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Abstract: Induced granulocytic differentiation of human leukemic cells under all-trans-retinoid
acid (ATRA) treatment underlies differentiation therapy of acute myeloid leukemia. Knowing the
regulation of this process it is possible to identify potential targets for antileukemic drugs and develop
novel approaches to differentiation therapy. In this study, we have performed transcriptomic and
proteomic profiling to reveal up- and down-regulated transcripts and proteins during time-course
experiments. Using data on differentially expressed transcripts and proteins we have applied upstream
regulator search and obtained transcriptome- and proteome-based regulatory networks of induced
granulocytic differentiation that cover both up-regulated (HIC1, NFKBIA, and CASP9) and down-
regulated (PARP1, VDR, and RXRA) elements. To verify the designed network we measured HIC1 and
PARP1 protein abundance during granulocytic differentiation by selected reaction monitoring (SRM)
using stable isotopically labeled peptide standards. We also revealed that transcription factor CEBPB
and LYN kinase were involved in differentiation onset, and evaluated their protein levels by SRM
technique. Obtained results indicate that the omics data reflect involvement of the DNA repair system
and the MAPK kinase cascade as well as show the balance between the processes of the cell survival
and apoptosis in a p53-independent manner. The differentially expressed transcripts and proteins,
predicted transcriptional factors, and key molecules such as HIC1, CEBPB, LYN, and PARP1 may be
considered as potential targets for differentiation therapy of acute myeloid leukemia.

Keywords: acute myeloid leukemia; HL-60 cell line; ATRA; induced differentiation; transcriptome;
proteome; transcription factors; key molecules; regulatory pathway modelling; SRM

1. Introduction

Cell differentiation is a fundamental process of the development, growth, reproduction
of multicellular organisms. Regulation of cell differentiation has been for decades and
remains an important task for investigation due to its importance in cancer and many other
diseases therapy. Leukemic cells that are induced to differentiate under all-trans-retinoid
acid (ATRA) treatment make a convenient model for studying of cell maturation in vitro.

Normally, ATRA in physiological dosage binds and activates a heterodimer recep-
tor RAR/RXR followed by release of histone deacetylases (HDACs) and transcription
co-repressors (N-CoR or SMRT), and by recruitment of transcription co-activators (NcoA-
1/SRC-1, CBP/p300, p/CIP, and ACTR) [1]. In turn, retinoic acid response element (RARE)
containing genes, which are repressed by nonactive RAR/RXR, trigger the further cascade
of molecular events leading to myeloid precursor’s maturation into functional granulocytes.
Various mutations impair granulocytic differentiation resulting in highly heterogeneous
acute myeloid leukemia (AML), which could be cured by high dosage of ATRA. In the case
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of AML subtype M3 (French–American–British (FAB) classification), a.k.a acute promyelo-
cytic leukemia (APL), deleterious mutation, namely balanced chromosomal translocation
between chromosomes 15 and 17 t (15;17) (q24; q21), affects retinoic acid (RA) receptor gene
RARα resulting in formation of dominant negative fusion protein PLM-RARA [2]. The NB4
cell line that harbors such a hallmark mutation, is used as a model to study of the APL cell
biology [3]. In APL cells the transcription of RA-responsive genes is blocked due to the
increased avidity of PLM-RARA/RXR for co-repressor molecules [4]. The treatment with
high dosage of ATRA induces dissociation of co-repressors from PML-RARA and triggers
fusion protein degradation via the ubiquitin-proteasome or autophagy pathway [5,6]. The
ATRA-based regimens that are used as a first-line treatment of APL patients, induce com-
plete remission rates of 90% [7]. Nevertheless, other types of AML are not that successfully
treatable with the 5-years survival rates only about 40–45% [8]. Meanwhile, antileukemic
effect of ATRA was also observed in AML (non-APL) cell models, including HL-60, THP-1,
MOLM-14, HF-6, and U937 cell lines [9].

The HL-60 promyelocytic leukemia cell line is classified as AML with maturation, also
referred to as AML subtype M2 by FAB classification [10]. These cells were isolated in 1977
from a patient with acute myeloid leukemia. Later it was found that, these promyelocytic
cells could be induced to differentiate into granulocytes in vitro by ATRA [11]. The HL60
cell genome contains normal RARα gene, an amplified c-myc proto-oncogene and deficient
of p53 gene [12,13]. Notably, deletion in the p53 gene occurs at a frequency of up to 10% in de
novo AML (non-APL) cases and associated with exceedingly adverse prognosis regardless
of the type of mutation (missense, nonsense, small insertions, and deletions, etc.) [8]. Being
ATRA-responsive, the HL60 cell line has been used for decades as a convenient model
object for cell differentiation [11,14].

Omics technologies represent powerful tools for a full-scale analysis of gene and
protein expression that allow for gaining important molecular information about differ-
entiation process, and acquiring the complete picture of the cell maturation. Thus, using
HL-60 (AML) and NB4 (APL) cell lines as model systems, the complexity of differen-
tiation processes and the diversity of pathways involved in induced differentiation at
transcriptome [15–17] and proteome [18,19] levels have been demonstrated.

Despite the fact that proteomics and transcriptomics alone represent the powerful
techniques for investigation of ATRA-induced differentiation, the systems approach is
appealing to the elucidation of molecular mechanisms. In this respect, the systems study
was performed on the NB4 promyelocytic cell line under ATRA treatment (alone or in
combination with arsenic trioxide (ATO)) in a time-course manner. By applying microarray
technology and 2D-gel electrophoresis followed by MALDI-TOF-TOF analysis, transcrip-
tion factors (TFs) and co-factors responsible for global changes in transcriptional regulation
and involved in stimulation of the IFN-pathway, cell cycle arrest, and activation of signal
transduction have been unmasked [3].

However, even simultaneous analysis of proteome and transcriptome differences ob-
served in the experiment is not always sufficient to unravel regulatory mechanisms. The up-
or down-regulation of protein and transcript levels under ATRA treatment is often caused
by previous regulatory events. Predicting transcription factors, responsible for altered gene
expression, and revealing, in turn, their putative regulators, a hierarchical model of induced
differentiation could be built. Therefore, a bioinformatics search for upstream regulators,
including transcription factors [20], is an appropriate tool for proteome and transcriptome
data interpretation. Identification and analysis of TFs and regulatory pathways responsible
for altered gene or protein expression that result in the cell differentiation may contribute
to identification of the mechanism(s) underlying this complex process.

2. Materials and Methods
2.1. Experimental Design

The time-course studying of induced granulocytic differentiation allows obtainment
of the most accurate data on molecular perturbations under ATRA treatment. Previously,
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several schedules of HL-60 cell harvesting after ATRA treatment have been applied in the
time-course experiments [3,21]. To perform transcriptomic and proteomic profiling, we
selected 24 and 96 h time points, when the molecular perturbations are prominent. To
reveal the molecular onset of cell maturation at transcriptome and proteome levels, we
also added the 3 h time point. For proteomic experiment we also studied the time point
48 h of treatment; during this period HL-60 cells underwent two division cycles. In our
preliminary mass-spectrometry experiments we did not observe any significant changes
in the ATRA-induced cell proteome within the first 2 h (compared to 0 h) after ATRA
induction or at 72 h (compared to 96 h) after treatment (data not shown).

For proteome analysis, we performed the ATRA-induced differentiation experiments
in three independent biological replicates. HL-60 cells were harvested at 0, 3, 24, 48, and
96 h after ATRA treatment (overall 15 samples). For the transcriptome analysis, HL-60 cells
were subjected to ATRA treatment in three biological replicates and were harvested at 0, 3,
24, and 96 h (overall 12 samples).

For the proteome analysis, the LC-MS/MS experiments were carried out in five
technical replicates per time point, and the whole-genome transcriptome analysis was
performed in three technical replicates per time point.

Cells harvested before ATRA treatment (time point 0 h) served as controls for both
transcriptomic and proteomic profiling. The study workflow is shown in Figure 1.
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Figure 1. The study workflow. We applied a multi-disciplinary platform to study ATRA-induced granulocytic differentiation
in a time-course manner using HL-60 cell line as a model. We combined LC-MS/MS analysis (0, 3, 24, 48, and 96 h after
ATRA treatment, three bio repeats), whole-genome transcriptome analysis (0, 3, 24, and 96 h after ATRA treatment, three
bio repeats), and bioinformatic search for transcription factor binding sites (TFBS) and for the key regulatory molecules.
To verify the predicted regulatory networks the abundance of proteins HIC1, CEBPB, LYN, and PARP1, belonging to the
designed model regulatory networks or involving in differentiation onset, were measured in time-course manner by selected
reaction monitoring (SRM) using synthetic isotopically-labeled peptides as standard.
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2.2. HL60 Cells Cultures

The HL-60 human promyelocytic leukemia cells (obtained from the cell culture bank
Institute of Biomedical Chemistry (IBMC), Moscow, Russia) were grown in RPMI-1640
medium supplemented with 10% fetal bovine serum, 100 U/mL penicillin, 100 U/mL
streptomycin and 2 mM L-glutamine (all Gibco™, Paisley, UK) in a CO2 incubator under
standard conditions (37 ◦C, 5% CO2, 80% humidity). ATRA (Sigma-Aldrich, St. Louis, MO,
USA) was dissolved in ethanol as a stock solution at 1 mM. HL-60 cells were treated with
ATRA as described in [3] and control HL-60 cells were treated with an equal volume of the
solvent (ethanol).

Cell differentiation was evaluated by the CD11b and CD38 expression measured by
flow cytometry. At the selected time points, the cells were harvested, washed twice with
PBS, transferred to 1.5-mL Eppendorf tubes, and pelleted by centrifugation at 3000× g
for 15 min using an Eppendorf 5424R centrifuge (Eppendorf, Hamburg, Germany). After
removing the supernatants, the cell pellets were frozen in liquid nitrogen and stored until
transcriptomic and proteomic analysis.

2.3. Transcriptome Analysis

Total RNA was isolated from the cells using RNeasy Mini Kit (Qiagen, Hilden, Ger-
many) at each time point studied. The quality of the extracted RNA was controlled using a
Bioanalyzer 2100, RNA 6000 Nano LabChips, and the 2100 Expert standard software (all
Agilent Technologies, Santa Clara, CA, USA). Approximately 0.5 µg of each RNA sample
was used for cDNA preparation in the reaction of the reverse transcription performed
using a Low RNA Input Linear Amp Kit (Agilent Technologies, Santa Clara, CA, USA)
according to standard protocol. The cRNA samples for all time points were labeled with
Cy5-CTP (Perkin Elmer, Waltham, MA, USA) and with Cy3-CTP (Perkin Elmer, Waltham,
MA, USA) for the control sample (the time point 0 h). The cRNA fragmentations and
hybridizations were performed using a standard protocol with an in situ Hybridization Kit
Plus (Agilent Technologies, Santa Clara, CA, USA). Data acquisition was carried out using
a DNA Microarray Scanner G2505C (Agilent Technologies, Santa Clara, CA, USA). The
primary transcriptome data were processed using the Feature Extraction software (version
10.1.3.1; Agilent Technologies, Santa Clara, CA, USA).

Statistical data analysis by ANOVA with the p-value cut-off set at 0.05 was performed
using the GeneSpring GX12.5 software (Agilent Technologies, Santa Clara, CA, USA). Thus,
we prepared the lists of genes that showed more than two-fold expression difference at
least at one time point studied.

2.4. Preparation of HL60 Cells Lysates and In-Solution Digestion with Trypsin

The cell samples were lysed using ice-cold buffer (150 µL) containing 3% sodium
deoxycholate, 2.5 mM EDTA, 75 mM Tris-HCl (all Sigma-Aldrich, St. Louis, MO, USA),
pH 8.5 and protease inhibitors cOmplete™ (Roche, Basel, Switzerland) with subsequent
ultrasonication using the Bandelin Sonopuls probe (“BANDELIN electronic GmbH &
Co. KG”, Berlin, Germany). The cell lysates were centrifuged for 15 min at 5000× g
using Eppendorf 5424R centrifuge. The supernatants were collected, and the pellets were
dissolved in 100 µL of lysis buffer, and then subjected to the second round of protein
solubilization as described above. The sample protein concentration was measured using
a Pierce™ BCA Protein Assay Kit (Pierce, Rockford, IL, USA). Protein digestion was
performed according to the protocol described in detail by Zgoda et al. [22]. Briefly, the
protein sample (about 100 µg) was transferred into a clean tube and denaturation solution
(5 M urea, 1% sodium deoxycholate, in a 50 mM triethylammonium bicarbonate buffer
(TEAB) containing 20mM dithiothreitol (DTT) (all Sigma-Aldrich, St. Louis, MO, USA)
20 mM DTT) in volume of 20 µL was added to make the final concentration of total protein
close to 5 mg/mL. Then the samples were heated for 60 min at 42 ◦C and, after cooling
at room temperature, 25 µL of 15 mM 2-iodoacetamide in 50 mM TEAB was added. The
alkylation reaction continued for 30 min at room temperature and the sample was then
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diluted up to 120 µL by 50 mM TEAB to decrease the final concentration of denaturation
buffer compounds and dilute the final protein concentration close to 0.5 mg/mL. Trypsin
(1 µg) was added to samples and incubated overnight at 37 ◦C. The hydrolysis was stopped
by adding formic acid (to a final concentration of 5%). Samples were centrifuged for 10 min
at 10 ◦C at 12,000× g to sediment deoxycholic acid. The supernatant was transferred
into a clean tube. In the obtained supernatants, the total peptide concentration was
determined by the colorimetric method using a Pierce™ Quantitative Colorimetric Peptide
Assay kit (Thermo Scientific, Waltham, MA, USA) in accordance with the manufacturer’s
recommendations. The peptides were dried and dissolved in 0.1% formic acid to a final
concentration of 1 µg/µL.

2.5. Shotgun Mass Spectrometry

The peptide samples obtained were analyzed using the Agilent HPLC system 1100
Series (Agilent Technologies, Santa Clara, CA, USA) connected to a hybrid linear ion trap
LTQ Orbitrap Velos, equipped with a nanoelectrospray ion source (Thermo Scientific,
Waltham, MA, USA). Peptide separations were carried out on a RP-HPLC Zorbax 300SB-
C18 column (C18 3.5 µm, 75 µm inner diameter and 150 mm length, Agilent Technologies,
Santa Clara, CA, USA) using a linear gradient from 95% solvent A (water, 0.1% formic acid)
and 5% solvent B (water, 0.1% formic acid, and 80% acetonitrile) to 60% solvent B over
85 min at a flow rate of 0.3 µL/min.

Mass spectra were acquired in the positive ion mode using Orbitrap analyzer with a
resolution of 30,000 (m/z = 400) for MS and 7500 (m/z = 400) for MS/MS scans. The AGC
target was set at 2 × 105 and 1 × 105 with maximum ion injection time 50 ms and 100 ms
for MS and MS/MS, respectively. Survey MS scan was followed by MS/MS spectra for
five the most abundant precursors. The higher energy collisional dissociation (HCD) was
used, and normalized collision energy was set to 35 eV. Signal threshold was set to 5000 for
an isolation window of 2 m/z. The precursors fragmented were dynamically excluded from
targeting with repeat count 1, repeat duration 10 s, and exclusion duration 60 s. Singly
charged ions and those with not defined charge state were excluded from triggering the
MS/MS scans.

2.6. Data Analysis

The mass spectrometry data were analyzed using SPIRE pipeline [23]. The raw mass
spectrometry data were converted to the mzXML format with the RawToMzXML convertor
and uploaded into the SPIRE server. The experimental data were assigned to five time
points (0, 3, 24, 48, and 96 h); each point included three biological- with five technical
replicates. The data obtained were searched by the in-built «Composite» search engine
within SPIRE pipeline using the following parameters: enzyme specificity was set to
trypsin, two missed cleavages were allowed. Carbamidomethylation of cysteines was set
as fixed modification and methionine oxidation was set as variable modification for the
peptide search. The mass tolerance for precursor ions was 10 ppm; the mass tolerance for
fragment ions was 20 ppm. Human FASTA file (September 2015) was used as a protein
sequence database. The spectra identified with 90% probability were assigned to peptides.
The local false discovery rate for protein identification was set bellow 0.01 (locFDR < 0.01).
locFDR was calculated in SPIRE utilizing randomized or decoy database searches [23].

Label-free quantitation was performed with the use of the SPIRE software by default
settings. Expression ratios and p-values were calculated based on an over-dispersed Poisson
model using an empirical Bayes correction [23]. The proteins with the expression fold
change > 1.5, p-value < 0.05 and CV between biological repeats < 30%, were considered
as differentially expressed. The imputation of missing data has not been applied to mass-
spectrometric results.

The volcano plot was obtained using VolcaNoseR web app [24].
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2.7. Functional Classification of Differentially Expressed Genes and Proteins

Functional analysis of differentially expressed genes/proteins was carried out us-
ing the «Functional classification» option of the geneXplain platform (http://platform.
genexplain.com) with GO and PROTEOME Databases (BIOBASE) implemented as a mod-
ule of the GeneXplain platform.

For the functional analysis of gene groups exhibiting altered expression at the selected
time points of cell differentiation, the cut-off value for the probability of random gene
allocation of a gene to a particular group (Adjusted p-value) was set at 5 × 10−4. Only
statistically significant classification of genes according to the GO categories, describing
various biological processes in cells, was taken into consideration for the functional analysis.

The STRING database v.11.0 was used to retrieve the protein–protein interactions
(PPIs) from the lists of DEGs of MCD group at 3, 24, and 96 h. A high confidence (0.9) score
was applied. The active interaction sources were experiments and curated databases. The
built-in functional enrichment analysis results according to the molecular function (GO),
and KEGG pathways were used for visualization.

2.8. Search for Transcription Factors, Putatively Regulating Gene and Protein Expression during
ATRA-Induced Differentiation of HL-60 Cells

The search for over-represented transcription factor binding sites (TFBS) was per-
formed using geneXplain platform 2.0 software packages (http://platform.genexplain.com)
and TRANSFAC® database [25]. The differentially expressed genes/proteins at different
time points were considered as the test sets (Yes-sets). The gene/protein that did not show
any expression changes after ATRA treatment were used as a background set (No-sets).
The profile used for analysis contains a collection of vertebrate non-redundant transcription
factor matrices. The promoter window was selected from −1000 to +100 from the transcrip-
tion start site, and only the best-supported promoters of the genes analyzed were used.
The cut-off values with a threshold of p-value < 0.005 were selected to obtain high-scoring
binding sites. The matrices with high over-representation of site frequency in the promot-
ers under study versus the background promoters (ratio > 1.4) were selected for further
analysis. These matrices were converted to the set of the transcription factors (TFs), which
can be responsible for expression changes in the group of genes/proteins under study.

2.9. Generation of Regulatory Networks

The identification of potential master regulators in the signal transduction network
was performed using the «Regulator search» module of the geneXplain platform 2.0
software (http://platform.genexplain.com). The signal transduction network was provided
by the manually curated database, TRANSPATH®. The algorithm starts from a set of TFs
and performs a graph-topological search in the signal transduction network upstream of
transcription factors to identify the “key nodes” that can play a crucial role in intracellular
signaling from various receptors to the set of TFs identified. These key nodes may be
considered as master regulators of the process studied. The following setting parameters
were used: TRANSPATH® database, maximal search radius R = 10, Score cutoff = 0.2,
FDR cutoff = 0.05 and Z-score cutoff = 1.0. Besides FDR, for each possible additional
regulator the Score, Z-score and Ranks sum values were calculated. For the proteomic data
analysis, the “Context genes” option was used for the search of key regulators. In this case,
passing through the common network nodes, the nodes presented at the transcriptome
data were preferentially selected. Among the overall list of regulators generated after the
search, the statistically significant results were selected using the Ranks sum parameter.
Thus, it was possible to find the molecules characterized by equally good “Score” and
“Z-score” parameters. The “Score” parameter reflects how well a key molecule is associated
with the other molecules in the database and how many molecules of the input TFs are
present in the network for a given key molecule. The “Z-score” reflects how the proposed
molecule corresponds to the input TFs set. The ranks sum is a combination of Score and
Z-score. In other words, these “trivial” expected results attract interest as the well-known

http://platform.genexplain.com
http://platform.genexplain.com
http://platform.genexplain.com
http://platform.genexplain.com
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“nodes” in the network (Score) and more specific key molecules for the input sample,
which are less likely to be detected as an important regulator in the case of the other TF
sets used simultaneously.

2.10. Selected Reaction Monitoring (SRM)

The standard peptides for HIC1 (LEEAAPPSDPFR), CEBPB (VLELTAENER) LYN
(TQPVPESQLLPGQR), and PARP1 (TLGDFAAEYAK) were obtained using the solid-phase
peptide synthesis on the Overture™ Robotic Peptide Library Synthesizer (Protein Tech-
nologies, Manchester, UK) or Hamilton Microlab STAR devices according to the pub-
lished method [26]. The isotopically labeled lysine (13C6,15N2), arginine (13C6,15N4) or
serine (13C3,15N1) leucine (13C6,15N1) were used for isotopically labeled peptide synthe-
sis instead of the unlabeled lysine (TLGDFAAEYAK), arginine (VLELTAENER), leucine
(TQPVPESQLLPGQR), or serine (LEEAAPPSDPFR), respectively. Concentrations of the
synthesized peptides were measured by the method of amino acids analysis with fluores-
cent signal detection of amino acids derived after acidic hydrolysis of peptides as described
in [27].

SRM experiments were performed in three biological replicates with five time points
each (0, 3 h, 24 h, 48 h, and 96 h) and in five technical replicates for each time point
studied. The digested samples were spiked with isotopically labeled peptide to the final
concentration 50 fmol/µg of total protein. Peptide samples (2 µg) were separated on a
RP-C18 column, (Zorbax 300SB-C18, 3.5 m, 150 mm × 0.075 mm, Agilent Technologies,
Santa Clara, CA, USA) using the nanoflow UPLC DionexUltiMate 3000 RSLC nano System
Series (Thermo Scientific, Waltham, MA, USA). Peptide separation was achieved using a
linear gradient from 95% solvent A (0.1% formic acid) and 5% solvent B (80% acetonitrile,
0.1% formic acid) to 60% solvent A and 40% solvent B over 25 min at a flow rate of
0.4 µL/min. SRM analysis was performed on the QqQ TSQ Vantage (Thermo Scientific,
Waltham, MA, USA) with capillary voltage set at 2100 V, isolation window was set to
0.7 Da. SRM transition details for all peptides are shown in Table S8. The results were
processed using Skyline software v4.1.0 (MacCoss Lab Software, Seattle, WA, USA). The
coefficient of variation (CV) of transition intensity did not exceed 25%, 12%, 12%, and 6%
between technical replicates for LEEAAPPSDPFR, VLELTAENER TQPVPESQLLPGQR,
and TLGDFAAEYAK, respectively.

3. Results
3.1. Transcriptome Analysis and Functional Annotation of Differentially Expressed Genes during
ATRA-Induced Differentiation of HL-60 Cells

To validate HL-60 cell differentiation into neutrophils, expression of surface markers
CD11b and CD38 was assessed by flow cytofluorometry at 96 h after ATRA treatment prior
transcriptome/proteome analysis (Figure S1). Although measurement of CD11b is the most
convenient way to evaluate granulocyte differentiation, to obtain more accurate data we
have used additional marker CD38 that promotes induced myeloid maturation [28]. The
mean fluorescence from HL-60 cells at 96 h after ATRA-treatment increased approximately
15-fold (CD38-from 171 to 2929; CD11b-from 112 to 1726) compared to untreated control.
This indicates that the granulocyte differentiation of the HL60 cell line was successful.

To obtain the transcriptomic data, HL-60 cells were harvested at 3 h, 24 h, and 96 h
after ATRA treatment followed by mRNA microarray profiling. A total of 14,543 gene
expressions were detected at all the time points studied. Among them 159, 231, and 1449
genes with fold-change (FC) ≥2 were determined as differentially expressed genes (DEGs)
at 3 h, 24 h, and 96 h after ATRA treatment, respectively (Supplemental Table S1).

Further, we focused on the bioinformatics reconstruction of putative regulatory path-
ways for DEGs that were involved in cell differentiation according to highly validated data.
We annotated the altered expression genes by the Gene Ontology (GO) database category
related to the biological processes (Figure 2).
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ATRA treatment. The number of DEGs (Log2 transformed) and p-value (-Log10 transformed) are provided on the x-axis.
The groups from the category of “Biological process” are on the y-axis. The threshold adjusted p-value < 10−4. The group of
“myeloid cell differentiation” (MCD, GO: 0030099) is marked by red color.

Figure 2 shows the DEGs at all time points were enriched by molecules, which were
assigned to the group of “myeloid cell differentiation” (MCD, GO: 0030099). The MCD
group was revealed at 3 h after ATRA treatment with 22 DEGs, and then was expanded up
to 24 and 81 DEGs at 24 h, and 96 h, respectively.
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The results of the interaction analysis by STRING (Figure S2) show that the DEGs
of MCD group were enriched in their interaction with the highest confidence (0.9). The
KEGG database annotation revealed mapping of the DEGs of MCD group into “Chemokine
signaling pathway” at 3 h and 24 h, and into “NOD-like receptor signaling pathway” at
96 h.

While the data for 3 h and 24 h suggest the cytokine signaling as one of the mecha-
nisms of the ATRA-induced granulocytic differentiation, the results for 96 h indicate the
manifestation of functions of already mature neutrophils. These observations emphasize
that the bioinformatics mapping of molecules with altered expression on known signaling
pathways is insufficient for a complete understanding of the regulatory events.

Moreover, the earliest time point (3 h after ATRA treatment) provides transcriptomic
data on the granulocytic differentiation onset. The DEGs of the MCD group at 3 h included
ASB2, BCL2A1, CCL2, CCL3L1, CCL4, CCR5, CD300A, CD38, CEBPB, FGR, HES1, HNR-
PLL, IL8, LRG1, LYN, RELB, TNFAIP2, BCL11A, NR2F2, PTGER2, RGS18, and SERPINB2.
Among them CEBPB, CCR5, CCL4, FGR, CXCL8 (IL8), and LYN form a putative functional
complex according to the STRING interaction analysis (Figure S2a). These data are of great
importance for deciphering the very first molecular events of ATRA-induced granulocytic
differentiation. Further, the dynamics of transcription factor CEBPB and LYN kinase was
assessed by targeted mass-spectrometry approach (selected reaction monitoring (SRM)) at
protein level.

The MCD group genes have been used for following upstream regulators search. The
lists of the MCD group genes are presented in Supplemental Table S2.

3.2. Proteomic Analysis and Functional Annotation of Differentially Expressed Proteins during
ATRA-Induced Differentiation of HL-60 Cells

Proteome dynamics is associated with cell phenotype development and its continuous
observation can contribute to understanding of the cell maturation process. Previously, for
systems analysis of induced granulocyte differentiation and apoptosis under ATRA/arsenic
trioxide treatment starting time points of 6 h at transcriptomic level and 12 h at proteomic
level were used [3]. We tried to unveil the molecular onset of differentiation. In our
preliminary experiments we did not observed any significant changes in the ATRA induced
cell proteome within the first 2 h after ATRA induction (data not shown). We performed
proteomic profiling of HL-60 cells at 0, 3 h, 24 h, 48 h, and 96 h after ATRA-treatment.

Using “Composite” search engine in the SPIRE software, we identified 1436, 1470,
1379, 1253, and 1210 proteins with (locFDR) < 0.01 at the 0, 3 h, 24 h, 48 h, and 96 h time
points, respectively (Supplemental Tables S3 and S4). Mass-spectrometric data are available
via the ProteomeXchange with identifier PXD006768. Based on label free quantitative
analysis, 122, 169, 199, and 275 proteins were revealed as differentially expressed proteins
(DEPs) (FC ≥ 1.5, p-value < 0.05, CV < 30%) at 3, 24, 48, and 96 h after ATRA treatment
comparing to control (0 h), respectively. Data on label free quantitative analysis and relative
expression are presented in Supplemental Table S5. The heatmap of protein expression is
presented in Figure S3. The DEPs are listed in Table S5.

The functional analysis of DEPs was performed in the same way as for the DEGs. The
results are shown in Figure 3.

Figure 3a shows that the DEPs are enriched with the proteins involved in programmed
cell death and its regulation at 3 h and 96 h after ATRA treatment. The five most up-
regulated DEPs involved in programmed cell death at 3 h after ATRA-treatment comprise
proteasome subunit beta type-2 (PSMB2, P49721), apoptosis-inducing factor 1 (AIFM1,
O95831), alpha-actinin-1 (ACTN1, P12814), RNA-binding protein 25 (RBM25, P49756),
and apoptosis inhibitor 5 (API5, Q9BZZ5). The top five down-regulated DEPs included
26S proteasome regulatory subunit 8 (PSMC5, P62195), alpha-actinin-2 (ACTN2, P35609),
14-3-3 protein eta (YWHAH, Q04917), CD44 antigen (CD44, P16070), and protein S100-A9
(S100A9, P06702).
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Figure 3. (a) The functional GO analysis of differentially expressed proteins (DEPs) of HL-60 cells at 3 h, 24 h, 48 h, and 96 h
after ATRA treatment. The number of DEPs (Log2 transformed) and p-value (-Log10 transformed) are provided on the
x-axis. The groups from the category of “Biological process” are on the y-axis. The threshold adjusted p-value < 10−4. The
groups containing proteins regulating cell death and apoptosis are marked by red. The volcano plots show the differences
in proteins abundance at 3 h (b) and 96 (c) after ATRA treatment; significantly up- and down-regulated proteins are shown
as red and blue dots, respectively; names are shown for five most up- and down-regulated proteins that were annotated by
GO belonging to groups “programmed cell death” and/or “regulation of cell death”.

The five most up-regulated proteins at 96 h after ATRA-treatment included 26S protea-
some non-ATPase regulatory subunit (PSMD1, Q99460), proteasome subunit beta type-2
(PSMB2, P49721), glucose-6-phosphate 1-dehydrogenase (G6PD, P11413), thioredoxin re-
ductase 1 (TXNRD1, Q16881), and Na(+)/H(+) exchange regulatory cofactor NHE-RF1
(SLC9A3R1, O14745). Although these DEPs are assigned to the groups regulating cell
death, they affect cell fate indirectly through metabolic effects. The 5 most down-regulated
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DEPs included DNA-dependent protein kinase catalytic subunit (PRKDC, P78527), Bcl-2-
associated transcription factor 1 (BCLAF1, Q9NYF8), DnaJ homolog sub-family A member
1 (DNAJA1, P31689), proteasome activator complex subunit 3 (PSME3, P61289), and serpin
B10 (SERPINB10, P48595).

The STRING interaction analysis (Figure S4) revealed that the DEPs of group “pro-
grammed cell death” and/or “regulation of cell death” were enriched in their interaction
with the highest confidence (0.9) at 3 h and 96 h after ATRA-treatment. Moreover, these
proteins were mapped to the “Proteasome” pathway (KEGG database annotation) with
high confidence.

3.3. The Workflow of Transcriptome- and Proteome-Based Regulatory Networks Design

The lists of DEGs and DEPs given in Supplemental Tables S2 and S5 have been used
as the test sets (Yes-sets). The control sets were formed from the transcripts and proteins
with unaltered expression as described in “Materials and Methods”. We performed the
two-step bioinformatic analysis including:

1. Identification of TFs that can regulate the DEGs (MCD group) and DEPs at different
time points after ATRA treatment using TRANSFAC@ database followed by matching
putative TFs with the list of all transcripts identified (Supplemental Table S1) to cut-off
the molecules that are not expressed in HL-60 cells at the mRNA level;

2. The upstream prediction of key molecules that regulate the TFs determined at the
previous step using TRANSFAC@ database followed by visualization of the predicted
interaction as a model regulatory networks.

To verify the molecules that are actually expressed in HL-60 cells, we matched the
list of all identified and differentially expressed genes (Supplemental Table S1) and/or
proteins (Supplemental Table S5) with the elements of model regulatory networks.

3.3.1. The Transcriptome-Based Modeling Pathway

To find TFs responsible for regulation of gene expression we performed a search
for the DEGs (MCD group) transcription factors binding sites (TFBS) at each time point
studied (see results in Supplemental Table S6). TFs of DEGs determined at the 3/24 h and
24/96 h time were the same in general. So, in the case of time points 3, 24, and 96 h, we
have combined all putative TFs in one set in order to perform key regulator search. The
upstream analysis of the combined set of TFs, which are involved in regulation of MCD
group genes at the 3 h, 24 h, and 96 h, revealed the top five key molecules with the lowest
“Rank sum” value. The results are summarized in Table 1.

Table 1. Putative key molecules responsible for regulation of the DEGs related to the myeloid cell
differentiation (MCD group) at 3, 24 and 96 h after ATRA treatment.

Time
Point.

Key Molecule
Name

Reached
from TF Set 1

Reachable
Total 2 Score 3 FDR 4 Z-Score 5 Ranks

Sum 6

3-24-96
h (MCD)

AhR 22 12488 0.34 0.011 2.31 5
arnt 21 8990 0.34 0.026 2.1 6
Nrf2 15 9200 0.24 0.033 2.61 6

(CKII-α)2:(CKII-β)2 22 10803 0.28 0.025 2.45 8
NF-kappaB1 21 10897 0.29 0.024 2.05 11

1 “Reached from TF set”—the number of the TFs from the input set (Supplemental Table S6) that is reached from
the respective key molecule; 2 “Reachable total”—the total number of molecules that can be reached from the
key molecule, independent of the input set; 3 “Score”—the value reflecting how well the respective key molecule
is connected with other molecules in the database, and how many molecules from the input set are present
in the network triggered by this key molecule, the higher value—the better suitability (threshold value > 0.2);
4 FDR—false discovery rate (from 1000 random input sets); 5 “Z-score”—the value that reflects how specific
each key molecule is for the input list, the higher value—the better suitability (threshold value > 1); 6 “Rank
sum”—composite value that reflects the impact of Score and Z-score simultaneously, the lower value—the
better suitability.

Further, to select the key molecules for visualization, we checked either its expressions
were altered at ATRA-induced granulocytic differentiation (of primary importance), and
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compared FDR statistics. None of the key molecules from Table 1 were significantly
changed at the transcript or protein levels. At the same time, AhR and NF-kappaB1 were
the most reliable based on FDR value. Moreover, AhR and NF-kappaB1 mutually regulate
each other according TRANSFAC@ database. The regulatory network triggered by AhR
and NF-kappaB1 is shown in Figure 4.
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Figure 4. The transcriptome-based model network of regulation of MCD group DEGs during ATRA-induced HL-60 cells
differentiation (the time points 3 h, 24 h, and 96 h). Legend: master regulatory molecules are represented by pink ellipses;
connecting molecules considered by the graph-analyzing algorithm to find the path from the TF input list to the master
molecule are represented by green ellipses; the molecules from the TF input list are represented by lilac ellipses. The
colored bars around molecules show changes in the expression level. Transcript expressions are shown in blue (decreased
expression) or pink (increased expression) color arrays, color intensity correlates with fold-change (FC), bars are colored if
FC ≥ 2. From left to right each bar represent experimental time point (the time points at 3 h, 24 h, and 96 h and additional
time points at 0.5 h and 1 h). Protein expression is shown in yellow (decreased expression) and green (increased expression)
color array, color intensity correlates with fold-change (FC) of relative protein expression, bar is colored if FC ≥ 1.5, from
left to right each bar represent experimental time point (3 h, 24 h, 48 h, and 96 h).

According to the scheme, the key molecule AhR, apparently, causes down-regulation
of proto-oncogene WT1, nuclear receptor RXRα, and transcription factor E12 (TCF3) and
up-regulation of PKC zeta. AhR affects GSK3beta that regulates another key molecule,
NF-kappaB1. On the other hand, NF-kappaB1 affects SIRT1 deacetylase, which inhibits the
transcriptional activity of RelA/p65. NF-kappaB1 also influences GSK3beta kinase, thus
performing the feedback and cross-regulation from two key molecules.
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The model network also shows, that the NF-kappaB1/SIRT1 tandem down-regulates
PARP1 (2-fold mRNA decrease at 96 h), DNA-PKcs (3-fold mRNA decrease at 96 h), and
VDR (5-fold mRNA decrease at 96 h). VDR gene have been also indirectly controlled (via
CSBP1) by AhR. Furthermore, NF-kappaB1/SIRT1 up-regulates TFs c-Krox, SREBP-1a,
NF-AT2A-beta, and HIC1 mRNA expression. Both NF-kappaB1 and AhR trigger the
up-regulation of caspase 9. These results indicate the synergistic effect of key molecules.
Notably, transcriptome-based MCD-regulating scheme included various protein kinases
(ERK, JNKalpha1, MKK4, GSK3beta, CSBP1 (MK14), AKT1, JNK3alpha1, Raf-1, PDK1,
MKK5, and PKCzeta). This observation suggests the significant role of MAPK pathway in
the regulation of DEGs of MCD group.

3.3.2. The Proteome-Based Modeling Pathway

In the case of proteome data analysis, we have combined TFs which may regulate the
expression of genes encoding DEPs (Supplementary Materials, Table S7). The results of the
key regulator molecules search for DEPs are presented in Table 2. The Top-5 key molecules
with the lowest “Rank sum” value are shown.

Table 2. Putative key molecules that regulate DEPs at 3, 24, 48, and 96 h during ATRA-induced
differentiation of HL-60 cells.

Time Point Key Molecule
Name

Reached
from TF Set 1

Reachable
Total 2 Score 3 FDR 4 Z-Score 5 Ranks

Sum 6

Combined
3-24-48-96 h

YY1 22 32835 0.650 0.013 2.779 59
plk1{p} 22 32762 0.640 0.002 2.803 63
PARP1 22 32360 0.607 0.006 2.950 63

faim 22 32361 0.607 0.006 2.950 64
MKK6 22 33716 0.721 0.004 2.325 88

NR1B1 (RARA) 22 30223 0.505 0.018 3.007 204
1 “Reached from TF set”—the number of the TFs from the input set (Supplemental Table S7) that is reached from
the respective key molecule; 2 “Reachable total”—the total number of molecules that can be reached from the
key molecule, independent of the input set; 3 “Score”—the value reflecting how well the respective key molecule
is connected with other molecules in the database, and how many molecules from the input set are present
in the network triggered by this key molecule, the higher value—the better suitability (threshold value > 0.2);
4 FDR—false discovery rate (from 1000 random input sets); 5 “Z-score”—the value that reflects how specific
each key molecule is for the input list, the higher value—the better suitability (threshold value > 1); 6 “Rank
sum”—composite value that reflects the impact of Score and Z-score simultaneously, the lower value—the
better suitability.

Further, to select the key molecule for visualization, we checked either its expression
was altered during ATRA-induced granulocytic differentiation (of primary importance),
and compared their FDR statistics. According to our transcriptomic data, we observed
a 2-fold decrease of the PARP1 levels at 96 h. At the same time, PARP1 was identified
in a shotgun mass spectrometry experiment. Furthermore, this molecule represents an
intermediate node in the SIRT1-mediated signal transduction in the transcriptome-based
network triggered by NF-kappaB1 and AhR (see Figure 4). In addition to the five most
statistically significant molecular regulators, Table 2 also includes a retinoic acid receptor
NR1B1 (RARα) as the key molecule. Although the Rank sum has not included RARα in
the top five molecules, it has sufficient Score, Z-Score, and FDR values. Moreover, RARα
is the well-known target of retinoic acid, inducing the differentiation of HL-60 cells [29].
The proteome-based scheme of TF regulation based on the selected key molecules, PARP1
and RARα, is shown in Figure 5. This modeling pathway could demonstrate molecular
synergy of PARP1 and RARα.

Figure 5 demonstrates that in addition to the TFs with altered expression described
previously (VDR, RXRα, and HIC1) the unique TFs were predicted using the proteomic
data, including IRF7 and AML3 (RUNX2) (2.6-fold mRNA increased at 96 h), and GATA2
(mRNA reduced by 3.6- and 6.5-fold at 24 h and 96 h, respectively).
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According to Figure 5, DNA-PKcs also affects IkappaB-alpha (NFKBIA): its expression
is 3.2- and 2.9-fold increased at the transcriptome level at the time point 3 h.

Notably, the key molecule RARα (NR1B1 on the scheme) regulates PARP1 through
CBP acetylase. In turn, the PARP1-triggered network regulates RARα through the DNK-
PKcs/AKT1/CASP9/CASP3/SRF/JNK1α1/pCAF loop. In the case of RAR-dependent
transcription, it has been found that PARP1 functions as a co-regulator, which is required
to switch the mediator complex in the active state and start the transcription [30].

The same pathway branch (PARP1/DNA-PKcs/VDR) and some TFs (HIC1 and RXRα)
belong to both transcriptome and proteome-based model regulatory networks that suggests
the importance of these molecules and actual involvement of the pathways in the regulation
of ATRA-induced differentiation of HL-60 cells.

3.4. Verification of Protein Levels of HIC1, PARP1, CEBPB, and LYN During ATRA-Induced
Differentiation by SRM Analysis

To reveal molecules of the transcriptome- and proteome-based pathways, which are
actually expressed in HL-60 cells, we have matched the list of all identified and differentially
expressed genes (Supplemental Table S1) and proteins (Supplemental Table S5) with
molecules in the model regulatory networks. Differentially expressed genes belonging to
the transcriptome- and proteome-based modeling networks are shown in Figure 6.
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Figure 6 shows that 15 molecules, including one key molecule, five intermediate
molecules, and nine transcription factors (TFs) of the transcriptome- and proteome-based
model networks were characterized by the altered mRNA expression level. Transcriptional
repressor HIC1 was strongly up-regulated at all time points studied suggesting its regula-
tory value. It is noteworthy that CASP9 and NFKBIA were up-regulated at 3 h after ATRA
treatment. Transcription factors VDR and RXRA, which are intimately related to induced
differentiation, were down-regulated (as well as key molecule PARP1).

Among predicted regulatory molecules we selected transcription factor HIC1 and key
molecule PARP1 for measuring abundance in HL-60 cells at different time points by SRM.
Next, we have compared transcriptomic and proteomic profiles during ATRA-induced
differentiation. We also evaluated levels of transcription factor CEBPB and LYN kinase
with altered expression at the earliest time point (3 h) by SRM. Results are shown in
Figures 7 and 8.

Figure 7a,d demonstrate the trace of SRM transitions for native (above) and SIS stan-
dard (below) peptides LEEAAPPSDPFR of HIC1 protein, and TLGDFAAEYAK of PARP1
protein, respectively. The Figure 7b,c show transcriptomic and proteomic profiles of HIC1
expression. Transcription repressor HIC1 was up-regulated at 3 h and its mRNA abundance
gradually increased almost 9 times to 96 h. HIC1 protein has not been identified in shotgun
mass-spectrometry experiment. Using SRM technique with stable isotope labeled peptide
standard (LEEAAPPSDPFR) the HIC1 abundance was detected at 24 h, 48 h, and 96 h.
At these time-points its concentration was 0.63 ± 0.21 fmol/µg, 0.85 ± 0.14 fmol/µg, and
1.2 ± 0.15 fmol/µg of total protein, respectively. The HIC1 protein level was increased
approximately 2-fold (FC = 1.9, p-value ≤ 0.05) from 24 h to 96 h after ATRA treatment.
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HL60 differentiation (fold change ≥ 2, p-value ≤ 0.05 at 96 h). (f) Protein expression level of PARP1 obtained by SRM (three 
biological replicates) at 3 h, 24 h, 48 h, 96 h. 

Figure 7. HIC1 and PARP1 expressions at ATRA-induced granulocytic differentiation. (a) Trace of SRM transitions for native
and stable isotope labeled peptide standard LEEAAPPSDPFR of HIC1. (b) Profile of transcript expression HIC1 during HL60
differentiation (fold change ≥ 2, p-value ≤ 0.05 at 3 h, 24 h, and 96 h). (c) Protein expression level of HIC1 obtained by SRM
(three biological replicates) at 3 h, 24 h, 48 h, 96 h. (d) Trace of SRM transitions for native and standard isotopically-labeled
peptide TLGDFAAEYAK of PARP1. (e) Profile of transcript expression PARP1 during HL60 differentiation (fold change ≥ 2,
p-value ≤ 0.05 at 96 h). (f) Protein expression level of PARP1 obtained by SRM (three biological replicates) at 3 h, 24 h, 48 h,
96 h.
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during HL60 differentiation (fold change ≥ 2, p-value ≤ 0.05 at 3 h, 24 h, and 96 h) (c) Protein expression level of
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differentiation (fold change ≥ 2, p-value ≤ 0.05 at 3 h and 96 h). (f) Protein expression level of LYN obtained by SRM (three
biological replicates) at 3 h, 24 h, 48 h, 96 h.
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The Figure 7e,f show transcriptomic and proteomic profiles of PARP1 expression.
PARP1 was selected as a key molecule for the proteome-based model network. At the
transcriptome level we revealed a 2-fold decrease in PARP1 mRNA expression at 96 h.
The SRM measurements for the TLGDFAAEYAK peptide of PARP1 were 13.28 ± 2.98,
10.83 ± 3.46 fmol/µg, 9.57 ± 2.88 fmol/µg, 8.28 ± 0.35 fmol/µg, and 8.77 ± 0.54 fmol/µg
of total protein at 0, 3 h, 24 h, 48 h, and 96 h after ATRA-treatment, respectively. The PARP1
protein level was 1.5-fold (p-value ≤ 0.05) down-regulated by 96 h after ATRA treatment.

Figure 8a,d demonstrate the trace of SRM transitions for native (above) and SIS
standard (below) peptides VLELTAENER of CEBPB protein, and TQPVPESQLLPGQR of
LYN protein, respectively.

Figure 8b demonstrates that CEBPB was up-regulated starting from 3 h (FC = 3.6,
p-value ≤ 0.05) up to 96 h (FC = 5.95, p-value ≤ 0.05) at transcriptome level. Using
SRM, we measured CEBPB in amount of 1.2 ± 0.12 fmol/µg, 1.36 ± 0.31 fmol/µg,
1.98 ± 0.59 fmol/µg, 1.78 ± 0.28 fmol/µg, and 2.17 ± 0.21 fmol/µg at 0, 3 h, 24 h, 48 h,
and 96 h after ATRA-treatment, respectively (Figure 8c).

Figure 8e,f show transcriptomic and proteomic profiles of expression of LYN kinase.
Transcriptomic data demonstrates significant LYN up-regulation at 3 and 96 h. The unique
peptide (TQPVPESQLLPGQR, 21-34aa), which has been used for SRM analysis, is the LYN iso-
form B-specific and is mapped to the region that distinguishes isoform A from isoform B. High-
resolution annotated MS2 spectrum of LYN isoform B-specific peptide TQPVPESQLLPGQR is
shown in Figure S5. Protein LYN expression was detected in amount of 1.12 ± 0.2 fmol/µg,
0.8 ± 0.21 fmol/µg, 1.8 ± 0.46 fmol/µg, 2.18 ± 0.6 fmol/µg, and 2.49 ± 0.23 fmol/µg of
total protein at 0, 3 h, 24 h, 48 h, and 96 h after ATRA-treatment, respectively.

We observed coordinate increase or decrease at the transcript and protein level for
HIC1, CEBPB, LYN, and PARP1; this confirms involvement of corresponding genes in
the ATRA induced HL60 differentiation. The targeted mass-spectrometric data have been
uploaded into PASSEL repository (dataset PASS01678).

4. Discussion

Omics techniques provide a massive amount of data on the molecular state of the
biological object studied. Nevertheless, in high-throughput transcriptome and proteome
profiling, we always register only certain molecular consequences of regulatory events
that occurred in the past (e.g., induction of the expression of the corresponding gene).
Especially, proteomic research of differentiation onset is complicated by the fact that
observed changes in protein levels take time. Thus, up-stream regulator search provides
bioinformatics reconstruction of the molecular events up to one or several trigger points.
Consistent with this, our whole-genome transcriptome results indicated activation of
myeloid differentiation, whereas proteomic data demonstrated the involvement of the
apoptosis pathways under ATRA treatment. However, knowing the expression differences
alone does not allow us to reveal the effector that leads a biological system towards the
particular molecular state. Applying up-stream regulator search and visualizing its result,
we provide the putative “molecular scenarios” of how a dozen regulatory molecules
decided the fate of hundreds of proteins and transcripts.

After ATRA treatment leukemic cells, of which the phenotype is generally driven by
genetic abnormalities, acquire features of mature granulocytes. As in the case of many
others malignancy, HL-60 cells harbor genetic aberrations including the most frequent mu-
tations: extensive deletion of the p53 gene, amplification of MYC oncogene, and monoallelic
deletion of granulocyte–macrophage colony stimulating factor (GM-CSF) [11,12]. Consid-
ering this, we suggest that our model regulatory networks represent a putative way to
overcome the effect of these mutations.

Proto-oncogene MYC plays a crucial role in the regulation of cell proliferation, differ-
entiation, and apoptosis [31,32]. From 16- to 32-fold MYC gene amplification in the HL-60
genome has been reported [33]. Although the decreased expression of MYC is not sufficient
for triggering differentiation of HL-60 cells, it is accompanied by the inhibition of cell
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growth [34]. In our study, we observed a 7-fold decrease of MYC mRNA expression during
granulocytic differentiation. Notably, TF MAX that binds MYC protein for activation of
target genes [35] is the part of our proteome-based model network. Thus, the modeling
scheme presented in Figure 4 could represent a way to overcome the deleterious effect of
MYC gene amplification.

Normally, the p53 gene is a crucial component of the molecular response to different
kinds of cell stress including DNA damage. Namely, p53 is involved in mismatch repair,
DNA double-strand break repair, and nucleotide excision repair that could accompany
uncontrolled proliferation [36]. Poly(ADP-ribose) polymerase 1 (PARP1), the key molecule
of the proteome-based model network, has intricate interplay with p53 in regulation
of cell death and survival. PARP1 affects p53 transcriptional activity, and promotes its
oncosupressive function [37]. In turn, the p53 expression level is prominently increased
after DNA damage in PARP1-defiecint cells that leads to apoptosis [38]. Moreover, in the
case of the multidrug-resistant leukemia cell line HL-60[R] the PARP1 mRNA expression
level was up-regulated [39]. At the same time, a branch of components PARP1/DNA-
PKcs/VDR, which is presented both the in transcriptome- and proteome-based model
pathways (Figures 4 and 5), regulates DNA repair [40,41]. Thus, the proteome-based model
network could represent a molecular bypass to overcome consequences of p53 deletion.
It may be assumed that inhibition of PARP1 in p53-deficient HL-60 cells could have the
similar antiproliferative effect as on BRCA1-deficient cancer cells of solid tumors [42]. This
assumption is in agreement with the fact that primary blasts from patients with acute
myeloid leukemia are sensitive to PARP-inhibitor Olaparib [43].

In our study SRM measurements show a trend of the diminution of PARP1 protein
abundance, while the mRNA level was significantly down-regulated, 2-fold, to 96 h after
ATRA-treatment. Considering the moderate modulation of abundance it is conceivable
that PARP1 is regulated by post-translation modification. Figures 4 and 5 demonstrate
that PARP1 could be acetylated by CREB-binding protein (CBP) or deacetylate by SIRT1.
Both PARP1 and SIRT1 compete for the common NAD+ substrate and modulate each
other’s activity by mutual modification [44]. PARP1 inhibition by SIRT1 could contribute
to the increase in the DNA damage level and cell death in the absence of p53 expression.
SIRT1 stimulation by pharmacological agents could promote PARP1 inhibition. On other
hand, SIRT1 can activate apoptosis by direct deacetylation of the RelA-p65 subunit that
inhibits the transcription of NF-kappaB and increases cell sensitivity to TNF-alpha-induced
apoptosis [40]. TNF-alpha is known to cause p53-independent apoptosis, which promotes
the monocytic differentiation of HL-60 cells [45].

At the same time, we observed prominent up-regulation of transcriptional repressor
HIC1 that suppresses SIRT1 gene expression. SIRT1 deacetylates and inactivates both
p53 and PARP1; HIC1 affects cell cycle, apoptosis, and DNA repair. According to our
transcriptome-based model network (Figure 4), HIC1 was triggered by NF-kappaB via
SIRT1 and p300. In Figure 5, a proteome-based model network represents HIC1 regulated
by cascade triggered by PARP1 through DNA-PKs, AKT, and p300. This suggests a feedback
loop involved in maintaining moderate inhibition of SIRT1 via HIC1 that sustains PARP1
activity, resulting in delayed apoptosis and allowing cells to differentiate into neutrophils.
Apparently, accumulation of critical amount of HIC1 causes SIRT1 suppression, and further
PARP1 down-regulation occurs due to apoptosis-driven cleavage. It seems that the cell
machinery involved in the response to the DNA damage plays a key role in induced
granulocytic differentiation, and its component could be sensitive to target treatment.

The transcriptome analysis provides biological data on ATRA-induced granulocytic
differentiation at the whole genome-scale. However, not all transcripts detected could
be traced at the protein level. In turn, despite the proteomic data being limited by the
sensitivity of mass-spectrometry, the protein expression underlies the cell phenotype
manifestation. As expected, different inputs to up-stream regulator search resulted in
different key molecules in transcriptome- and proteome-based modeling pathways. Still,
the schemas show common predicted transcription factors (SRF, ARNT, RXRA, VDR, and
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HIC1), intermediate molecules (Caspase9, histone acetyltransferase p300, protein kinases
ERK1, Raf-1, AKT1, CSBP1 (MK14), JNKaplha1, and AKT), and even whole branches
of molecular events (axis PARP1-DNA-PKcs-VDR). The gene transcription and protein
synthesis are separated in time, and the above observations suggest different key regulation,
but we also observe the general molecular consequences, such as the involvement of the
DNA repair system and the MAPK kinase cascade.

Interesting but conflicting results were obtained for LYN kinase. The previous studied
demonstrated that constitutively activated LYN was involved in AML pathogenesis and
treatment of cells by LYN siRNA resulted in the antiproliferative effect [46,47]. In our study
we observed LYN up-regulation at mRNA level under ATRA treatment. SRM technique
allows to distinguish different isoforms of the same protein. We used the isoform specific
peptide standard to detect LYN isoform B and found it to be up-regulated at the proteome
level. Previously it was reported that phosphorylation activity of Lyn isoform B was lower
than that of Lyn isoform A [48]. Moreover, the ratio of Lyn isoform A and Lyn isoform B
splice forms may represent a biomarker of neoplasm aggressiveness as was shown in the
case of breast cancer [49].

Absolute quantification by SRM with SIS peptides demonstrates the almost equimo-
lar abundance of TF CEBPB and Src kinase LYN. Considering their possible interaction
(STRING analysis of DEGs, Figure S2), absolute abundances of CEBPB and LYN suggest
protein stoichiometry in the putative complex involved in the earliest step of ATRA-induced
granulocytic differentiation.

The myeloid-associated TFs (RARa, RXR, VDR, CEBPB, and GATA2) of model schemes
confirm the biological relevance of bioinformatics modeling. Notably, a transcriptome-
based MCD-regulating scheme included various protein kinases (ERK, JNKalpha1, MKK4,
GSK3beta, CSBP1 (MK14), AKT1, JNK3alpha1, Raf-1, PDK1, MKK5, and PKCzeta), that is
in accordance with MAPK-based mechanisms for ATRA-induced granulocytic differen-
tiation [14]. Moreover, the current inter-platform study shows the involvement of such
less associated with AML TFs as NF-ATs, SMAD3, WT1, and c-Krox, as well as ubiquitous
molecules (p300, P/CAF, UBC9), which are involved in posttranslational modifications
(acetylation, sumoylation, ubiqutunilation etc.). All the above observations suggest the
existence of alternative, RAR/RXR transcription-independent, induced differentiation
pathways. However, this assumption should be experimentally proven.

5. Conclusions

Applying transcriptomic, proteomic analysis, and bioinformatics prediction we have
suggested a hypothesis on molecular mechanism of ATRA-induced granulocytic differenti-
ation. We aimed to trace dynamics at different molecular levels in a time-course manner.
The novelty of the approach used in our study is that molecules with altered expression
from omics experiments have not been just mapped to known signaling pathways. Instead,
an upstream regulator search aimed to obtain the hierarchical model of ATRA-induced
granulocytic differentiation that reconstructs the molecular events affecting differentially
expressed mRNA and proteins. Only the TFBS in the promotor region of genes with
altered expression and highly validated data on protein–protein interaction were taken into
account in upstream regulator search. The resulting modeling schemas are visualizations
of the most probable variant of a biological signal transmission, which leads to a change in
the expression levels of transcripts and proteins, observed experimentally. The validation
of bioinformatics prediction by functional molecular research is an important item, and a
subject of our further work. The TF HIC1 and the key molecule PARP1 are contemplated
as the most promising targets for validation of the modeling pathways.

The approach combining transcriptomic, proteomic analysis, and computational anal-
ysis described here is applicable to various cells models including primary blast cells from
patients under different treatment regimens. Thus this platform could be useful for the
goals of precision medicine such as monitoring response to treatment especially in case of
drug resistance. Our results suggest that the multi-disciplinary platform combining tran-
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scriptomics, proteomics, and bioinformatics is a promising approach to reveal regulatory
molecules that are hardly detected by convenient omics methods or laborious to derive
from convoluted proteomic or transcriptomic data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11060907/s1, Figure S1. Evaluation of HL-60 cell line by the CD38 and CD11b expres-
sion level measured by flow cytometry. Figure S2. STRING interaction analysis of differentially
expressed genes (DEGs) of Myeloid cell differentiation (MCD) group at 3, 24, and 96 h after ATRA
treatment. Figure S3. Heatmap of protein expression during HL-60 cell line differentiation. Figure S4.
STRING interaction analysis of differentially expressed proteins (DEPs) assigned to group “pro-
grammed cell death” and/or “regulation of cell death” at 3 and 96 h after ATRA treatment. Figure S5.
High-resolution annotated MS2 spectrum of LYN isoform B-specific peptide TQPVPESQLLPGQR.
Figure S6. Calibration curves plotting of experimentally determined concentrations versus theoretical
concentrations of the target analyte using isotopically labeled and label-free synthetic standard
peptide A: LEEAAPPSDPFR (HIC1), B: TLGDFAAEYAK (PARP1), C: VLELTAENER (CEBPB), and
D: TQPVPESQLLPGQR (LYN). Table S1. All transcripts detected and differentially expressed genes
(DEGs) with fold-change equal or above 2 (p-value < 0.05) at 3 h, 24 h, and 96 h after ATRA treatment.
Table S2. The transcriptomic test sets (Yes-sets) for pathway modeling: DEGs related to the myeloid
cell differentiation (MCD) (GO: 0030099) at the 3, 24, and 96 h time points. Table S3. Data on spectral
counting. Number of unique peptides, percent of coverage, number of spectra, q-values and local
FDR are shown for each peptide in each time point (0, 3, 24, 48, and 96 h). Table S4. Data on spectral
counting. Number of unique proteins, percent of coverage, number of spectra, q-values and local FDR
are shown for each protein in each time point (0, 3, 24, 48, and 96 h). Table S5. Summary of relative
expression analysis and proteomic test sets (Yes-sets) for pathway modeling. Table S6. Transcription
factors (TFs) possibly regulating DEGs expression during ATRA-induced HL-60 cell differentiation
at time points 3 h, 24 h, and 96 h. Table S7. Transcription factors (TFs) possibly regulating DEPs
expression during ATRA-induced HL-60 cell differentiation at time points 3 h, 24 h, 48 h, and 96 h.
Table S8. Transition for SRM method (QqQ TSQ Vantage (Thermo Scientific, USA).
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