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Abstract: A growing body of evidence initially suggested that patients with multiple sclerosis (MS)
might be more susceptible to coronavirus disease 2019 (COVID-19). Moreover, it was speculated
that patients with MS treated with immunosuppressive drugs might be at risk to develop a se-
vere diseases course after infection with the severe acute respiratory syndrome coronavirus type
2 (SARS-CoV2). However, the recently published data have shown that MS patients do not have
a higher risk for severe COVID-19. Although there is no indication that patients with MS and
immunomodulatory/immunosuppressive therapy are generally at a higher risk of severe COVID-19,
it is currently being emphasized that the hazards of poorly treated MS may outweigh the putative
COVID-19 dangers. In this review, we discuss the challenges and considerations for MS patients in
the COVID-19 pandemic.

Keywords: multiple sclerosis (MS); COVID-19; disease-modifying therapies (DMTs)

1. Introduction

Multiple sclerosis (MS) is the most common inflammatory neurological disease in
adults, especially between the ages of 20 and 40 and can potentially be a major cause of
neurological disability in adulthood. Still, the pathomechanisms including basic questions
related to the main causes of the disease have not been completely understood [1–3].
Because of the autoimmune-mediated inflammatory nature of the disease, treatment is
based on immunomodulatory agents, including immunosuppressive therapies. At the
onset of the COVID-19 pandemic, patients with MS encountered new challenges in both
care delivery and clinical management as a result of various uncertainties.

The crucial concern for physicians of all specialties was identifying patients who
might be at risk for a severe COVID-19 course. Initially, the potential risk of patients with
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MS could not be fully addressed. Furthermore, it was not clear if immunosuppressive
agents might increase the risk of a severe acute respiratory syndrome coronavirus type 2
(SARS-CoV2) infection or the hazard to develop a severe disease course. The present paper
aims to assess the different aspects of current therapeutic strategies and relevant challenges
in the course and management of MS in times of the COVID-19 pandemic.

2. MS Disease Definition and Diagnosis

MS is characterized by inflammation in different areas of the central nervous system
(CNS), including the optic nerve, brain parenchyma, brainstem, and spinal cord [4]. The
simultaneous inflammation in different regions of the CNS is called dissemination in space
(DIS). Dissemination in time (DIT) describes the recurrent inflammation of the CNS. Both
criteria need to be fulfilled to diagnose MS—either regarding the clinical disease course or
the pathological changes in magnetic resonance tomography (MRI) [5].

The diagnosis of MS is based on a combination of clinical, laboratory, and imaging
findings by applying the McDonald criteria. The diagnostic criteria have evolved with the
growth of technology and definitions were revised in order to be more accessible and usable
for a larger segment of the population by maintaining sensitivity and specificity at the
same time [6]. In 2017, the revision of these criteria determined changes based on evidence
and restored the role of cerebrospinal fluid (CSF) oligoclonal bands [7]. Accordingly, MS
can now be diagnosed more frequently at the time of a first clinical event by using the new
criteria as compared to the 2010 McDonald criteria [8,9].

Standard definitions for the clinical course of MS are relapsing–remitting MS, primary
progressive MS, and secondary progressive MS [10]. Most MS patients experience recurrent
acute/subacute focal neurological deficits in different areas of the CNS. This common form
of MS is known as relapsing–remitting MS (RRMS). About 35–50% of RRMS patients
experience a steadily progressive neurological decline independent of prior inflammatory
events, known as the “secondary progressive” phase (SPMS). In the absence of observable
clinical relapses, about 15% of MS patients show a gradual, progressive decline from the
beginning, a path known as “primary progressive” (PPMS). The definitions are based on
the clinical course and do not provide information on the underlying pathophysiology of
the disease. Although the course of the disease varies from mild to severe, the obtained
data of relevant investigations examining the natural course of MS clearly show that the
neurological damage worsens within 10–20 years in most untreated patients [11,12].

In simple words, environmental, genetic, and epigenetic factors play a role in MS
pathogenesis and potentially interact with modifiable risk factors. Increasing evidence
focused on identifying the prominent risk factors and their involvement in the development
of MS [13]. Nowadays, there is a better understanding of risk factors contributing to the
progression of the disease such as genetic (e.g., HLA DRB1 × 15:01), environmental (e.g.,
vitamin D or infectious mononucleosis, especially during puberty), and lifestyle (e.g.,
smoking) aspects. Ultimately, the disease is due to a dysregulation of the immune system
with its crucial cellular protagonists, the microglia, activated macrophages, as well as B
and T lymphocytes [14].

3. Concept of MS Immunopathogenesis

Functionally, immunopathogenesis refers to the response of the immune system dur-
ing the development of the disease. Despite speculation about the immune system’s
specific role, the immunological failure to distinguish the self from the non-self, chronic
CNS inflammation, and premature adaptive immunity changes are the predominant char-
acteristics. Generally, the initial occurrence of MS disease is accompanied by a breakdown
of peripheral T cell tolerance to myelin-associated antigens that causes the hallmark de-
myelination and neurodegeneration [15,16]. However, multiple hypotheses have been
proposed regarding the immunopathological events involved in MS. For instance, it was
stated that the immune cells invade the CNS, cause myelin sheath destruction, and inflam-
matory damage. In contrast, other evidence was noted that the primary abnormalities
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in the CNS itself could lead to inflammation and neuronal damage [17]. First of all, the
humoral immunity components, glial cell function, and oxidative stress are the most im-
portant factors in the immunopathogenesis of MS due to their potent roles in inflammatory
reactions. Biomarkers such as stimulatory molecules, inflammatory cytokine receptors,
and microRNA alterations could intensify the Th2 cells activity versus Th1/Th17 activity,
thereby reducing the function of regulatory T cells and increasing the risk of autoimmune
diseases [18,19]. On the other hand, T-regulatory cell inefficiency limits the peripheral
tolerance of B cells and leads to the proliferation of self-reactive B cell clones which, ulti-
mately, induce the myelin sheath destruction by reactive Th1/Th17 cells. Subsequently,
these reactions may lead to the disruption of the blood–brain barrier (BBB) and its de-
structive consequences (e.g., disruption and nerve damage) [20,21]. The other dominant
inflammatory factors, including TGF-β and IL-21, increase the expression of IL-23R in Th
cells [22,23]. The summarized initial mechanism of MS immunopathology is presented in
Figure 1.
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4. COVID-19 Pandemic Definitions

After the first discovered cases in Wuhan, China (December 2019), the novel coron-
avirus disease 2019 (COVID-19) was acknowledged as a global public health emergency.
COVID-19 is caused by SARS-CoV-2, a novel RNA virus of the Coronaviridae family [24].
SARS-CoV2 is the successor to the 2002–2004 SARS outbreak (SARS-CoV-1) and the Middle
East respiratory syndrome (MERS) (2012 to the present) and shares about 50–79% of its
genetic sequence with the mentioned above coronaviruses, respectively [25,26]. The close
contact through respiratory droplets, infected persons, contaminated objects/surfaces, and
aerosols (i.e., in enclosed spaces indoors, crowded/inadequately ventilated spaces, and
during aerosol-generating procedures) are the main transmission pathways of COVID-19.
Although the viable virus detection could be accomplished up to 61 days post symptoms
onset, virus shedding has been estimated to occur within the first 8 days from the onset of
any symptoms (especially at the first 3 days) and takes place most commonly via the upper
respiratory tract (URT) [27].

COVID-19 may manifest as a symptomatic or asymptomatic disease. A recent meta-
analysis estimated that about 17% of patient cases remain asymptomatic, while another
systematic review reported an overall estimate of 31% [28]. It seems that the proportion
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of asymptomatic patients is controversial and should be better understood [28,29]. It was
noted that fever, sore throat, and fatigue/myalgia were the most common symptoms in
symptomatic patients [30]. However, congestion, rhinorrhea, and diarrhea were as well
reported as less common symptoms [31]. In general, according to the latest version of the
WHO COVID-19 Clinical management: living guidance, clinical manifestations can be
classified into four stages (with their most prominent syndromes) (percentages may vary
with variants and in vaccinated patients) (Figure 2):

1. Mild (fever, dry cough, fatigue, myalgia, sore throat, conjunctivitis, headache, diar-
rhea, hyposmia/anosmia, hypogeusia/ageusia, and skin rash): 40%,

2. Moderate (moderate pneumonia): 40%,
3. Severe (severe pneumonia): 15%
4. Critical (acute respiratory distress syndrome (ARDS) and/or shock): 5%.
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The most frequently reported risk factors for a severe disease course and death are
older age, cigarette smoking, and underlying diseases (e.g., diabetes mellitus, cardiac
disease, hypertension, chronic lung disease, and cancer). The most commonly detected
laboratory abnormalities are a reduced lymphocyte count, elevated C-reactive protein, and
elevated lactate dehydrogenase [32]. Serology tests of IgM and IgG, nucleic acid assays, and
gene sequencing have all been used to confirm the diagnosis of COVID-19. Moreover, it is
frequently diagnosed via computed tomographic (CT) imaging; however, a chest CT scan
may not be able to distinguish this disease from other viral causes of pneumonia [33,34].
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5. Concept of COVID-19 Immunopathogenesis

The feedback of the host immune system to COVID-19 plays a critical role in disease
pathogenesis and clinical manifestations. Routinely, viruses are often identified post-
infection by pattern recognition receptors (PRRs), such as the inflammasome sensor NLRP3,
which trigger the production of interferons (IFNs) and inflammatory cytokines (e.g., IL-
1, IL-6, and TNF) and initiate a local/systemic response to infection. In this process,
innate and adaptive immune cells, including neutrophils, inflammatory myeloid cells,
CD8+ T cells, and natural killer (NK) cells are recruited, activated, and differentiated.
The cytotoxic activity of CD8+ T and NK cells, which allows virus-infected cells to be
cleared, is crucial for infection resolution. Failure to clear virus-infected cells could lead to a
hyper-inflammatory state known as macrophage activation syndrome (MAS) or “cytokine
storm,” which induces lung injury (Figure 3). To address this, the findings of a thorough
examination of gene expression data from COVID-19 patients’ blood, lungs, and airways
suggested that COVID-19 pathogenesis is fueled by populations of myeloid-lineage cells
in each compartment with highly inflammatory states. Especially, the lack of cytotoxic
cells in the lungs indicates a scenario in which the delayed clearance of the virus enhances
the myeloid cell activation to disease pathogenesis by producing inflammatory mediators.
Moreover, the gene expression profiles could be applied to identify possible therapeutic
targets for changing the treatment guidelines [35,36]. In brain cells, the ACE2 receptor
(a key member in adsorption during SARS-CoV-2 infection) is expressed. However, its
level and brain region expression appear to be limited. There is growing evidence that—in
addition to systemic inflammation and thrombosis/emboli—the viruses’ direct action
may cause neurological problems. The most common neurological symptoms linked
with COVID-19 are headache and dizziness. However, in moderate and severe instances,
neurological involvement appears to exacerbate. Infectious disorders such as COVID-19,
which typically include a large number of asymptomatic patients, are dominated by mutant
viruses that spread quickly. Because the probability of enhanced neurotoxicity based on the
mutation cannot be ruled out, ongoing scientific and clinical studies are required [37,38].
As a result, B cells may be crucial in the fight against the SARS-CoV-2 virus. A greater
knowledge of the protective responses of B cells during the infection would aid in the
development of therapeutic therapies. However, there are various SARS-CoV2 clearance
pathways which are not dependent on B cells, including the activation of CD8+ T cells or
NK cells. Thus, the generation of anti-SARS-CoV-2 antibodies may not be required for an
effective recovery from COVID-19 [36,37].
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In severe forms of COVID-19, SARS-CoV-2 disrupts normal immune responses and
leads to an impaired immune system with an uncontrolled inflammatory response. These
patients exhibit lymphopenia, lymphocyte dysfunction, abnormalities of granulocytes and
monocytes, increased production of cytokines, and increased total antibodies.

5.1. Lymphopenia, Lymphocyte Dysfunction

Lymphopenia is a key feature of COVID-19, especially in severe forms. Lymphopenic
patients are more susceptible to microbial infections, which may intensify disease pro-
gression/severity. Increasing evidence indicated that lymphopenia could be served as a
predictor of disease severity and prognosis of patients with COVID-19 [39–42]. In this
regard, a reduction in the number of T, B, and NK cells was reported. The elevated
exhaustion levels and dysfunction of T cells are other features that may predict severe
COVID-19 [43]. As a result, several mechanisms may be responsible for lymphocyte
depletion and dysfunction:

• The expression of ACE2 receptors on lymphocytes, especially T cells, may promote
SARS-CoV-2 entry into them [44,45].

• An increase in cytokine levels (i.e., TNFα, IL-6, and IL-10) may promote the reduction
and exhaustion of T cells [46].

• SARS-CoV-2 may destroy lymphatic organs (i.e., spleen and lymph nodes) [47].
• Lymphocyte proliferation may be inhibited by lactic acidemia, which is detected in

severe COVID-19 [40,42].

5.2. Abnormalities of Granulocytes and Monocytes

The neutrophil/lymphocyte ratio is significantly higher in severe COVID-19 patients.
Thus, it could be administered as an important indicator for an unfavorableCOVID-19
disease course. Moreover, eosinophils, basophils, and monocytes have reduced percentages
in the severe phase of the disease. The likely mechanism behind the neutrophil upreg-
ulation in COVID-19 may have an association with lymphopenia, which predisposes to
infection [48–50].

5.3. Increased Production of Cytokines

Another key feature of severe COVID-19 is the increased inflammatory cytokine
production, including IL-1β, IL-2, IL-6, IL-7, IL-8, IL-10, granulocyte-colony stimulating
factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), interferon-
inducible protein-10 (IP10), monocyte chemotactic protein 1 (MCP1), macrophage inflam-
mation protein-1α, IFN-γ, and TNF-α [48,49,51]. This dramatic increase in cytokine levels
over a short period is called a “cytokine storm” [39] in which the top elevated cytokines in
severe cases are IL-1β, IL-6, and IL-10 [52,53]. The relevant mechanisms are supposed to
be as follows:

• Following SARS-CoV-2 infection, GM-CSF secreted by the pathogenic T helper 1
cells activates CD14+CD16+ cells for more inflammation (mainly more production of
IL-6) [54].

• Immune cell interaction in patients with COVID-19 is characterized by an increase in
a subpopulation of CD14+ cells which may promote the level of IL-1β [55].

• The Th17 response was confirmed in patients with COVID-19. Studies have shown
that Th17 cells recruit more immune cells to the infection sites, stimulating the cytokine
cascades (e.g., IL-1β and IL-6) by producing IL-17 [56].

• Furthermore, eosinophils directly fight with RNA viruses, by releasing a large number
of cytokines, among which IL-6 is a critical one to develop a cytokine storm in COVID-
19 [57].

Finally, the cytokine storm may lead to viral sepsis, inflammatory-induced lung injury,
ARDS, respiratory failure, shock, organ failure, and, potentially, death [39].
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Additionally, in non-severe COVID-19—although significantly lower than severe
ones—blood-cytokine levels (for example IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-8, IL-9, IL-10,
IFN-γ, TNF-α, G-CSF, GM-CSF, IP10, MCP1), can be increased [48,58,59].

5.4. Increased Antibodies

COVID-19 diagnosis is based on the detection of SARS-CoV-2-specific antibodies (IgM
and IgG) alongside nucleic acid assays (NAAT/PCR). Zhang and colleagues showed that
an increased IgG level is associated with disease severity [60]. Therefore, the IgG level
could act as a simple marker to differentiate severe and non-severe cases. Moreover, a
higher titer of total antibodies, which is significantly more quickly than that of IgM and IgG,
was independently associated with a worse prognosis in COVID-19 [61]. Accordingly, B cell
proliferation/activation in COVID-19 patients, especially in severe cases, is correlated with
poor prognosis [53,62]. This could be explained by the antibody-dependent enhancement
(ADE) of virus infection. ADE is a phenomenon in which preexisting sub-neutralizing
antibodies promote virus entry and replication, such as what has been observed in the
Ebola, Dengue, and MERS viruses [39].

6. MS and COVID-19

Immune system dysfunction is a crucial commonality between MS and COVID-19
which is caused by the incorrect activity of prominent immune cells, including T lympho-
cytes and their imbalance in the level of secreted anti/pro-inflammatory cytokines [39].
People suffering from autoimmune disorders, such as MS, were concerned about whether
their immune system is capable of clearing SARS-CoV-2 effectively. MS patients need
access to medical services for different purposes (i.e., routine visits, relapse management,
DMT infusion sessions, rehabilitation services, MRI). In a previous study [63], the opinions
of 360 neurologists from different countries were obtained on this subject. As a result,
98% reported facing COVID-19-related restrictions with telemedicine adopted to overcome
this limited access to care. Likewise, 70% reported changes in using disease-modifying
therapies (DMTs). It has been debated whether the COVID-19 pandemic would have a
permanent influence on MS care or not [64]. These challenges could be classified into three
categories:

• COVID-19 symptoms in patients with MS;
• Healthcare delivery to patients with MS;
• MS treatment and its safety considerations in COVID-19.

6.1. COVID-19 Symptoms in Patients with MS

In a recent systematic review, the most common symptoms of COVID-19 in patients
with MS were as follows: fever (68.8%), cough (63.9%), fatigue/asthenia (51.2%), and
dyspnea (39.5%) [65]. In total, only 5.3% of patients were asymptomatic. The total hospi-
talization and mortality rates in patients with MS and suspected/confirmed COVID-19
were 20.7% and 3.0%, respectively. In this regard, the highest hospitalization and mortal-
ity rates were in individuals with no DMTs (42.9% and 8.4%), followed by those treated
with B-cell-depleting drugs (29.2% and 2.5%). Similar results were described in another
systemic review of 873 published cases of MS and COVID-19 [66]. The mortality rates were
higher in MS patients without DMTs as compared to MS patients on therapy. However, it
should be noted that older patients with advanced stages of MS and severe cardiovascular
comorbidities were generally not treated with DMTs due to risk–benefit assessments. It
was stated that immunosuppressive or immunomodulatory therapies do not appear to be
a substantial risk factor for a severe COVID-19 course. However, compared to other DMTs,
patients receiving B-cell-depleting therapies presented higher hospitalization and mortality
rates. Again, it should be noted that diseased patients receiving B-cell-depleting therapies
were also at higher ages and presented a severe degree of disability. Notwithstanding,
more established investigations are required [65,67].
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The major risk factors for severe COVID-19 in patients with MS were older age, high
disability levels, progressive course, obesity, and cardiovascular comorbidities. Accord-
ingly, published data suggest that MS may not significantly increase the mortality rate
of COVID-19. There was no significant difference between the severity and mortality of
COVID-19 in patients with MS and the general population [65,68]. Bsteh and colleagues
announced that the proportion of patients with MS at high risk of COVID-19 mortality is
under 1% [69]. Moreover, a newly published analysis of the US electronic health records
(IBM Explorys dataset and Biogen GSD) showed that patients with MS did not have a
higher risk of severe COVID-19 and it was shown that comorbidities elevate the risk of
infection [70]. Of note, the female to male ratio was 2.53:1 and the relapsing to progressive
ratio was 4.75:1. The mean (SD) age, mean disease duration, and mean Expanded Disability
Status Scale score were 44.91 (4.31) years, 12.46 (2.27) years, and 2.54 (0.81), respectively. At
least one comorbidity was seen in 32.9% of patients [65].

6.2. Healthcare Delivery to Patients with MS

Several studies demonstrated that COVID-19 has effects on healthcare delivery to
patients with MS. The information varied to some extent in dependence of the reported
countries, although there were some adaptations in triage, care delivery, and follow-
up [63,71,72]. In an ECTRIMS study [63], 88% of neurologists confirmed the fact that the
access to care for patients with MS had changed in the COVID-19 era. It was declared
that to overcome the limited access, telemedicine was the main strategy (being used by
92% of respondents primarily or exclusively) chosen. The so-called telemedicine tools
consisted of calls via telephone (34%), video (23%), and services such as email or messaging
services (22%). The remaining 4% used social media networks (Figure 4) [73,74]. Despite
the benefits of telemedicine, there is a concern about data privacy. In other words, using
the different telemedicine tools may impact the processing of patient’s data. Therefore, the
principles of personal data protection should be observed in this regard [75]. COVID-19
also affected the access to MRI (urgent evaluation: 58%; suspended/postponed: 17%;
performed regulatory: 19%; other: 6%) and laboratory tests (postponed: 37%; regularly
performed: 30%; urgent evaluation: 28%; suspended: 2%) together with clinical trials
activity (suspended:38%; postponed: 32%; regularly performed: 30%) [63].
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hypothesis that these patients might be at higher exposure to SARS-CoV-2 infection and
its complications could have a significant impact on their treatment. Despite the lack
of strong evidence on the DMT’s consequence on COVID-19, the treatment guidelines
(national and international) were developed based on expert consensus and the known
mechanisms of drug action. These guidelines recommended delaying or re-treatment when
using high-efficacy and lymphocyte-depleting drugs [68,76–78].

The Dutch cohort of MS and COVID-19 patients did not detect any clear association
between severe outcomes of COVID-19 and DMT use or lymphopenia in patients with
MS. This agreed with three studies regarding treatment with rituximab, cladribine, and
alemtuzumab, in which all patients recovered from COVID-19 despite having lymphope-
nia [79–82]. In MS patients under DMT’s with mild COVID-19, it was recommended to
continue DMT’s. In severe cases, initially, it was recommended to delay highly efficient
DMT’s and corticosteroids [83,84]. However, the evaluation of each patient should be based
on physical context and the progression stage of the disease. Currently, there is a broad
consensus that all DMTs should be continued. To reduce the risk of infection and relapses,
patients with MS were recommended to be vaccinated against SARS-CoV-2. The available
evidence related to DMT’s is limited in the COVID-19 pandemic. Thus, it is necessary to
analyze the virus-specific immune responses post SARS-CoV-2 vaccination [85]. To date,
relatively little research has been conducted on the effects of SARS-CoV-2 vaccination in
MS patients, in which no increased risk of relapses was announced [86,87]. However, the
type of vaccine and genetic predisposition could be variable factors to understand this
issue and conclusions in this regard require further investigations [88,89].

Monoclonal antibodies which selectively deplete B cells have been shown to signifi-
cantly reduce disease progression in relapsing–remitting MS patients [90]. In PPMS, B-cell
depletion was shown to be favorable and ocrelizumab was the first medicine to be approved
for this disorder. Despite recent significant breakthroughs in the understanding of B cells’
role in MS, there is still more to learn. The development of more effective and safe B-cell
therapy is dependent on a better consideration of B-cell biology and more investigation on,
as well as a better knowledge of, MS pathophysiology [91].

The data are inconsistent, as some studies mentioned a likely protective role for
anti-CD20 monoclonal antibodies such as ocrelizumab and rituximab against COVID-
19 [92–94]. On the other hand, it was suggested that these monoclonal antibodies may
predispose patients with MS to COVID-19 and a critical case of COVID-19 infection and
death post-treatment with rituximab was reported [82,95].

Therefore, initially, there was concern about the high-potent drugs, including sphingos
ine-1-phosphate modulators (S1P), B-cell-depleting agents, alemtuzumab, and cladribine,
to potentially escalate the risk of severe COVID-19 disease course in patients with MS.
Thus, cladribine and alemtuzumab were suggested to be contraindications to use [83,96].
In contrast to the national/international guidelines suggestions, most recent studies did
not confirm the initial concerns. It was reported that even during treatment with highly
effective therapeutics, including alemtuzumab, a severe COVID-19 course was not nec-
essarily to be expected. One interesting case presented a young female MS patient with
only a mild course of COVID-19 despite significant lymphopenia due to treatment with
alemtuzumab which she received a few days before SARS-CoV-2 infection [82].

Initially, the general acknowledgment indicated that interferons and glatiramer acetate
(GA) are safe and interferons could be even protective in severe COVID-19. Subsequently,
it was implied that patients taking interferons or GA might have the lowest, and those
receiving high-potent drugs such as anti-CD20 therapies might have the highest risk for
severe COVID-19 [70]. Furthermore, Brownlee stated that “we are now ready to reinstitute
the standard MS treatment protocols” since the risk of developing a disability from delayed
initiation or re-treatment with a high-potent medication will be heavier than the risks of
severe COVID-19 infection [97].
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6.3.2. Vitamin D

Vitamin D with its immune-modulating properties plays an important role in the
pathogenesis of several autoimmune conditions (e.g., MS). Moreover, associations between
low levels of vitamin D with ARDS, respiratory syncytial virus infection, and influenza
have been described. In this regard, reducing the overproduction of cytokines could be
a prophylactic therapy of exacerbated respiratory infection. On the other hand, supple-
mentation of vitamin D deficiency in MS patients might be beneficial in controlling the
inflammatory CNS processes. Accordingly, a daily administration of 2000–3000 interna-
tional units (IU) vitamin D supplements was recommended by some authors for patients
with MS [98–103].

6.3.3. Vaccines

As the SARS-CoV-2 vaccines prevent severe progression, choosing an adequate vaccine
is essential for patients with MS. It is important to consider several functional parameters
as follows [86,104]:

• Safety:

# Live-attenuated vaccines are contraindicated in patients with MS who are under
highly effective DMTs.

# Non-live COVID-19 vaccines are probably safe in patients with MS.
# Most of the COVID-19 vaccines do not lead to demyelinating events. However,

there are very rare reports mainly in those vaccinated with viral vector vaccines.

• Efficiency:

# The efficacy of vaccines, in general, might be attenuated in patients treated
with immunosuppressive therapies. Recently, it was shown that the mRNA-
COVID-19 vaccine led to similar a SARS-CoV-2 IgG response in healthy subjects
and untreated MS patients as well as in patients treated with cladribine. In
contrast, a partial reduced humoral response was detected in patients treated with
ocrelizumab and Fingolimod [105]. However, T-cell responses post vaccination
were not investigated by the authors.

It may be better to coordinate the time of vaccination with DMTs prescription to
achieve the optimum results from the vaccines. In general, COVID-19 vaccination is
recommended for MS patients [105].

7. Conclusions

As the world was faced with the COVID-19 pandemic, which severely affects the
immune system, healthcare staff had to overcome new challenges and burdens in both
care delivery and clinical management of MS. Initially, immunosuppressive treatments
were of great concern and, thus, data gathering on DMT safety were of great importance to
help in treatment decisions. Furthermore, implementing new tools such as telemedicine
were helpful in patients care management. Published data to date indicate that MS and the
various immunotherapies do not significantly increase the mortality rate of COVID-19.
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