,88]. Several indole-containing
drugs, such as semaxanib and sunitinib, have been used in the clinic for cancer treat-
ment [89,90], and chalcone–ndole hybrids may represent a promising strategy to produce
novel anticancer candidates (Figure 9). Chalcone–indole hybrids (42, IC50: 0.23–1.8 µM)
synthesized by Wang et al. have been shown to display potent cytotoxic activity against
all tested cancer cell lines, including drug-sensitive HepG2, SMMC-7221, PC-3, A549,
K562, HCT116, SKOV3, and MCF-7, drug-resistant HCT-8/T (resistant to paclitaxel) and
HCT-8/V (resistant to vincristine) cancer cells. The growth of tumors in hybrid-treated
mice has been shown to be inhibited in an in vivo HepG2 hepatocarcinoma mouse model.
Moreover, these molecules markedly induce cell cycle arrest in the G2/M phase and inhibit
the polymerization of tubulin [91,92]. Yan et al. also reported indole-chalcone derivatives
(43, IC50: 45–782 nM; 44, IC50: 23–77 nM; 45, IC50: 3–679 nM) that exhibit potent antiprolif-
eration activity in A549, HeLa, Bel-7402, MCF-7, A2780, and HCT-8 cancer cells. A further
mechanistic study demonstrated that this hybrid induces low levels of cytotoxicity in
normal human cells and exhibit metabolic stability in mouse liver microsomes. It also
can inhibit tumor growth in xenograft models in vivo without apparent toxicity. Cellular
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mechanism studies elucidated that this hybrid is a novel tubulin polymerization inhibitor
that binds to the colchicine site, arresting the cell cycle in the G2/M phase and inducing
apoptosis along with a decrease in the mitochondrial membrane potential [93]. Cong et al.
explored the anticancer potential of indole-chalcone derivatives (46, FC77, GI50: 1–53.4 nM)
against a panel of MDR cancer cell lines, including HL60/DOX (doxorubicin-resistant),
K562/HHT300 (homoharringtonine-resistant), CCRF-CEM/VLB100 (vinblastine-resistant),
A549/T (paclitaxel-resistant), A549/DDP (cisplatin-resistant) and HCT-116/L (oxaliplatin-
resistant) cells. Several of these MDR cancer cell lines show no resistance to these indole-
chalcone derivatives. Further investigation revealed that this molecule can arrest cells that
are involved in tubulin-binding and inhibit microtubule dynamics [94]. Taken together,
these studies show that chalcone-indole hybrids can potentially serve as novel microtubule-
targeting agents for the further development of potential drug candidates for the treatment
of MDR cancers.
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In addition to the aforementioned chalcone hybrids, other hybrids, such as chalcone–
ferrocene [95–97], chalcone–furan/thiophene hybrids [98–101], chalcone–pyridine/pyrimidine
hybrids [102–106], chalcone–quinoline/quinolone hybrids [107–111],
chalcone–quinoxaline/quinazolinone hybrids [112–114], chalcone-quinone hybrids [115–117],
chalcone–triazine hybrids [118,119], and chalcone–dithiocarbamate hybrids [120,121] also showed
certain anticancer activity.

3. Representative Mechanisms of Anticancer Action of Chalcones

Many efforts have been made to characterize the mechanism of action of chalcone
compounds. Their multitarget and broad-spectrum biological activities have been reviewed
in previous papers [2,6–8,19,122–124]. On the other hand, the extensive biological activity
spectrum of chalcones also indicates their potential for confounding targeted treatment,
posing a challenge to chalcone clinical development. Thus, understanding the mechanisms
of chalcones and their direct molecular targets is particularly important for the development
of clinically useful chalcone compounds in the future. This section, therefore, presents



Biomolecules 2021, 11, 894 13 of 36

a summarizes of the representative mechanisms of the anticancer action of chalcones
reported in recent years (Figure 10).
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Figure 10. Representative Mechanisms of Anticancer Action of Chalcones. Chalcone compounds have a chemical scaffold
that can be conveniently modified to alter their overall biological activity. In different screening assays, chalcones have
been able to target multiple cellular molecules, such as MDM2/p53, tubulin, NF-kappa B, VEGF, VEGFR-2 kinase, HIF-1,
MMP-2/9 and P-gp/MRP1/BCRP. As a result, chalcones may play an anticancer role through tumor cell apoptosis induction,
microtubule polymerization, anti-inflammatory, antiangiogenesis and MDR inhabitation. This property makes chalcones
very attractive as basic building blocks for the synthesis of cancer molecule-targeting agents. Abbreviations: 20-HETE,
20-Hydroxyeicosatetraenoic acid; AKT, protein kinase B; BCRP, breast cancer-resistance protein; COX-2, cyclooxygenase-2;
CRM1, chromosome region maintenance 1; CYP, cytochrome P450; Fli-1, friend leukemia integration-1; HIF-1, hypoxia-
inducible factor-1; HSP40, heat-shock protein 40; IKKs, IκB kinases; IL-1β, interleukin-1β; iNOS, inducible nitric oxide
synthase; MDM2, the mouse double minute 2; MDR, multidrug resistance; MMP, matrix metalloproteinase; MRP1, multidrug
resistance-associated protein 1; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; P-gp, P-glycoprotein;
PI3K, phosphatidylinositol 3-kinase; p-Smad2, phosphorylation of the transcription factors Smad2; ROS, reactive oxygen
species; TGF-β, transforming growth factor-β; TNF, tumor necrosis factor; VEGF, vascular endothelial factor.
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3.1. Chalcones Target the p53 Pathway

The tumor protein p53 modulates the cell cycle and functions as a tumor suppressor.
p53 plays important roles in maintaining cellular and genomic integrity and preventing
the proliferation of incipient cancer cells. p53 is degraded by various compounds, such as
the mouse double minute 2 (MDM2) and Sirtuin-1. Inhibition of p53 protein degradation is
a critical strategy in anticancer therapy (Table 1) [125,126].

MDM2 is the most notable negative regulator of p53. MDM2, an E3 ubiquitin ligase,
downregulates p53 activity by constantly monoubiquitinating p53, which is an impor-
tant step in mediating its degradation by nuclear and cytoplasmic proteasomes [127].
Thus, disruption of p53-MDM2 is the key event in p53 activation. Silva et al. found that
trans-chalcone (TChal) (1) could downregulate Specificity proteins 1 (Sp1), a transcription
factor involved in cell proliferation and differentiation, and upregulate p53 expression
in U2OS osteosarcoma cells [128]. However, Dos et al. reported that series of chalcones
with halogens on ring B and additional benzene rings (47 IC50: 13.2–34.7 µM, Figure 11)
showed antiproliferative activity against breast cancer cells (MCF-7 and MDA-MB-231),
with upregulation of p53 and showed no effect on Sp1 protein expression [129]. Further
mechanistic studies demonstrated that TChal could bind and degrade chromosome region
maintenance 1 (CRM1), a nuclear export receptor involved in the active transport of tumor
suppressors, and increase heat-shock protein 40 (HSP40) expression in U2OS osteosarcoma
cells; the interaction of HSP40 with MDM2 blocked MDM2-mediated ubiquitination of p53,
leading to the enhanced stability and activation of p53 [128,130]. Moreover, Siqueira et al.
reported that TChal could reestablish the p53 pathway and prevent the overexpression of
Wnt/β-catenin tumor development, inducing autophagy-related cell death and decreasing
the metastatic capacity of HCC HuH7.5 cells [131]. Seba et al. reported that the chalcone
derivative 4′-aminochalcone (48) inhibited the migration and invasion of osteosarcoma cells
through the inhibition of extracellular matrix enzymatic degradation and the modulation
of p53, regulating the epithelial-mesenchymal transition (EMT)-related genes [132].

A coumarlcone hybrid (39, S009-131) synthesized by Sashidhara et al. could induce
the DNA damage response and trigger p53 activation through the phosphorylation of
its key residues. Further mechanistic studies showed that the p53-MDM2 interaction
was disrupted by DNA damage-induced phosphorylation. In addition, docking studies
demonstrated that this hybrid could occupy the p53-binding pocket of MDM2 and increase
cellular p53 levels [81,82]. Interestingly, Cabral et al. reported that a novel chalcone-like
compound (49, LQFM064) exhibited cytotoxic activity against MCF7 cells (IC50: 21 µM)
by inducing cell cycle arrest at the G0/G1 phase with increased p53 and p21 expression.
However, the compound did not interfere directly with p53/MDM2 complexation in MCF7
cells but activated both apoptotic pathways via the modulation of proteins involved in the
extrinsic and intrinsic pathways, exhibiting an increase in tumor necrosis factor receptor-1
(TNF-R1), Fas ligand (Fas-L) and Bax levels and a reduction in Bcl-2 expression [133]. Taken
together, these studies suggested that the diverse chemical structures of chalcones may
contribute to their differential effects mediated through the p53 pathway.
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Table 1. Chalcones and the p53 pathway.

Lead Compounds Mechanisms of Action Reference

Trans-chalcone (1)

Enhances the expression of HSP40 and inhibits
CRM1, thereby blocking MDM2-mediated
ubiquitination of p53 and enhancing p53

accumulation in the nucleus.

Silva et al.
[128,130]

2-fluoro-4’-aminochalcone
(47a) and

3-pyridyl-4’-aminochalcone
(47b)

Induces apoptosis by up-regulating p53
expression and without Sp1 expression

alteration in MCF-7 cells

Dos Santos
et al. [129]

Trans-chalcone (1)

Induces death by autophagy mediated by p53
up-regulation and Wnt/β-catenin

down-regulation on human hepatocellular
carcinoma HuH7.5 cell line

Siqueira
et al. [131]

Chalcone derivative
4′-aminochalcone (48)

Suppresses migration and invasion of
osteosarcoma cells mediated by p53 regulating

EMT-related genes

Seba et al.
[132]

Coumarlcone hybrid (39,
S009-131)

Instigates DNA damage, disrupts p53-MDM2
interaction and stabilizes p53 through

post-translational modifications in both vitro and
vivo of HeLa cells

Sashidhara
et al.

[81,82]

(E)-3-(3, 5-di-ter-butyl-4-
hydroxyphenyl)-1-(4-

hydroxy-3-methoxyphenyl)
prop-2-en-1-one (49,

LQFM064)

Induces cell cycle arrest at the G0/G1 phase with
up-regulation of p53 and p21

Cabral et al.
[133]

3.2. Chalcones Target Tubulin Polymerization

Tubulin is a dimeric protein consisting of two similar, nonidentical subunits: α and β.
The discovery of chalcones as antimitotic agents was first reported nearly 30 years ago [134].
Based on the understanding of the colchicine-tubulin structure–activity relationship, chal-
cone derivatives are modeled as colchicine analogs, which can bind to tubulin and prevent
its polymerization, leading to abrupt interruption of mitotic spindle assembly, interference
with the function of the cytoskeleton, and interrupted mitosis. The structure–activity
relationships of numerous chalcone derivatives have since been studied with colchicine
and vinblastine as controls (Table 2).

Numerous chalcones have demonstrated a capacity for binding β-tubulin similar to
that of combretastatin 4A, destabilizing microtubule polymers and thus serving as combre-
tastatin 4A analogs. Ducki et al. synthesized and developed CA-4 type chalcones SD400
(50) and α-phenyl chalcone (51) (Figure 12), which displayed potent inhibition of tubulin
polymerization with arrest in the G2/M phase and showed promising antivascular activ-
ity [135,136]. Kamal et al. reported that a series of phenstatin/isocombretastatin–chalcones
(52, GI50: 0.11–19.0 µM) displayed potent antiproliferative activity in a panel of sixty human
cancer cell lines [137]. A competitive binding assay suggested that these compounds were
bound to the colchicine-binding site of tubulin, inducing potent inhibitory effects on tubu-
lin assembly and leading to arrest in the G2/M phase and apoptotic cell death. Moreover,
Kode et al. found that new phenstatin-based indole-linked chalcone compounds (53, GI50
< 0.1 µM) showed anticancer activity in SCC-29B human oral cancer cells, spheroids and
AW13516 oral cancer xenograft model mice [138]. Further mechanistic studies revealed
that these compounds destabilized tubulin, leading to loss of cell integrity and affecting
glucose metabolism. In addition, surface plasmon resonance confirmed direct molecu-
lar interactions between tubulin and these compounds. A novel chalcone-1,2,3-triazole
derivative (54) synthesized by Yan et al. showed significant antitumor activity against liver
cancer HepG2 cells in vitro with an IC50 value of 0.9 µM and in vivo with low toxicity in
mice. Moreover, they found that this derivative might be a potent tubulin polymerization
inhibitor [139]. Canela et al. reported a new chalcone, called TUB091 (55), that binds to the
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colchicine site of tubulin, as shown by X-ray crystallography [140]. TUB091 inhibited cancer
and endothelial cell growth and induced G2/M phase arrest and apoptosis at 1-10 nM.
Furthermore, TUB091 showed vasculature disruption both in vitro and in melanoma and
breast cancer xenograft models. Alswah et al. reported that triazoloquinoxaline-chalcone
derivatives (56, IC50: 1.65–34.28 µM) displayed significant antiproliferative effects against
MCF-7, HCT-116 and HEPG-2 cells [141]. A molecular docking study demonstrated that
the binding modes of these chalcones were targeted to epidermal growth factor receptor
tyrosine kinase (EGFR-TK) and tubulin. Moreover, Mphahlele and his coworkers found
that 2-arylbenzo[c]furan-chalcone hybrids (58) showed the potential to exhibit inhibitory
effects against tubulin polymerization and EGFR-TK phosphorylation [98]. In summary,
chalcones can be considered attractive tubulin polymerization inhibitor candidates for
developing anticancer therapeutics.

Table 2. Chalcones affect tubulin polymerization.

Lead Compounds Mechanisms of Action Reference

CA-4 type chalcones SD400
(50) and α-phenyl chalcone

(51)

Populate the colchicine-binding site of
beta-tubulin and inhibit tubulin assembly in the
K562 human chronic myelogenous leukemia cell

line

Ducki et al.
[135,136]

A series of
phenstatin/isocombretastatin–

chalcones
(52)

Inhibit tubulin assembly, arrest in the G2/M
phase and induce apoptosis in a panel of sixty

human cancer cell lines

Kamal et al.
[137]

Phenstatin based indole
linked chalcone compounds

(53)

Destabilizes tubulin, leading to loss of cell
integrity and affecting glucose metabolism in

SCC-29B human oral cancer cells, spheroids and
AW13516 oral cancer xenograft model mice

Kode et al.
[138]

Chalcone-1,2,3-triazole
derivative (54)

Inhibits tubulin polymerization in liver cancer
HepG2 cells

Yan et al.
[139]

(E)-3-(3-amino-4-
methoxyphenyl)-1-(5’-

methoxy-3’,4’-
methylendioxyphenyl)-

2-methylprop-2-en-1-one (55,
TUB091)

Destabilizes microtubule, targets vascular and
shows antitumor and antimetastatic activities in
melanoma and breast cancer xenograft models

Canela et al.
[140]

Triazoloquinoxaline-chalcone
derivatives (56)

Displays significant antiproliferative effects
against MCF-7, HCT-116 and HEPG-2 cells

Alswah
et al. [141]

2-arylbenzo[c]furan-chalcone
hybrids (57)

Inhibits tubulin polymerization and EGFR-TK
phosphorylation in the human breast cancer

(MCF-7) cell line

Mphahlele
et al. [98]



Biomolecules 2021, 11, 894 17 of 36
Biomolecules 2021, 10, x  18 of 38 
 

 

 
Figure 12. Chalcones target tubulin polymerization. 

3.3. Chalcones and the NF-κB Pathway 
The nuclear factor kappa B (NF-κB) is a crucial transcription factor that plays an im-

portant role in inflammation, innate immunity and carcinogenesis. NF-κB signaling was 
shown to contribute to cancer progression through the upregulation of tumor-promoting 
cytokines and survival genes (e.g., Bcl-2), inhibition of apoptosis, and promotion of angi-
ogenic factors, and it manifests a migratory and invasive phenotype [142]. Thus, NF-κB 
inhibitors mediated effects that could lead to an antitumor response or to moresensitive 
antitumor drug action. NF-κB activity is regulated primarily by IκB kinases (IKKs), which 
are recognized as the central mediators of immune responses and inflammation [143]. In-
terference of NF-κB function through IKK inhibition is expected to suppress NF-κB pro-
tein translocation to the nucleus and is considered a promising strategy for disease treat-
ment, especially against inflammation and inflammation-related cancer [144–146]. 

Chalcones demonstrate NF-κB inhibitory activity by inducing the covalent modifica-
tion of IKK proteins via an α,β-unsaturated ketone with Michael-type activity (Table 3). 
Indeed, Pandey et al. reported that butein (3,4,2',4'-tetrahydroxy chalcone) (7) suppressed 
NF-κB activity and NF-κB-regulated gene expression by conjugating the cysteine 179 res-
idue of IKK and then blocking the phosphorylation and degradation of IκBα [147]. Simi-
larly, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) (58, Figure 13) inhibited the Toll-like 
receptor 4-mediated inflammatory response through suppression of the Akt//IKK/NF-κB 
signaling pathway in BV2 microglial cells [148]. In addition, isoliquiritigenin [149–151], 

Figure 12. Chalcones target tubulin polymerization.

3.3. Chalcones and the NF-κB Pathway

The nuclear factor kappa B (NF-κB) is a crucial transcription factor that plays an
important role in inflammation, innate immunity and carcinogenesis. NF-κB signaling was
shown to contribute to cancer progression through the upregulation of tumor-promoting
cytokines and survival genes (e.g., Bcl-2), inhibition of apoptosis, and promotion of an-
giogenic factors, and it manifests a migratory and invasive phenotype [142]. Thus, NF-κB
inhibitors mediated effects that could lead to an antitumor response or to moresensitive
antitumor drug action. NF-κB activity is regulated primarily by IκB kinases (IKKs), which
are recognized as the central mediators of immune responses and inflammation [143]. In-
terference of NF-κB function through IKK inhibition is expected to suppress NF-κB protein
translocation to the nucleus and is considered a promising strategy for disease treatment,
especially against inflammation and inflammation-related cancer [144–146].

Chalcones demonstrate NF-κB inhibitory activity by inducing the covalent modifica-
tion of IKK proteins via an α,β-unsaturated ketone with Michael-type activity (Table 3). In-
deed, Pandey et al. reported that butein (3,4,2’,4’-tetrahydroxy chalcone) (7) suppressed NF-
κB activity and NF-κB-regulated gene expression by conjugating the cysteine 179 residue
of IKK and then blocking the phosphorylation and degradation of IκBα [147]. Similarly, 2-
hydroxy-3’,5,5’-trimethoxychalcone (DK-139) (58, Figure 13) inhibited the Toll-like receptor
4-mediated inflammatory response through suppression of the Akt//IKK/NF-κB signaling
pathway in BV2 microglial cells [148]. In addition, isoliquiritigenin [149–151], flavokawain
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A and B [152], licochalcone A [153], cardamonin [154–156] and xanthohumol [157] all
showed anti-inflammatory and anticancer activities by preventing the degradation of IκBα
and in turn blocking NF-κB activation. Moreover, Venkateswararao et al. evaluated the
inhibitory activity of a series of chalcone derivatives (59, IC50: 1.17–3.43 µM) against NF-κB
and their in vitro antiproliferative activity against various human cancer cell lines, and
they found a good correlation between NF-κB inhibition through these derivatives and
antiproliferative activity [158]. Gan et al. also designed two novel dihydrotriazine-chalcone
compounds (60) previously found to exert antiproliferative effects through dual targeting
of dihydrofolate reductase (DHFR) and TrxR, which could inhibit the in vitro migration of
MDA-MB-231 breast carcinoma cells through dose-dependent downregulation of matrix
metalloproteinase-9 (MMP-9) expression and secretion [159]. Moreover, these chalcone-
based compounds inhibited inflammatory mediator expression, including inducible nitric
oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and tumor necrosis factor alpha
(TNF-α), through suppression of the NF-κB signaling pathway. In conclusion, chalcones
can be developed as novel scaffolds that target both invasion and inflammation to develop
chemopreventive and/or anticancer therapies.

Table 3. Chalcones and the NF-κB Pathway.

Lead Compounds Mechanisms of Action Reference

Butein (7) Blocks the phosphorylation and degradation of IκBα and
suppresses NF-κB activity in KBM-5 (human myeloid) cells Pandey et al. [147]

2-hydroxy-3’,5,5’-
trimethoxychalcone (58,

DK-139)

Inhibits the Akt//IKK/NF-κB signaling pathway in BV2
microglial cells Lee et al. [148]

(E)-1-(2-hydroxy-6-
(isopentyloxy)phenyl)-3-(4-

hydroxyphenyl)prop-2-en-1-one
(59)

Inhibits NF-κB activity in vitro and shows antiproliferative
activity against various human cancer cell lines, namely ACHN
(renal), NCI-H23(lung), MDA-MB-231 (breast), HCT-15 (colon),

NUGC-3 (stomach) and PC-3 (prostate).

Venkateswararao et al.
[158]

Dihydrotriazine-chalcone
compounds (60)

Inhibits IKKα/β phosphorylation, leading to a reduction in
phosphorylation of the p65 subunit and eventually suppression of
NF-κB-dependent transcriptional activation of MMP-9 expression.

in MDA-MB-231 breast carcinoma cells

Gan et al. [159]
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3.4. Chalcones as Inhibitors of Angiogenesis

Angiogenesis is a promising target for cancer treatment due to its important role in
cancer progression and metastasis. Chalcones were recently documented to modulate
several steps in angiogenesis, such as vascular endothelial factor (VEGF), basic fibroblast
growth factor (bFGF), transforming growth factor-β (TGF-β) signaling pathway or hypoxia-
inducible factor-1 (HIF-1) [160–162], MMP activity or endothelial cell proliferation and
migration (Table 4).

Ma et al. found that a 3′,5′-diprenylated chalcone (61, Figure 14) likely showed friend
leukemia integration-1 (Fli-1) agonism and regulation of the expression of VEGF-1, TGF-
β2, intercellular cell adhesion molecule-1 (ICAM-1), p53, and MMP-1 genes, which are
associated with tumor apoptosis, migration, and invasion in prostate cancer cells [163].
Iheagwam et al. performed a molecular docking analysis, also showing that flavonoids (62)
isolated from young Caesalpinia bonduc twigs and leaves displayed strong interactions with
TK, VEGF, and MMP [164]. Wang et al. screened nearly 36,043 compounds and found that
isoliquiritigenin (6) exhibited the most potent antiangiogenic activities in zebrafish with
the concentration for 50% of maximal effect (EC50) values of 5.9 µM [28]. Mechanistically,
isoliquiritigenin inhibited arachidonic acid (AA) metabolic enzymes, including COX-2,
microsomal prostaglandin E synthase-1 (mPGES-1) and cytochrome P450 (CYP) 4A11, in
glioma and resulted in the inhibition of the angiogenic Akt-FGF-2/TGF-β/VEGF signaling
pathway through ceRNA effects on miR-194-5p and lncRNA NEAT1. Moreover, Wang et al.
also found that isoliquiritigenin could inhibit breast cancer growth and neoangiogenesis
accompanied by VEGF/VEGFR-2 signaling suppression, an elevated apoptosis rate and
few toxicity effects both in vitro and in vivo [165]. Molecular docking simulation indicated
that isoliquiritigenin could stably form hydrogen bonds and aromatic interactions within
the ATP-binding region of VEGFR-2. Kwon et al. demonstrated that the oral administration
of licochalcone E (LicE) (63) significantly inhibited solid tumor growth and lung metastasis
of mammary cancer cells, which was associated with suppression of tumor angiogenesis
and lymphangiogenesis, as well as a decrease in inflammatory status in the tumor and
lung (the target organ) tissues [166]. In addition, Saito et al. found that xanthohumol (64),
a prenylated chalcone in hops (Humulus lupulus L.), blocked angiogenesis in pancreatic
cancer by reducing both NF-κB activity and the subsequent production of angiogenic
factors VEGF and IL-8 in vitro and in vivo [167].

In addition to the inhibitory effect of chalcones on VEGF, chalcones also demonstrated
potential inhibitory activity against other angiogenic factors. Wang et al. synthesized
a novel series of chalcone derivatives (65), and a tested compound exhibited significant
inhibitory effects on HIF-1. In addition, the tested compound inhibited tumor invasion and
angiogenesis in vitro and in vivo with good tolerance and presented a good therapeutic
window [168]. Wang and colleagues reported that FLA-16 (66), a novel chalcone-type
flavonoid isolated from Glycyrrhiza glabra roots, inhibited CYP4A, prolonged the survival
and normalized the vasculature of glioma by decreasing the production of tumor-associated
macrophages (TAMs) and endothelial progenitor cell (EPC)-derived VEGF and TGF-β
in vitro and in vivo [169]. Jeong et al. also reported that an improved analog of chalcone
(67) could suppress the TGF-β1-induced EMT of human A549 lung cancer cells [170].
Stanojkovic et al. found a series of highly selective anthraquinone–chalcone hybrids (68,
IC50: 3.87–5.99 µM) showing anti-invasive, antimetastatic, and antiangiogenic properties
by decreasing the expression levels of MMP2, MMP9, and VEGF against K562 cells [171].
Moreover, a number of chalcone analogs of combretastatin 4A demonstrated significant
effects in tumor blood vessels (for details, see Section 3.2). In summary, the use of chalcones
is a potential therapeutic strategy to reduce inflammation and tumor angiogenesis.
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Table 4. Chalcones affect the tumor vasculature.

Lead Compounds Mechanisms of Action Reference

3′,5′-diprenylated chalcone (61) An Fli-1 agonist for regulating the expression of Fli-1 target genes
including VEGF-1, TGF-β2 and MMP-1 genes of prostate cancer cells Ma et al. [163]

Flavonoids (62) isolated from
young Caesalpinia bonduc twigs

and leaves

A molecular docking analysis shows the interaction between them
and cancer target proteins (TK, VEGF, and MMP) Iheagwam et al. [164]

Isoliquiritigenin (6, ISL) Inhibits the angiogenic Akt- FGF-2/TGF-β/VEGF signaling in C6
glioma cell line and the rat C6 glioma model. Wang et al. [28]

Isoliquiritigenin (6, ISL)

Inhibits VEGF expression via promoting HIF-1α proteasome
degradation pathway and blocks VEGFR-2 activation and the

transduction of its downstream signaling in human umbilical vein
endothelial cells (HUVECs), MCF-7 cells and MDA-MB-231 cells and

in vivo tumor xenograft of MDA-MB-231 cells

Wang et al. [165]

Licochalcone E (63, LicE) Decreases expression of VEGF-A and C, VEGF receptor 2, and
HIF-1α in the mouse model of breast cancer Kwon et al. [166]

Xanthohumol (64)
Inhibits angiogenesis by suppressing NF-κB activation and the

subsequent production of angiogenic factors VEGF and IL-8 in vitro
and in vivo of pancreatic cancer (BxPC-3)

Saito et al. [167]

Chalcone-based compounds
with 2,2-dimethylbenzopyran

(65)

Inhibits HIF-1 by downregulating the expression of HIF-1α in Hep3B
and HUVEC cells and Hep3B xenograft models Wang et al. [168]

2, 3’, 4, 4’-tetrahydroxy-3,
5’-diprenylchalcone (66,

FLA-16)

Inhibits CYP4A and prolongs survival and normalizes vasculature in
C6 and U87 gliomas tumor models through decreasing production of

TAMs and EPCs-derived VEGF and TGF-b.
Wang et al. [169]

Analog of chalcone (67) Suppresses TGF β1, induces EMT markers, MMP 2 and MMP 9, and
inhibits migration and invasion of A549 cells Jeong et al. [170]

Anthraquinone-chalcone
hybrids (68)

Decreases in the expression levels of MMP2, MMP9, and VEGF in
K562 cells Stanojkovic et al. [171]
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3.5. Chalcones as Inhibitors of MDR Channels

Numerous studies have focused on the ability of chalcone to mediate resistance to
conventional chemotherapeutic drugs by modulating multidrug efflux transporters, which
are essential components of intracellular drug accumulation [172,173]. Most of the investi-
gated chalcones showed the ability to inhibit three well-characterized members of the ATP-
binding cassette (ABC) transporter family: P-glycoprotein (P-gp, ABCB1), multidrug resistance-
associated protein 1 (MRP1, also known as ABCC1), and breast cancer-resistance protein (BCRP,
ABCG2), main contributors to the MDR in cancer cells. Therefore, chalcones have received
considerable attention as chemosensitizers for clinical drug resistance and for improving the
pharmacokinetics of poorly absorbed chemotherapeutic cancer drugs (Table 5).

In the late 1990s, Bois et al. explored the structural requirements of chalcones for P-gp regula-
tion and found that 2′,4′,6′-trihydroxy-4-iodochalcone and 4-alkoxy-2′,4′,6′-trihydroxychalcones
exhibited high-affinity binding for P-gp [174,175]. Recently, using computer-aided drug
design (CADD) methods, including 2D- and 3D-quantitative structure–activity relation-
ships (QSAR), molecular modeling, and docking analyses, Parveen et al. [176] and Ngo
et al. [177], reported a series of novel synthesized chalcones (69, IC50: 42 nM; Figure 15)
showing high levels of biological activity and indicating the importance of specific groups
for P-gp inhibitory effects. Other authors explored the ability of chalcone derivatives
to regulate the effects of P-gp on MDR. For example, Gu and colleagues synthesized a
series of bifendate–chalcone hybrids (70) and found that the best compound with minimal
intrinsic cytotoxicity (IC50 > 200 µM) could increase the accumulation of rhodamine-123
in K562/A02 human leukemia cells more potently than bifendate or verapamil (VRP)
by inhibiting P-gp efflux function [178]. Moreover, Yin et al. also reported that a novel
chalcone derivative, MY3 (71, IC50: 1.02 µM), not only induced little intrinsic cytotoxicity
but also reversed DOX resistance in MCF-7/DOX cells via suppression of P-gp [179]. More
importantly, MY3 markedly enhanced the efficacy of DOX treatment in MCF-7 tumor
xenografts, without changed model body weight. Li et al. reported that flavokawain
A (FKA) (72, IC50: 21 µM) inhibited P-gp protein expression by blocking the PI3K/Akt
pathway in paclitaxel (PTX)-resistant A549 (A549/T) cells, indicating that FKA combined
with PTX reversed PTX resistance [180]. Furthermore, they used national medical product
administration (NMPA)-approved aescinate (Aes) to prepare twin-like nanoparticles (NPs)
such as PTX-A NPs and FKA-A NPs, which reversed PTX resistance both in vitro and
in vivo by inhibiting P-gp expression in A549/T cells [181].

Moreover, the potential modulatory effect of bioactive compounds of chalcones on
ABCG2-mediated multidrug resistance has been investigated for years. Wu et al. reported
that licochalcone A (LCA) (73), a natural chalcone isolated from the root of Glycyrrhiza inflata,
inhibited the drug transport function of ABCG2 and reversed ABCG2-mediated multidrug
resistance in human multidrug-resistant cancer cell lines in a concentration-dependent man-
ner [182]. An in silico docking analysis used to discern the role of LCA in the inward-open
conformation of human ABCG2 revealed LCA binding ABCG2 in the transmembrane
substrate-binding pocket. Kraege et al. synthesized a series of novel heterodimeric modu-
lators based on the combination of chalcones with quinazolines (74), and the most potent
ABCG2 inhibitor in this series (IC50: 0.19 µM) was selective, nontoxic (GI50: 93 µM) and
able to reverse MDR [114]. Winter and colleagues synthesized symmetric bis-chalcones
with different substituted groups and screened them to determine their ability to inhibit
mitoxantrone efflux from ABCG2-transfected HEK293 cells. The best derivative (75) was
selective for ABCG2 over P-glycoprotein and MRP1 and stimulated ABCG2 basal ATPase
activity [183]. Peña-Solórzano et al. found that tariquidar-related chalcones (76) exhibited
selectivity for ABCG2 to a greater extent than the transporters ABCB1 and ABCC1 [109].
Notably, novel quinolone chalcones (77) synthesized by Lindamulage et al. could overcome
multidrug resistance by impeding MRP1 function while maintaining strong inhibition of
microtubule activity [111]. This compound exhibited strong anticancer activity, alone or in
combination with paclitaxel, without causing any notable side effects in mice engrafted
with MDA-MB-231 triple-negative breast cancer cells.
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Interestingly, some studies demonstrated the effect of a dual ABCG2/ABCB1 inhibitor.
For example, Boumendjel et al. reported a novel chalcone derivative, JAI-51 (78), acting not
only as a microtubule-depolymerizing agent but also as an inhibitor of P-gp and BCRP in vitro
and in vivo in glioblastoma models [184]. Han et al. [185] and Cai et al. [186] found that
nonbasic chalcone (79) served as a dual ABCG2/ABCB1 inhibitor by inhibiting ABCG2 and
ABCB1 ATPase activities, not by altering the expression or localization of the ABCG2 or ABCB1
transporters. Silbermann et al. described two novel chalcone and flavone derivatives (80) [99].
One of these inhibitors (80a, IC50: 3.37 µM) was a highly potent reverser of ABCG2-mediated
MDR and a parallel dual ABCC1/ABCG2 inhibitor. Another was a highly potent dual
ABCB1/ABCG2 MDR reverser. In summary, chalcones might be promising lead compounds
to develop as chemosensitizers for clinical drug resistance, as well as for improving the
pharmacokinetics of poorly absorbed chemotherapeutic cancer drugs.

Table 5. Chalcones as inhibitors of MDR channels.

Lead Compounds Mechanisms of Action Reference

2-[3-(4-Dimethylaminophenyl)-
prop-2-en-yliden]-5,6-

dimethoxyindan-1-one (69)
Inhibitors of human P-glycoprotein Parveen et al. [176]

and Ngo et al. [177]

Bifendate chalcone hybrids (70) P-gp inhibitors in K562/A02 cells whichoverexpress P-gp
(induced by adriamycin) Gu et al. [178]

MY3 (71) Inhibits expression of P-gp and enhances the efficacy of DOX
against the tumor xenografts bearing MCF-7/DOX cells Yin et al. [179]

Flavokawain A (FKA) (72) Inhibits P-gp protein expression by blocking the PI3K/Akt
pathway in PTX-resistant lung cancer A549 cells Li et al. [180,181]

Licochalcone A (LCA) (73)
Binds ABCG2 in the transmembrane substrate-binding pocket
and reverses ABCG2-mediated multidrug resistance in human

multidrug-resistant cancer cell lines
Wu et al. [182]

Quinazoline chalcones (74) Modulators of breast cancer resistance protein (BCRP/ABCG2) in
P-gp overexpressing MDCK II cells Kraege et al. [114]

Symmetric bis-chalcones (75) Inhibits mitoxantrone efflux from ABCG2-transfected HEK293
cells by stimulating ABCG2 basal ATPase activity Winter et al. [183]

Tariquidar-related chalcones (76) ABCG2 Modulators in ABCG2-overexpressing MCF-7/Topo cells Peña-Solórzano et al.
[109]

Quinolone chalcones (77) Targets colchicine-binding pocket and kills multidrug-resistant
cancer cells by inhibiting tubulin activity and MRP1 function

Lindamulage et al.
[111]

A novel chalcone derivative, JAI-51
(78)

A microtubule-depolymerizing agent and an inhibitor of P-gp
and BCRP in vitro and in vivo of glioblastoma models Boumendjel et al. [184]

Nonbasic chalcone (79)

A dual ABCG2/ABCB1 inhibitor in S1-M1-80 (mitoxantrone
(MX)-selected ABCG2-overexpressing of human colorectal cancer

cell line S1), NCI-H460/MX20 (MX-selected
ABCG2-overexpressing of human lung cancer cell line NCI-H460)

Han et al. [185] and
Cai et al. [186]

Novel chalcone and flavone
derivatives (80)

Selective and dual inhibitors of the transport proteins ABCB1 and
ABCG2 in ABCG2-overexpressing MDCK II BCRP cells Silbermann et al. [99]
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3.6. Other Molecular Cancer Targets Modulated by Chalcones and Target Identification

Chalcones have been shown to exhibit anticancer activity through their inhibitory poten-
tial against various targets, such as 5α-reductase [187], aromatase [188], histone deacetylase
inhibitors (HDAC) [189,190], proteasome [191,192], JAK/STAT signaling pathways [193], cell
division cycle 25 (CD25) [194], cathepsin-K [72,195], topoisomerase-II [196,197], Wnt [198,199],
ROS/MAPK [200], p38 [201,202] and mTOR [203,204]. However, these studies are not
covered in this review because not enough evidence has been provided to indicate that
these proteins or pathways are direct targets of chalcones. Therefore, the identification and
confirmation of the molecular target(s) of chalcones are important steps in pharmaceutical
research [205]. Researchers have invested tremendous effort to explore direct-binding
targets of chalcones using a variety of strategies. We discuss the most commonly used
experimental methods for target recognition, such as computer strategies.

Computer strategies, such as QSARs assessments, molecular docking, and virtual
screening, have been widely used in research aimed to find the targets of natural and syn-
thetic chalcones. Marquina et al. designed and synthesized eleven 4′-alkoxy chalcones that
could induce the mitochondrial apoptotic pathway by regulating Bax and Bcl-2 transcripts
and by increasing caspase 3/7 activation. This QSAR model study revealed that the double
bond of the α,β-unsaturated carbonyl and the planar structure geometry was important
to the biological activity of synthetized chalcones [206]. Song et al. discovered human
carboxylesterase 2 (hCES2A) inhibitors obtained from Glycyrrhiza inflata through a combi-
nation of docking-based virtual screening and fluorescence-based inhibition assays [207].
hCES2A is a key target to ameliorate the intestinal toxicity triggered by irinotecan, which
causes severe diarrhea in 50–80% of patients receiving this anticancer agent. Following
the screening of 73 herbal products, Song et al. found that licochalcone C, chalcones and
isolicoflavonol in licorice were the key compounds critical for hCES2A inhibition, which
will be very helpful in developing new herbal remedies or drugs for ameliorating hCES2A-
associated drug toxicity. Molecular docking with corresponding chalcones has also been
applied to predict the binding mode and explain the phenotypic activity of EGFR [103,208],
aurora kinase [209,210], anaplastic xanthine oxidase (XO), the colchicine binding site of
the tubulin [211], the estrogen receptor [212,213] and acetylcholinesterase (AChE) [214].
The advantage of using a computational strategy is the convenience of predicting the
binding target(s) of chalcones before biological validation. However, the binding site and
binding specificity need to be validated.

4. Summary and Perspectives

Chalcones play central roles in the flavonoid synthesis pathway and are ubiquitous in
many natural products. Chalcones exhibit a broad spectrum of biological activity, prob-
ably due to their small structure and Michael-acceptor features, making them tolerant
of different biological molecules, allowing their ready or reactive binding with certain
molecules. In addition, chalcone compounds have a chemical scaffold that can be con-
veniently modified to alter their overall biological activity. In different screening assays,
chalcones have been able to target multiple cellular molecules, such as MDM2/p53, tubulin,
NF-κB, ABCG2/P-gp/BCRP, VEGF, VEGFR-2 kinase, and MMP-2/9.

Despite medicinal applications of chalcones, their wide bioactivity spectrum indicates
a potentially promiscuous targeting profile, which presents a challenge for clinical develop-
ment. Recently, Xing and colleagues found a hepatotoxic risk for flavokawain A (58) and B
(59) (Figure 4), two chalcone derivatives isolated from kava used for their anxiolytic and
sedative effects and that show hepatotoxic synergism with acetaminophen [215]. Using in
silico tools, Tugcu et al. also illustrated the hepatotoxicity potential of kava [216]. Accord-
ing to the experimental results and predictions, kava constituents play substantial roles in
hepatotoxicity by mechanisms involving glutathione depletion, CYP inhibition, reactive
metabolite formation, mitochondrial toxicity and/or cyclooxygenase activity. Moreover,
Qian et al. reported that a licorice monomer compound (2′-HC) at a concentration of
≥20 µM resulted in excess ROS production and inadequate Cu/Zn Superoxide Dismutase
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(SOD1) expression in hepatocytes [217]. Therefore, the design and synthesis of new analogs
are particularly important for the future development of clinically useful chalcone deriva-
tives. Computer strategies and CADD approaches represent time-, labor-, and cost-effective
strategies for identifying lead compounds in the early stages of drug discovery.

Notably, metochalcone has been approved as a choleretic drug [2], and sofalcone
is an anti-ulcer agent that increases the amount of mucosal prostaglandin, conferring a
gastroprotective effect against Helicobacter pylori [8]. These drugs represent a promising
strategy for developing chalcones as novel anticancer agents. Recently, Jeong et al. [218]
and Oh et al. [219] have shown that synthetic chalcones can have a heat-shock protein 90
(HSP90)-induced inhibitory effect, which opens new perspectives into cancer treatment
through the destabilization proteins by which cancer cells survive and multiply (tumori-
genesis) [220]. Several phase II clinical trials of new anticancer molecules that have two
hydroxyl groups at positions 1 and 3 have revealed the inhibition of interactions between
HSP90 and patient proteins through the binding of these molecules to the ATP site in
HSP90 [221,222]. Perhaps in the future, phase III clinical trials will be conducted to support
the anticancer potential of chalcones and their derivatives. Interestingly, Song et al. have
shown that the combining licochalcone C with irinotecan can ameliorate the intestinal
toxicity induced by irinotecan by suppressing hCES2A [207]. Therefore, the combination
of chalcones and other therapies is expected to be an effective way to improve anticancer
therapeutic efficacy.

Moreover, for more than half a century, global marine sources have proven to be a
rich source of a vast array of new medicinally valuable compounds [223,224]. However,
there is a lack of research on chalcones in marine natural products. De Luca et al. analyzed
the microalgal transcriptomes available in the Marine Microbial Eukaryotic Transcriptome
Sequencing Project (MMETSP) database for an in silico search of chalcone synthase and
4-Coumarate: CoA ligase, an upstream enzyme in the synthesis of chalcones [225]. They
first report the occurrence of these enzymes in specific microalgal taxa. This study gives
new insights into possible biotechnological applications for the production of bioactive
compounds, such as chalcones.

In general, chalcones are easy to chemically modify and synthesize to generate com-
pounds with a wide variety of structural diversities. This property makes chalcones very
attractive as basic building blocks for the synthesis of molecule-targeting agents. In the coming
era of molecularly targeted therapy and personalized medicine, both naturally occurring and
synthetic chalcones may be very useful tools for studying basic mechanisms of cancer treatment
and prevention and for developing novel agents for targeted cancer therapies.
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Abbreviations

AA, arachidonic acid; ABC, ATP-binding cassette; AChE, acetylcholinesterase; AKT, protein kinase B;
ATM, ataxia telangiectasia mutated; BCRP, breast cancer-resistance protein; bFGF, basic fibroblast
growth factor; CADD, computer-aided drug design; Cat, cathepsin; CC50, the median cytotoxic
concentration; CD25, cell division cycle 25; cdc25C: cell division cycle 25C; COX-2, cyclooxygenase-2;
CRM1, chromosome region maintenance 1; CYP, cytochrome P450;DHFR, dihydrofolate reductase;
DOX, doxorubicin; DR, death receptors; EC50, the concentration for 50% of maximal effect; EGFR,
epidermal growth factor receptor; EGFR-TK, epidermal growth factor receptor tyrosine kinase;
EMT, epithelial-mesenchymal transition; EPC, endothelial progenitor cell; ERKs, extracellular signal-
regulated kinases; Erα, estrogen receptor alpha; Fas-L, Fas ligand; FKA, flavokawain A; Fli-1, friend
leukemia integration-1; GI50, the concentration that causes 50% growth inhibition; GSH, glutathione;
HCC, hepatocellular carcinoma; hCES2A, human carboxylesterase 2; HDAC, histone deacetylase
inhibitors; HDACs, histone deacetylases; HIF-1, hypoxia-inducible factor-1; HPyCT4BrPh, (E)-3-(4-
bromophenyl)-1-(pyridin-2-yl)prop-2-en-1-one thiosemicarbazone; HSP, heat-shock protein; IBC,
Isobavachalcone; IC50, half-maximal inhibitory concentration; ICAM-1, intercellular cell adhesion
molecule-1; IKKs, IκB kinases; IL-6, interleukin-6; iNOS, inducible nitric oxide synthase; ISL, Isoliquir-
itigenin; LCA, licochalcone A; LicE, licochalcone E; MDM2, the mouse double minute 2; MDR, mul-
tidrug resistance; MMP, matrix metalloproteinase; mPGES-1, microsomal prostaglandin E synthase-1;
MRP1, multidrug resistance-associated protein 1; NF-κB: nuclear factor kappa-light-chain-enhancer
of activated B cells; NMPA, national medical product administration; Nrf2, NF-E2-related factor 2;
NSCLC, non-small cell lung cancer; P-gp, P-glycoprotein; PTX, paclitaxel; PUMA, p53 upregulated
modulator of apoptosis; QSAR, Quantitative structure–activity relationships; ROS, reactive oxygen
species; RSK2, ribosomal S6 kinase 2; SAR, structure–activity relationship; SOD1, Cu/Zn Super-
oxide Dismutase; Sp1, Specificity proteins 1; Src, Proto-oncogene tyrosine-protein kinase; TAMs,
tumor-associated macrophages; TGF-β, transforming growth factor-β; TNBC, triple negative breast
cancer;TNFR-1, tumor necrosis factor receptor-1; TrxR1, thioredoxin reductase 1; VEGF, vascular
endothelial factor; XO, xanthine oxidase; TChal, trans-chalcone.
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