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Abstract: Parkinson’s Disease (PD) affects millions of people worldwide with no cure to halt the
progress of the disease. Leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of PD
and, as such, LRRK2 inhibitors are promising therapeutic agents. In the last decade, great progress
in the LRRK?2 field has been made. This review provides a comprehensive overview of the current
state of the art, presenting recent developments and challenges in developing LRRK2 inhibitors,
and discussing extensively the potential targeting strategies from the protein perspective. As currently
there are three LRRK2-targeting agents in clinical trials, more developments are predicted in the
upcoming years.

Keywords: kinase inhibitors; neurodegenerative diseases; Parkinson’s disease; protein—protein
interactions; small GTPases; LRRK2

1. Introduction

Neurodegeneration is defined as age-related, progressive loss of structure and function
of neurons, ultimately leading to their death. This in turn leads to severe impairment of
many crucial brain functions, such as memory loss, personality changes, and impaired
mobility. Because of the ever increasing life span, neurodegenerative diseases pose a major
medical challenge worldwide [1].

Parkinson’s disease (PD) is the second most common neurodegenerative disorder,
after Alzheimer’s disease. Currently available PD treatments are only symptomatic, with no
cure that would stop the progress of the disease or reverse it [2,3]. Early onset diagnosis
would allow for better control of the symptoms; however, the current diagnostic toolset
relies on presenting them, which is already a sign of advanced neurodegeneration [2,4].
At the moment, there are no specific tests or biomarkers in clinical use that would allow for
detecting the disease at an early stage, before presenting the symptoms, although there
are some markers that could give an indication for PD [2,5]. PD diagnosis and treatment
are further complicated by the various forms of disease due to different underlying causes,
which in turn render some of the available treatments ineffective [3,6]. Only about 5-15% of
PD cases have a familial history of the disease [4], with most of the cases being idiopathic.

Epidemiological studies have shown that there is strong genetic correlation, with mu-
tations in six genes being the major cause: snca (x-synuclein), lrrk2 (Leucine-rich repeat
kinase 2), vps35 (Vacuolar protein sorting ortholog 35), prkn (Parkin), dj1 (DJ-1), and pink1
(PTEN-induced kinase 1) [7,8].

The age of PD onset varies significantly for those genes, and so does the type of inher-
itance, which can be either dominant (snca, Irrk2, vps35) or recessive (prkn, dj-1 and pink1).
Furthermore, recent genome-wide association studies (GWAS) have shown that there is
high genetic heterogeneity at the basis of PD, with great racial difference of the genetic
causes in different populations and many rare mutations are usually detected only in a
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single family or in small populations. Among all identified risk-genes, mutations in lrrk2
stand out as the most common, single genetic cause of PD. The most common lrrk2 G2019S
mutation may explain up to 5% of all PD cases and is especially high among Ashkenazi Jews
and North African Arabs [9]. Importantly, recent studies have also detected an increased
LRRK2 activity in post-mortem brain tissue from patients with idiopathic disease [10].
Therefore, LRRK2 has become an essential player in PD pathogenesis, both sporadic and
familiar, and insight into LRRK2 function may thus help to understand the progression of
PD in general. Hence, targeting LRRK2 might not only be important for LRRK2-mediated
PD, but also has the potential to address PD caused by other gene mutations or agents.
In this review, we will give an overview of all the various LRRK2 targeting strategies,
discuss their current use, and give some future perspective on targeting PD in the clinic.

2. LRRK2: Structure, Function, and Role in PD

LRRK2 is a large (2527 amino acids, 286 kDa), multidomain protein that bears two
enzymatic functions: kinase and GTPase, and several protein—protein interaction (PPI)
domains. There are many genomic PD variants of LRRK2, some of them have been
repeatedly confirmed as pathogenic, others are considered risk factors, and some are
benign [7]. Figure 1a depicts the domain structure of LRRK?2 and the location of the seven
PD-pathological mutations. Several other mutations in LRRK2 have been linked to other
diseases, such as Crohn’s or Hansen's disease [11-13].

LRRK?2 is expressed in multiple tissues, with the highest expression levels in leuko-
cytes, including monocytes, B lymphocytes, dendritic cells, and microglia [14,15]. Moreover,
it is expressed in the lung and kidney, although at lower levels [16], with surprisingly low
expression in the brain [17]. Despite numerous efforts, the exact physiological function of
LRRK2 remains elusive, although there is a good body of evidence showing its involvement
in multiple cellular processes, such as: neuronal plasticity, vesicle trafficking, mitochondrial
function, autophagy, apoptosis, and many others [18]. Physiological substrates of LRRK2
kinase belong to the Rab GTPase family [19-21]. It has been proposed that LRRK2 might
serve different functions in different tissues, depending on the subset of downstream Rab
substrates being expressed.

Accumulating evidence suggests that this LRRK2/Rab pathway functions at the
interface of vesicular trafficking, lysosomal functioning, and autophagy [22-24]. These pro-
cesses play a crucial role during immune response and several studies have linked LRRK2
signaling to inflammation in general and neuroinflammation specifically (reviewed in [25].
Interestingly, recently, it was shown that LRRK1, the human homolog of LRRK2, phospho-
rylates a different subset of Rab proteins than LRRK2, suggesting that LRRK enzymes are
Rab specific kinases [26].

2.1. LRRK2 Structure

Even though elucidating the structure of LRRK2 has been the goal of many experimen-
tal efforts for the last decade, the results obtained so far are still far from ideal. The main
roadblock here is the stability and solubility of the purified protein. In a recent study,
Deniston et al. [27] has systematically scanned for the most optimal LRRK?2 construct(s)
expressed in the insect cells, which led to obtaining a soluble catalytic half of LRRK2
(RocCOR-kinase-WD40) and yielded a structure with 3.5 A resolution. This is a significant
progress compared with the previous structures of full-length LRRK2 (22 A[28],16 A [29],
and 14 A [30]. During the revision of this manuscript, the first high-resolution Cryo-EM
structure of full-length LRRK2 was published [31]. From these studies, it is clear that
LRRK2 forms tightly packed homodimers in head-to tail fashion, with a multitude of tight
interactions between spatially distant domains [27,28], Figure 1b,c shows the molecular
model obtained from the electron density map; domains were color-coded for clarity (PDB
ID 6VNO). The RocCOR module is located at the core of the complex, which is the main
dimerization interface. The N-terminus of the protein is folding back on the kinase do-
main, which is exposed on the opposite sides of the complex (Figure 1b). Intriguingly,
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the C-terminal helix that follows the WD40 domain docks onto the kinase domain at a
putative allosteric site. This interaction may explain the observed stimulating effect of the
WD40 domain on LRRK2 neurotoxicity [32,33]. The close proximity of the kinase domain
and RocCOR supradomain from the other protomer creates room for speculation on the
molecular mechanism of how these two domains regulate each other [34,35].

R1441|C/G/ H I20|20T
N1437H Y1699C G2019S

| |

1 ARM ANK LRR Roc ., COR KIN WD40 2527

13-621 627-830 947-1313 1328-1519 1528-1826 1879-2139 2140-2498

125 A

(b)

Figure 1. (a) Domain organization of LRRK2. ARM—Armadillo repeats, ANK—ankyrin repeats,
LRR—Ileucin-rich repeats, Roc—Ras of complex proteins, COR—C-terminal of Roc, KIN—kinase,
WD40—WD repeat domain. Red arrows above the protein indicate PD-causing mutations. Numbers
below each domain indicate estimated domain boundaries; (b) approximate domain organization,
based on the molecular model by Guaitoli et al. [28]. Color coding is the same as in (a); (c) struc-
ture of RocCOR-KIN-WD40 as solved by Deniston et al. [27] by cryo-EM with resolution of 3.5 A.
PDB code 6VNO; molecule visualized with PyMOL; figure created with BioRender.com (access date
2 April 2021).

Although the recent EM structures are a major breakthrough in understanding the
structure and activation mechanism of LRRK?2, structure-based drug design efforts require
high-resolution structures (namely, below 2 A). Crystallizing the full-length or truncated
LRRK?2 failed to yield a structure so far, even under microgravity conditions [36]. Therefore,
the structural efforts have turned into individual domains. Up to date, the amount of
structural information on LRRK2 domains is limited (WD40 solved at 2.6 A [37] and the
Roc domain as swapped dimer, solved at 2.0 A [38], later revised to 1.6 A [39], which is
believed to not be biologically relevant). The major challenge in working with other LRRK2
domains is their low solubility and issues with purification [40-42].

As the experimental work to obtain a high-resolution structure of individual LRRK2
domains is ongoing [38,39,43], several attempts to generate in silico models have been
made. In particular, homology models of each LRRK2 domain have been published [44,45].

2.2. LRRK2 Activation and Cycle

Several structures of LRRK2 domains from orthologous proteins have been published,
namely: RocCOR and LRR-RocCOR domains from C. tepidum [46] and [47], respectively;
RocCOR from M. barkeri [48], and the kinase domain from D. discodeum [49]. These studies
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have shed some light on the probable mechanism of LRRK?2 activation cycle [50-52] and
were useful in characterizing LRRK2 inhibitors [53]. This section describes the most pliable
mechanism of LRRK2 activation and cycle, which is schematically shown in Figure 2.
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Figure 2. Current (simplified) model of the LRRK2 cycle. LRRK2 exists as monomers in the cytosol,
where it is stabilized by 14-3-3 proteins. Upon binding to Rab proteins, LRRK2 is recruited to biolog-
ical membranes, where the kinase domain of LRRK2 gets activated, the GTP hydrolyzes, and the
protein dimerizes. The exact order in which these processes happen is unknown, but it is possible that
they occur simultaneously. After the signaling output is achieved, GDP is exchanged to GTP, and the
protein monomerizes and gets translocated to the cytosol. The figure is based on reference [52].
Association to microtubules was left out on purpose, as it remains to be experimentally proven to be
true for endogenous LRRK?2; figure created with BioRender.com (access date 2 April 2021).

It has been shown that the monomeric LRRK2 is a predominantly cytosolic protein,
while its homodimeric form associates onto biological membranes [54]. The GTP-bound
monomeric LRRK2 state is stabilized by 14-3-3 proteins, which bind to LRRK2 upon
phosphorylation of serine 910 and serine 935, thereby preventing LRRK2 aggregation in
cytosolic inclusion pools [55,56]. In this stabilized monomeric state, both the GTPase and
the kinase presumably only have low basal activity [54].

Accumulating evidence points to GTP-bound Rab family of GTPases as the main mem-
brane recruiting factors [23]. A subset of Rab proteins can bind to the N-terminus of LRRK2
and thereby induce localization of LRRK2 to various membranous organelles, depend-
ing on the Rab isoform. Rab29 recruits LRRK2 to the lysosomes and Golgi, while Rab32
recruits LRRK2 to lysosomes [35]. However, a recent study has shown that a Rab29
knockout cell line still has normal LRRK2 activation [57]; therefore, further research is
necessary to understand how and which Rab GTPases are functioning upstream from
LRRK2. The membrane-associated LRRK2 dimers have higher kinase activity and can,
subsequently, phosphorylate other Rab proteins [54,58].

Membrane association, but not the identity of the membrane, is important for LRRK2
activation, suggesting that membrane binding induces conformational changes in LRRK2
that allow for activating its kinase domain [58]. At the membrane, LRRK2 goes through a
multi-step hydrolysis cycle, resulting in a dimeric, GDP-bound conformation of LRRK2 at
the membrane (discussed in detail in [52]).

Initially, it was postulated that LRRK2 acts via a similar mechanism to G-proteins
activated by dimerization [46,59,60], but, in the light of newer evidence, this view was
abandoned [50,52], and, currently, it is believed that the activation mechanism of LRRK2
is unique. It is unclear during which step dimerization occurs; however, it is mediated
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via the COR domain and is crucial for hydrolysis, maximum kinase activity, and LRRK2
functioning (see Figure 2).

Studies in vitro on LRRK2 orthologs have shown that the RocCOR module stays
dimeric when it is GDP-bound and nucleotide free, but it quickly monomerizes when
exposed to GTP [50]. Since the GDP affinity towards Roc is low (in the micromolar range),
the GTP off rate is fast, and the cellular abundance of GTP is higher than GDP, most likely,
the GDP/GTP nucleotide exchange is rapid and concerted with monomerization. Inter-
estingly, Wauters et al. showed that the Michaelis constant (Ky) of the GTPase reaction is
within the range of the cellular GTP concentration [52], which suggests that cellular fluxes
of GTP could control the LRRK2 GTP/GDP cycle.

So far, it remains to be determined whether the LRRK2 monomerization is sufficient
to induce dissociation from the membrane, or if additional factors are needed to regulate
this process [52]. After the protein monomerizes, and dissociates from the membrane, it is
ready to start another cycle.

2.3. LRRK?2 Activation in Parkinson’s Disease

The exact role LRRK2 plays in PD has not been clearly established yet. The influence
of the PD-causing mutations on the LRRK?2 activation mechanism and its interactors is
also not clearly understood [61]. There are numerous single nucleotide substitutions in
the LRRK2 gene (an extensive list can be found in the UniProt database (ID: Q55007) or
in [7]), although, for most of them, there is not enough evidence to be associated with
PD or other diseases. Table 1 summarizes the clearly PD-pathogenic LRRK2 variants and
their influence on LRRK2 function. Some of the mutations have been reported to have a
contradictory effect on the LRRK2 kinase activity (e.g., 12020T) [62,63]. It is worth noting
that each PD mutant in LRRK2 results in unique neuropathology [64], and their prevalence
is specific to certain populations or even families [7].

Table 1. Most common, PD-causing LRRK2 mutations and their effect on the protein activity.

Mutation Domain Effect on the Kinase Effect on the GTPase Probable Mechanism
no effect [65] - .\ . .
R1441G Roc 11-15x 1 Rab phosph. [66] ¢TG?"¥’Phbldnrilln§i’s loss of p ?ffiiiﬁﬂfff [t()}g’;t mpairs
2.5x 1 autophosph. [67] Y Y
3 . } thermodynamic stability of Roc domain
R1441C Roc 43?(XTT R?b };hos;})lh.[ 516] ! GTHS EP d]:;mldl?gi 6] [70]; loss of positive charge that impairs
autophosph. yarolysis dimerization [68]
o loss of positive charge that impairs
R1441H Roc 9-10x 1 Rab phosph. [66] ! GTFIS }TlP dt;mldlrilgi 65] dimerization, alteration to tertiary
yarolysts 162 structure of Roc domain [68]
14-18x 1 Rab phosph. [66] 1 GTP binding, . .
Y1699C COR no effect on autophosph. [67] | GTP hydrolysis [71] alteration of electrostatic surface [68]
G2019S kinase 2-3x 1 [00] no effect [62] ziifiiﬁairgﬁlgie}?yﬁggzze
3.5x 1 autophosph. [67] 1 GTP binding [72] bond [49,68,73]
no effect in vitro [74] affected stability, kinase stabilized in an
12020T kinase 6-7x 1 Rab phosph. [66] 1 GTPase activity [74] inactive conformation by hydrogen
2x 1 autophosph. [67] bond [68,73]

phosph.—phosphorylation; autophosph.—autophosphorylation; T—increased, |—decreased.

Because the LRRK2 activation mechanism is complex and is regulated at several
levels (see above), one can easily imagine that any amino acid substitution affecting either
the enzymatic core or any of the PPI interfaces may perturb it. Based on experimental
evidence, it appears that indeed this is the case, with various mutations resulting in different
defects in the activation mechanism. The common mechanistic output though is increased
kinase activity and lowered GTPase activity, which altogether results in prolonged kinase-
active, GTP-bound (transition) state, leading to increased LRRK2 signaling, promoting
neuronal cell death and ultimately causing PD [35]. Interestingly, the symptoms of LRRK2-
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related PD and sporadic PD are very similar and, recently, it has been found that LRRK2
activity was enhanced in postmortem brain tissue from patients with idiopathic PD [10,75].
This suggests that LRRK2 activity plays a role in PD independence of mutations and that
targeting of LRRK2 thus might be beneficial for both LRRK2 carriers and for the treatment
of sporadic PD.

3. Modes of LRRK2 Inhibition
3.1. Kinase Inhibitors

Kinase inhibition is a very common therapeutic strategy [76,77], and many tools
for studying and fine-tuning kinase inhibitors have already been developed. Moreover,
the kinase function appears to be the final outcome of LRRK?2 signaling and is upregulated
in all PD-causing mutants; therefore, from a pharmacological standpoint, this should be
the most straightforward option to clinically target LRRK2. Numerous LRRK2 kinase
inhibitors have been developed, all ATP-competitive (reviewed in [78]). It has been shown
that inhibiting the kinase domain of LRRK2 has neuroprotective effects (reviewed in [17])
and prevents endolysosomal deficits [79], making it a very attractive treatment strategy.
Table 2 presents some of the commercially available LRRK2 kinase inhibitors.

Table 2. Most used, orthosteric LRRK2 kinase inhibitors and their selected properties.

LRRK2 IC5¢ [nM] i
Compound Name Chemical Structure % Bram‘ . Reference
WT G2019S Permeability
N
% /
Hee” o
MLi-2 v\ Rt 0.8 0.76 yes [80,81]
@
Sy
PF-06447475 3 11 yes [82]
PF-06685360 2.3 n.d. yes [83]
GNE-0877 3 n.d. yes [84]
GNE-7915 9 nd. yes [85]
GSK2578215A 10.9 8.9 yes [86]
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Table 2. Cont.

Compound Name

LRRK2 IC59 [nM] Brain
WT G2019S Permeability

Chemical Structure Reference

HG-10-102-1

H,C.
3 \NH

o
XN N
y /)\NH/Q/L @ 20.3 3.2 yes [87]

\§:/>— 0—CHg
LRRK2-IN-1 13.0 6.0 no [88]
N N N—CH,
_/

n.d.—no data; NHP—non-human primate.

MLi-2, developed by MERCK in 2015, is commonly used in academics [80,81]. MLi-2
is a highly potent, very selective, ATP-competitive LRRK2 inhibitor. It was discovered in a
high-throughput screening effort, and subsequently optimized to result in ICsy of 0.76 nM
(in vitro) and 1.4 nM (in vivo), with similar values for the G2019S mutant. The compound
is orally available and brain penetrant; however, it caused morphological changes in lungs
of mice (all five of the tested animals developed enlarged type II pneumocytes upon MLi-2
dosing). Those changes nonetheless did not result in pulmonary or any other deficits and
were completely reversible upon ceasing the treatment. Unfortunately, despite sustained
LRRK2 kinase activity in the mouse brain, MLi-2 failed to slow or stop the progression of
PD phenotype in the studied mouse model. Although MLi-2 did not make it to the clinic,
it has become a valuable tool to study LRRK2 (patho)biology.

Another well characterized compound is GNE-7915. It was developed by Genentech
in 2012 [85] based on a homology model of LRRK2. Highly soluble, very selective, potent,
and brain penetrant, GNE-7915 (and a similar compound GNE-0877) was extensively
tested in multiple species (mouse, rat, and cynomolgus monkey: [89]). Despite not showing
any lung nor kidney pathology in rodents, all tested monkeys have developed abnormal
accumulation of lamellar bodies in type II pneumocytes. Even though the effect was
not accompanied by pulmonary deficits, this posed a serious safety concern for potential
advancement to PD patients; therefore, clinical trials did not commence.

3.1.1. Early Safety Concerns Regarding Kinase Inhibition

Despite the sheer amount of specific, brain penetrant, highly potent LRRK2 kinase
inhibitors, almost all of them suffer from one drawback or another. An ideal inhibitor must
not only be highly specific towards LRRK2, potent, and permeable though the blood—brain
barrier, but, most importantly, must engage no other targets and display no (or only mild)
side effects, need to be easily administered (oral administration is preferred) and must be
safe in a prolonged use. This is especially important since PD patients will be taking the
medicine for a long period of time (up to decades). Almost all of the developed up to date
LRRK2 kinase inhibitors fail to meet some of the criteria. Medicinal chemistry efforts to
produce better compounds are still ongoing, with DENALI leading the way by launching
clinical trials for two of their compounds (vide infra).

The inhibitors that advanced to animal studies (MLi-2, GNE-7951, GNE-0877, PFE-
360) resulted in kidney and lung phenotypes, raising major concerns regarding safety
of LRRK2 kinase inhibition. However, the most recent MLi-2 safety re-evaluation study
in macaques have shown that the lung phenotype is reversible and completely benign,
not causing any respiratory issues [90]. Plausible explanation of the observed lung and
kidney effects likely arises from the on-target engagement, as it has been shown that LRRK2
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kinase inhibition leads to decreased LRRK2 levels due to its increased degradation via the
ubiquitin pathway [91], which results in a phenotype similar to LRRK2 knock-out [83,91,92].
A recent study has proven that loss of the LRRK2 itself is neither toxic nor harmful in
humans [93]; therefore, one may assume that the observed lung phenotype is innocuous.
An alternative explanation for the observed on-target side effects of LRRK2 inhibition is
stabilization of the closed conformation of the kinase domain, which leads to abnormal
accumulation of LRRK2 on microtubules, where, in turn, it acts as a roadblock for both
actin and dynein movement [27]. However, it must be noted here that this study was done
in vitro, and accumulation of LRRK2 on microtubules so far has only been shown in cells
that overexpress LRRK2. Therefore, it remains to be determined whether endogenous
LRRK2 is also localized on microtubules and if (and how) this plays a role in PD and
targeting of LRRK2.

3.1.2. Rational Design of Improved ATP-Competitive Kinase Inhibitors

In the absence of high-resolution structures, the research has turned to molecular
modeling and structural surrogate approach. Several models for the LRRK2 kinase domain
have been developed, but they are mostly used in house and are not available for common
use [85,94-99]. Some of them have been used for virtual screening for new inhibitors [96]
and even de novo inhibitor design [94]. Although only two of the identified molecules
have advanced to experimental use: GNE-7915 and PF-06447475 [82,85], they gave major
insights into the amino acid residues in LRRK2 that are crucial for selective inhibition.

As for the structural surrogate approach (the rationale being to create a chimera of
soluble kinase as a scaffold with the ATP-binding pocket properties of LRRK2), a number
of structures with LRRK2-specific inhibitors bound in the ATP-binding pocket have been
obtained [53,82,100,101], proving the efficacy of the approach; however, none of them have
been used for computational design of improved LRRK2 kinase inhibitors so far.

Another interesting take on improving the existing LRRK2 inhibitors is approaching
the issue from the perspective of the pharmacophore (e.g., properties of the ligand that are
crucial for molecular recognition by the receptor; ATP-binding pocket of LRRK2 in this case).
To the best of the author’s knowledge, only two such studies have been conducted [94,102].
Despite the great selectivity of the designed compound (25-fold better inhibition of the
G2019S mutant over the WT LRRK?2) [102], its experimental use is practically non-existent,
and, to the best of author’s knowledge, sadly, the compound has not been studied in vivo.

Attempts have been made towards developing G2019S-specific inhibitors, to spare the
WT LRRK2 activity in heterozygous patients. In a recent paper, Garofalo et al. have con-
ducted a high-throughput screen for G2019S-specific inhibitors, and identified a single
hit that led to a series of novel, potent, and highly selective inhibitors, reaching >300-fold
selectivity in a cell-based assay on an endogenous LRRK2 [97]. Despite the compounds
being poorly brain-penetrant, this study proves the concept of selective inhibition of a
single point mutant, which paves the way for subsequent optimization and development
of an improved inhibitor series.

3.1.3. Allosteric LRRK2 Inhibitors Targeting the Kinase Domain

Targeting the ATP-binding site of any protein kinase is especially challenging due to
high sequence and structural similarity between the kinases. Moreover, studies have shown
that the most common G2019S mutation can be resilient to ATP-competitive inhibition [103].
A way to overcome these limitations is to target an allosteric site, if one could be identified
in the LRRK2 kinase domain.

Identification of allosteric sites, however, is not a straightforward task, and is usually
achieved by the means of a high-throughput screen, either an experimental or a computa-
tional one [104,105]. By “allosteric,” the authors mean here the classical definition, which is
an effector site, distinct from the ATP-binding pocket, located within the kinase domain
of LRRK2. However, achieving allosteric inhibition of the kinase domain by means of
targeting other domains is also possible.
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One of the physiologically active forms of vitamin By,, 5'-deoxyadenosylcobalamin
(AdoCbl) was identified as an LRRK2 kinase inhibitor in a high-throughput screen [106].
Further characterization showed a moderate inhibitory effect in micromolar range on auto-
and substrate phosphorylation, disruption of LRRK2 homodimerization, and neuron-loss
rescue in simple animal models. AdoCbl was the only form of vitamin Bj, that generated
a response in vivo, in contrast with other vitamin By, forms. The obtained results point
at a mixed-type inhibition, which suggests, but does not equal, an allosteric mechanism.
However, the AdoCbl concentrations that were used in these studies are very high, and,
therefore, it is questionable whether AdoCbl can be useful for pharmacological treatment.

3.2. GTPase Modulators

Even though the exact mechanism of LRRK2 activation is still unclear, it seems ap-
parent that the GTPase function is acting upstream from the kinase activity [107,108].
Therefore, instead of blocking the kinase domain, perturbing the Roc domain seems like a
tempting strategy.

From the literature, it is clear that the capacity to bind GTP and the capacity to hy-
drolyze it once it is bound are two separate events that have different mechanical outcomes
on the kinase domain. The ability to bind GTP, and thus an intact Roc domain, is crucial
for proper functioning of the kinase domain [107]. Artificial Roc mutants that cannot bind
GTP (K1347A, T1348N) display no kinase activity; an artificial Roc mutant that can bind
GTP, but cannot hydrolyze it (R1398L/T1343V) shows lowered kinase activity and neurite
shortening; and, finally, an artificial mutant with normal GTP binding, but improved GTP
hydrolysis (R1398L), shows normal kinase activity and rescues neurite shortening [34].
The GTP-locked mutant combined with G2019S mutation showed moderate rescue of neu-
rite shortening. Therefore, one may conclude that a non-hydrolyzable GTP analog could
benefit the patients with G2019S mutation, but not the others. Meanwhile, a molecule that
improves GTP hydrolysis would be beneficial for all LRRK2 PD patients. As for complete
abolishing of GTP binding, more data are needed to speculate, but it may be a third viable
option [108]. In line with the benefits of stimulated GTPase activity, the protective LRRK2
variant (R1398H) is showing lower GTP binding but increased hydrolysis, and increased
axon length compared with wild-type LRRK2 [70].

As a proof of concept, two GTP-competitive inhibitors were identified in a virtual
database screening by Li et al. using the crystal structure of the Roc domain (PDB ID: 2ZE])
as an input [72]. Those compounds, named 68 and 70, cause reduced GTP binding, kinase
inhibition in vitro and in vivo alike, and rescue of neuronal degradation in a cell viability as-
say. Interestingly, both 68 and 70 did not affect GTP binding of the closest LRRK2 homolog,
LRRK1, which shares 48% sequence similarity in the Roc domain. However, this study
did not run any small G-protein specificity assays, while some cross-reactivity could be ex-
pected due to high similarity of the guanine nucleotide binding pocket. They showed that
compound 68 was able to reduce LRRK2 phosphorylation in a mouse brain, showing its
brain permeability. However, the dose that displayed the effect was 20 mg/kg, which is rel-
atively high, while no effects could be seen at 10 mg/kg. An optimized compound, FX2149,
displayed similar effects on GTP binding and kinase domain, and showed improved target
engagement in the mouse brain, showing reduction of LRRK2 phosphorylation by 90%
at a dose of 10 mg/kg [109]. All three Roc-specific inhibitors are presented in Table 3.
This follow-up study, however, still showed no proof of specificity versus other small
G-proteins. Compounds 68 and FX2149 were subsequently shown to rescue the impaired
cargo transport along neurites in neuroblastoma SH-SY5Y cells, which further proves they
are effective in LRRK?2 inhibition [110]. Interestingly, in another follow-up study;, it was
found that compounds 68 and FX2149 increase aggresome formation and Lewy-body-like
inclusions, as well as LRRK2 polyubiquitination via atypical K27 and K63 linkages [111].
Ubiquitin linkages via K27 are suggested to be a signal for protein aggregation [112],
and K63 linkages are responsible for proteasome-independent processes [113]. Moreover,
it remains to be determined whether protein aggregation is protective for neurons or not;
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however, Lewy bodies are generally believed to be neuroprotective. Interestingly, com-
pound 68 was observed recently to lower the inflammatory response in immune cells [114].
Treatment with 68 reduced and attenuated the TNF-« release in LPS-treated lymphoblasts.
This finding opens up a way to further investigate Roc domain inhibitors as potential
anti-inflammatory agents in PD patients.

Table 3. LRRK2 GTPase inhibitors developed to date.

Compound Name Chemical Structure Brain Permeability = Reference
©\ //O
68 o//s\NH NH\/\O/CH3 yes [72]
e
CHs
70 na [72]

NH N
N =
ovK/O\(L( f\/}_/?//o\,.cm

L

o

N Y

FX2149 o//iﬁ\NH/@ﬁ‘/NH\/\CHs yes [109]
o

n.a.—not available (compound insoluble).

Together, these studies have proven that GTP-binding inhibitors could be an effective
method of inhibiting LRRK2 and reducing neuroinflammation. Even though the exact
mechanism of their action is unclear, it seems that altered GTP binding can influence the
subcellular localization of LRRK2 via altered interactions with 14-3-3 proteins [115].

4. Downregulating LRRK2 Protein Levels

With a recent progress in precision medicine and gene therapy, an entirely different
way to reduce the LRRK2 activity has emerged: reducing the amount of the produced
protein by means of: a) modifying gene expression and splicing events or b) by actively
degrading the already produced protein. To this end, several tools have been devel-
oped, which are mostly nucleic acid agents, such as: antisense oligonucleotides (ASOs),
small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs), microRNAs (miRNAs),
splice-switching ASOs, and aptamers [8]. Next to those, a line of small molecules called
proteolysis-targeting chimeras (PROTACsS) is a very promising tool in neurodegenerative
medicine [116]. So far, three reports of LRRK2-targeting nucleic acid agents have been
published, and each of them adopts a different mechanism.

The very early attempt at silencing LRRK2 expression by means of RNA interfer-
ence was made by de Ynigo-Mojado et al. in 2011, who have identified two, allele-
specific shRNAs that specifically target R1441G and R1441C alleles with 80% silencing
efficiency [117]. The developed agents cleave the Lrrk2 mRNA by RNA-induced silencing
complex, and can discriminate between WT and mutant Lrrk2 mRNA, thus not affecting
the levels of the WT protein. As a proof of concept, these ShRNAs were tested in human
embryonal kidney cells (HEK 293FT), showing good selectivity over the WT gene (13.4 and
17.8-fold for each of the studied shRNAs) and a great silencing strength of 80%. This report
shows, that, if needed, mutant forms of LRRK?2 can be selectively silenced, which paved the
way for further studies. Nonetheless, gauging the efficiency of this approach and potential
side effects in neuronal cells or mice models would be highly desirable.

Antisense oligonucleotides (ASOs) are single stranded, synthetic nucleic acids that
bind to target mRNA by complementary base-pairing, which can result in mRNA degrada-
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tion by RNAse H mechanism, among others [118]. Importantly, chemical modifications to
the phosphodiester bond, sugar backbone, or other parts of the molecule can be introduced,
in order to improve solubility, resistance to nucleases, and to improve other pharmacoki-
netic properties. Notably, ASOs can be delivered directly to the brain, without any carrier
vesicles, by means of intracerebroventricular injection (ICV), and thus not affect any pe-
ripheral organs like lung and kidneys, as ASOs do not cross the blood-brain barrier [119].
Zhao et al. have developed two such ASOs, one of which is currently in clinical trials [120]
(BIIB094, Table 4). They have found that both tested molecules produce a dose-dependent
reduction of endogenous LRRK2 levels in brains of transgenic mice, without altering the lev-
els of LRRK?2 in other organs and not affecting LRRK1 levels. The developed ASOs reduced
the formation of pathological a-synuclein inclusions, reduced the dopaminergic neuron
cell loss, and reduced PD-related motor deficits. Importantly, long-term treatment with
ASQOs was well tolerated by the mice and did not result in any side-effects. Consistently,
a recent study has shown that LRRK2 pLoF variants (loss-of-function of protein-coding
genes) in a human cohort, results in reduced LRRK2 protein levels, but does not result
in specific phenotype or disease [93]. Together, this strongly suggests that inhibition of
LRRK2 expression will not result in major side-effects or symptoms.

Table 4. LRRK2 therapeutics that are currently in clinical trials.

Clinical Trial Compound Name Compound Type Phase Funding Body

. S Phase Ib Denali Therapeutics Inc. (South San
NCT03710707 DNL201 kinase inhibitor (completed) Francisco, CA, USA)

Phase Ib Denali Therapeutics Inc. (South San
NCT04056689 DNL151 kinase inhibitor (in rseress) Francisco, CA, USA) and Biogen
prog (Cambridge, MA, USA)
NCT03976349 BIIB094 ASO Phase I Biogen (Cambridge, MA, USA)
(recruiting)

These results show a great promise, with no side effects on the peripheral organs
and their high selectivity; however, the main drawback is the invasive procedure of ICV
injection. Alternatively, an Ommaya reservoir, a brain implant used for the aspiration of
cerebrospinal fluid and drug delivery, could be used, but this also has a major impact on
the quality of life of PD patients.

Another example of an interesting, new approach, are splice-switching ASOs devel-
oped by Korecka et al. [121]. The Irrk2 gene, coding for 51 exons, undergoes extensive
splicing with seven various transcript forms and multiple splice variants [122]. It was
proposed that editing out the exon 41, located within the kinase domain and encompassing
the G2019 residue, would not only nullify the overactive mutation, but also lower the
levels of WT protein. In addition, indeed, the obtained results show lower LRRK2 kinase
activity measured as Rab10 phosphorylation, and normalized autophagic fluxes (measured
as LC3B II/I ratio) upon ICV injection in transgenic mice [121]. A single ICV injection had
long lasting effects: a decrease in LRRK2 protein levels three weeks after the procedure and
decrease in Rab10 phosphorylation even after two months of the intervention. This obser-
vation is crucial from the prospective therapeutic point of view; as such, an invasive drug
delivery method could be accepted every few months, if no other administration route
is achieved.

An entirely different approach to downregulating protein levels is by means of tar-
geted chemical degradation of translated protein, using PROTACS, that use the cell ma-
chinery to initiate degradation of the target protein. This approach has the advantage
of degrading already formed protein aggregates and other targets that were previously
deemed undruggable by conventional tools [116,123-125]. This promising idea in rela-
tion to LRRK2 was tested and a patent was recently published, where a set of PROTACs,
that consist of a LRRK2 specific kinase inhibitor, a ligand that binds to the E3 ubiquitin
ligase, and a linker connecting the two ligands, was generated. Studying this PROTACs in
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mouse embryonic fibroblast cell lines revealed decreased levels of LRRK2 and lowered 5935
phosphorylation, showing the effectiveness of this approach (patent publication number
WO 2020/081682 Al; [126]).

Downregulating LRRK2 protein levels, either by means of degrading mRNA, altering
splicing, or degrading the synthesized protein, is a very promising pharmacological ap-
proach. As genomic data showed, loss of LRRK2 function in humans is not associated with
any specific phenotype or disease state [93], so even complete, uniform silencing of LRRK2
gene should yield desirable effects without observable toxicity or side effects.

5. Conclusions and Outlook

From numerous studies, it is now clear that LRRK2 goes through a complex activa-
tion mechanism. The different PD-mutations all result in increased kinase activity and
increased Rab-phosphorylation. Therefore, the most obvious way is direct kinase inhibi-
tion, which has attracted the most attention so far from both the academic and industrial
community. Numerous ATP-competitive LRRK2-kinase inhibitors have been developed
with some of them advancing to clinical trials, despite the initial safety concerns. Cur-
rently, three medicinal agents are in phase I clinical trials, the results of which are eagerly
awaited (Table 4). In a press release from January 2020, Denali has announced that both
tested compounds were well-tolerated, with little to no adverse side effects [127]. In a
subsequent press release from August 2020, it was announced that both compounds have
met the criteria to further advance in the clinical trials, with DNL151 being preferred due
to more flexible dosing regimens [128]. An FDA application was also filed and approved
for DNL151. Phase II for DNL151 is planned to commence in late 2021 [129]. The trial for
BIIB094 is still actively recruiting participants, and no outcomes have been made public yet.
It is estimated to complete in September 2023. A major challenge in clinical trials for drugs
targeting PD is the lack of good biomarkers and setting the primary end-point, since most
drugs do not modify the effect of the disease. However, LRRK2 activity is involved in
the underlying process that plays a crucial role in both iPD and LRR2-mediated PD. Fur-
thermore, reducing LRRK2 activity and/or levels has neuroprotective effects. Therefore,
targeting LRRK2 has great potential as disease-modifying treatment [78].

Since the various PD-mutations have a different effect on the activation mechanism
and there are still safety issues raised with the ATP-competitive kinase inhibitors, target-
ing other domains of LRRK2 than the kinase may prove to be therapeutically effective.
Every step in the complex activation mechanism of LRRK2, including, but not limited to,
the Roc domain, protein—protein interaction with the N- and C-terminal domains of LRRK2
(e.g., targeting binding of upstream Rab proteins), and/or dimerization, is a potential
therapeutic target (Figure 3). The first Roc domain-targeting, GTP-competitive inhibitors
have been developed. To identify new targeting surfaces and further develop these sorts of
compounds for allosteric targeting of LRRK2 [130], further characterization of the LRRK2
activation mechanism and high-resolution structures will be of great importance. In this
respect, the recently identified full-length structure of LRRK2 will be instrumental [31].
In addition to inhibiting LRRK2 activation, approaches that stimulate dephosphorylation
of the major LRRK2 substrates, Rabs, could also be considered [131]. Then, finally, there are
factors that could regulate the level of the LRRK2 protein itself, either by PROTACs or
targeted gene therapy.

Together, the data described in this review show that the LRRK2 field has seen great
developments over the past decade and went from the lab to the clinic. A major question
that remains to be answered in the upcoming years is whether the LRRK2 specific com-
pounds would also benefit PD patients that do not carry LRRK2 mutations. The next big
challenge in the field is the development of reliable biomarkers for accurate detection of
LRRK?2 activity and monitoring the progression of PD from the early stages. In this respect,
antibody or mass spectrometry-based assays that can detect Rab10 phosphorylation in
patients’ samples are being studied, as well as urinary proteome profiling, as non-invasive
analytical methods [132-134].
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Figure 3. Summarized LRRK?2 targeting strategies. See the text for a detailed explanation of each strategy.
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