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1. Figures S1-S54. NMR (DMSO-d6, 600MHz at 298 °K) and HRMS data of compounds 1-11. All 

1D and 2D NMR spectra were acquired on Bruker Avance III 600 MHz spectrometer and HRMS 

data were acquired on Thermo LTQ Orbitrap. 

 

Compound 1 

 

 

 

 

 

 

 

 

 

 

S1 1H-NMR spectrum of compound 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

S2 COSY spectrum of compound 1 
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S3. HSQC spectrum of compound 1 

 

S4. HMBC spectrum of compound 1 
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S5. HRESI-MS of compound 1 

 

Compound 2 

 

S6. 1H-NMR spectrum of compound 2 

MR738 #435 RT: 9.09 AV: 1 NL: 2.99E7
T: FTMS + p ESI Full ms [100.00-2000.00]
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S7. COSY spectrum of compound 2 

         

S8. HSQC spectrum of compound 2 
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S9. HMBC spectrum of compound 2 

 

S10. HRESI-MS of compound 2 

 

 

MR489 #1163 RT: 11.13 AV: 1 NL: 6.36E5
F: FTMS + p ESI Full ms [230.00-2000.00]
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Compound 3 

 

S11. 1H-NMR spectrum of compound 3 

 

S12. COSY NMR spectrum of compound 3 
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S13. HSQC NMR spectrum of compound 3 

 

S14. HMBC NMR spectrum of compound 3 
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S15. HRESI-MS of compound 3 

 

 

 

S16. 1H-NMR spectrum of compound 4 

MR378 #856 RT: 12.29 AV: 1 NL: 1.41E7
T: FTMS + p ESI Full ms [150.00-2000.00]
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S17. COSY NMR spectrum of compound 4 

 

 

S18. HSQC NMR spectrum of compound 4 



S11 
 

 

S19. HMBC NMR spectrum of compound 4 

 

 

S20. HRESI-MS of compound 4 

 

 

 

 

MR454 #625-676 RT: 8.95-9.69 AV: 18 NL: 1.17E7
T: FTMS + p ESI Full ms [150.00-2000.00]
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Compound 5 

 

S21. 1H-NMR spectrum of compound 5 

 

S22. COSY NMR spectrum of compound 5 
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S23. HSQC NMR spectrum of compound 5 

 

S24. HMBC NMR spectrum of compound 5 
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S25. HRESI-MS spectrum of compound 5 

 

Compound 6 

 

S26. 1H-NMR spectrum of compound 6 

MR673 #913 RT: 8.80 AV: 1 NL: 3.61E7
F: FTMS + p ESI Full ms [230.00-2000.00]
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S27. COSY-NMR spectrum of compound 6 

 

 

S28. HSQC-NMR spectrum of compound 6 
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S29. HMBC-NMR spectrum of compound 6 

 

 

S30. HRESI-MS spectrum of compound 6 
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Compound 7 

 

S31. 1H-NMR spectrum of compound 7 

 

S32. COSY NMR spectrum of compound 7 
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S33. HSQC NMR spectrum of compound 7 

 

S34. HMBC NMR spectrum of compound 7 
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S35.1H NMR spectrum of compound 8 

 

S36. COSY NMR spectrum of compound 8 
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S37. HSQC NMR spectrum of compound 8 

 

S38. HMBC NMR spectrum of compound 8 
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S39. HRESI-MS spectrum of compound 8 

 

 

 

S40.1H NMR spectrum of compound 9 
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S41. COSY NMR spectrum of compound 9 

 

S42. HSQC NMR spectrum of compound 9 
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S43. HMBC NMR spectrum of compound 9 

 

S44. HRESI-MS spectrum of compound 9 

MR602 #907 RT: 8.92 AV: 1 NL: 1.81E6
F: FTMS + p ESI Full ms [230.00-2000.00]
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S45. 1H1 NMR spectrum of compound 10 

 

S46. COSY NMR spectrum of compound 10 
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S47. HSQC NMR spectrum of compound 10 

 

S48. HMBC NMR spectrum of compound 10 
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S49. HRESI-MS spectrum of compound 10 

 

S50.1H NMR spectrum of compound 11 

 

 

 

 

MR670 #1321 RT: 12.84 AV: 1 NL: 5.60E7
T: FTMS + p ESI Full ms [230.00-2000.00]
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S51. COSY NMR spectrum of compound 11 

 

S52. HSQC NMR spectrum of compound 11 
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S53. HMBC NMR spectrum of compound 11 

 

S54. HRESI-MS spectrum of compound 11 
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F: FTMS + p ESI Full ms [100.00-2000.00]
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S55: Binding modes, scores and ΔG values of the isolated compounds (5-11) (A-G, respectively).  
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S56. Protein–ligand contacts inside the Mpro active sites over 100 ns of compounds 1 (R and S isomers), 2, 
and 4 (A-D, respectively).  
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2. In silico study 

2.1. Ensemble Docking  

AutoDock Vina software was used in all molecular docking experiments [1]. All isolated compounds were 

docked against the MPro crystal structure (PDB codes: 6LU7) [2]. The binding site was determined 

according to the enzyme’s co-crystallized ligand. The co-ordinates of the grid box were: x = -12.87; y = 

16.3; z = 68.64. The size of the grid box was set to be 10 Å. Exhaustiveness was set to be 24. Ten poses 

were generated for each docking experiment. The active site of MPro is relatively flexible [3,4], and, to 

account for this flexibility, we used MDS-derived conformers for the free Mpro (without the co-crystalized 

ligand) sampled every 25 ns for docking experiments (i.e., ensemble docking) [3,4]. Subsequently, we 

ranked the resulting top hits according to their calculated binding energies. Thereafter, the final score was 

calculated as the average of the docking experiments against the four different active sites conformers (i.e. 

the average of the four top-scoring poses retrieved from four docking experiments). Docking poses were 

analysed and visualized using Pymol software [1].  

2.2. Molecular Dynamics Simulation 

 Desmond v. 2.2 software was used for performing MDS experiments [5–7]. This software applies the 

OPLS-2005 force field. Protein systems were built using the System Builder option, where the protein 

structure was checked for any missing hydrogens, the protonation states of the amino acid residues were 

set (pH = 7.4), and the co-crystalized water molecules were removed. Thereafter, the whole structure was 

embedded in an orthorhombic box of TIP3P water together with 0.15 M Na+ and Cl− ions in 20 Å solvent 

buffer. Afterward, the prepared systems were energy minimized and equilibrated for 10 ns. For protein-

ligand complexes, the top-scoring poses were used as a starting points for simulation. Desmond software 

automatically parameterizes inputted ligands during the system building step according to the OPLS force 

field. For simulations performed by NAMD [8], the protein structures were built and optimized by using 

the QwikMD toolkit of the VMD software. The parameters and topologies of the compounds (1 (S and R 

isomers), 2, 5-8, 11) were calculated either using the Charmm27 force field with the online software Ligand 

Reader and Modeler (http://www.charmm-gui. org/?doc=input/ligandrm, accessed on 16 April 2021) [9] or 

using the VMD plugin Force Field Toolkit (ffTK) (compounds 3, 4, 9, 10). Afterward, the generated 

parameters and topology files were loaded to VMD to readily read the protein–ligand complexes without 

errors and then conduct the simulation step.  

2.3. Binding Free Energy Calculations  

Binding free energy calculations (∆G) were performed using the free energy perturbation (FEP) method 

[9]. This method was described in detail in the recent article by Kim and coworkers [9]. Briefly, this method 

calculates the binding free energy ∆Gbinding according to the following equation: ∆Gbinding = ∆GComplex − 

∆GLigand. The value of each ∆G is estimated from a separate simulation using NAMD software. All input 

files required for simulation by NAMD can be prepared by using the online website Charmm-GUI 

(https://charmm-gui.org/?doc=input/afes.abinding, accessed on 18 May 2021). Subsequently, we can use 

these files in NAMD to produce the required simulations using the FEP calculation function in NAMD. 

The equilibration (5 ns long) was achieved in the NPT ensemble at 300 K and 1 atm (1.01325 bar) with 

Langevin piston pressure (for “Complex” and “Ligand”) in the presence of the TIP3P water model. Then, 

10 ns FEP simulations were performed for each compound, and the last 5 ns of the free energy values was 

measured for the final free energy values [9]. Finally, the generated trajectories were visualized and 
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analyzed using VMD software. It worth noting that Ngo and co-workers in their recent benchmarking study 

found that the FEP method of determination of ∆G was the most accurate method in predicting MPro 

inhibitors [10].  

2.4. Drug-Likeness Analysis  

Drug-like properties of the studied compounds were predicted by the commercially available software 

LigandScout 4.3 [11]. A list of SMILES codes of these compounds was prepared and submitted to the 

software to perform the drug-likeness calculations (e.g., molecular weight, hydrogen bond donors, 

hydrogen bond acceptors, number of rotatable bonds, topological polar surface area, and logP). As a final 

result, we checked if these calculated parameters for each compound followed Lipiniski’ and Vebers’ rules 

of drug likeness.  

2.5. Toxicity Prediction  

Cytotoxicity toward normal cell lines was predicted using CLC-Pred (Cell Line Cytotoxicity Predictor). 

Prediction is dependent on PASS (Prediction of Activity Spectra for Substances) technology 

(http://www.way2drug.com/PASSonline, accessed on 21 April 2021), and the training set was shaped on 

the basis of data on cytotoxicity obtained from ChEMBLdb (version 23) (https://www.ebi.ac.uk/chembldb/, 

accessed on 16 April 2021) [12]. After submitting the SMILES code of each compound, the software gives 

the predicted cytotoxicity arranged according to the cell line type and their activity scores (probability of 

being active score; Pa). 

3. Bioactivity against SARS-CoV-2 Mpro  

All the compounds (1-10) were assessed for their in vitro enzyme inhibition activities using 3CL Protease, 

tagged (SARS-CoV-2) Assay Kit, Catalog #: 79955-1, BPS Bioscience, Inc., Allentown, PA, USA 

according to manufacturer protocol [15]. A fluorescent substrate harbouring the cleavage site (↓) of SARS-

CoV-2 Mpro (Dabcyl-KTSAVLQ↓SGFRKM-E (Edans), 3CL protease (SARS-CoV-2 3CL Protease,), 

GenBank Accession No. YP_009725301, a.a. 1–306 (full length), expressed in E. coli expression system, 

MW 77.5 kDa., and buffer composed of 20 mM Tris, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.3 

was used for the inhibition assay, GC376 a 3CL protease inhibitor, MW 507.5 Da was used as control. In 

the fluorescence resonance energy transfer (FRET)-based cleavage assay, the fluorescence signal of the 

Edans generated due to the 3CL Protease cleavage of the substrate was monitored at an emission wavelength 

of 460 nm with excitation at 360 nm, using a Flx800 fluorescence spectrophotometer (BioTek) [13]. 

Initially, 30 µL of diluted SARS-CoV-2 3CL protease at the final concentration of 15 ng was pipetted into 

a 96-well plate containing pre-pipetted 10 µL of test compounds. Each compound was tested at seven points 

dilution series (25 µM - 0.001 µM) in triplicates. The mixture was incubated at room temperature for 30 

min with slow shaking. Afterwards, the reaction was commenced by adding the substrate (10 µL) dissolved 

in the reaction buffer to 50 μL final volume, at concentration of 40 μM, incubated for 4 h at room 

temperature with slow shaking. The plates were sealed. Fluorescence intensity was measured in a microtiter 

plate-reading fluorimeter capable of excitation at a wavelength 360 nm and detection of emission at a 

wavelength 460 nm.  
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