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Abstract: Aberrations in lipid and lipoprotein metabolic pathways can lead to numerous diseases,
including cardiovascular disease, diabetes, neurological disorders, and cancer. The integration of
quantitative lipid and lipoprotein profiling of human plasma may provide a powerful approach to
inform early disease diagnosis and prevention. In this study, we leveraged data-driven quantitative
targeted lipidomics and proteomics to identify specific molecular changes associated with different
metabolic risk categories, including hyperlipidemic, hypercholesterolemic, hypertriglyceridemic,
hyperglycemic, and normolipidemic conditions. Based on the quantitative characterization of serum
samples from 146 individuals, we have determined individual lipid species and proteins that were
significantly up- or down-regulated relative to the normolipidemic group. Then, we established
protein–lipid topological networks for each metabolic category and linked dysregulated proteins
and lipids with defined metabolic pathways. To evaluate the differentiating power of integrated
lipidomics and proteomics data, we have built an artificial neural network model that simultaneously
and accurately categorized the samples from each metabolic risk category based on the determined
lipidomics and proteomics profiles. Together, our findings provide new insights into molecular
changes associated with metabolic risk conditions, suggest new condition-specific associations
between apolipoproteins and lipids, and may inform new biomarker discovery in lipid metabolism-
associated disorders.

Keywords: dyslipidemias; lipidomics; proteomics; network analysis; artificial neural network
classification

1. Introduction

Lipid metabolism plays a central role in maintaining the normal homeostasis of the
human body. Aberration of lipid metabolism is a trigger for chronic diseases, including dia-
betes, neurological disorders, cancer, and cardiovascular disease (CVD) [1–3]. Traditionally,
screening among asymptomatic individuals for lipid disorders rests on consideration of age,
gender, blood pressure, smoking status, and testing for cholesterol, triglycerides, and glu-
cose levels in plasma. Cholesterol tests measure both endogenous free cholesterol (FC) and
hydrolyzed cholesteryl esters (CEs). The cholesterol content of the density or size fractions
of lipid-carrying lipoprotein particles in plasma allows estimation of the particle number of
high-density (HDL), low-density (LDL), very low-density (VLDL) lipoproteins, and chy-
lomicrons [4,5]. In the case of CVD especially, these traditional lipid profile measures leave
many individuals undiagnosed [6]. The prevention and treatment of dyslipidemias require
the development of alternative diagnostic tools that allow for the assessment of the lipid
and protein constituents of lipoproteins that are more directly related to the underlying
unique metabolic irregularities of individuals [7–11].

The main lipid constituents of lipoproteins are CEs and triacylglycerols (TAGs) con-
tained within their core, amphipathic phospholipids (PLs) and ceramides (CERs) on their
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surface, and FC distributed between the core and the surface. The main PLs are phos-
phatidylcholines (PCs), phosphatidylethanolamines (PEs), sphingomyelins (SMs), and
lyso-derivatives (LPCs and LPEs). These lipid classes have high structural diversity. The
cholesteryl, glycero-phosphatidyl, glyceryl, and sphingosine backbones carry fatty acyl
moieties (FAs) that are linked through ester, ether, or amide bonds. FAs differ by carbon
chain length (usually between 12 and 24) and their number of double bonds (depending on
the chain length between 0 and 6). In addition, lipid molecules may differ by the position of
FA groups on the backbone, carbohydrate modifications of the backbone, and the position
of double bonds on the FA chain.

With the polar PL head groups exposed to the aqueous plasma environment, the
surface of the lipoproteins incorporates numerous types of proteins [12–14]. An important
class of lipoprotein binding proteins is apolipoproteins (apos), with amphipathic alpha-
helical domains that have a unique affinity to phospholipid monolayers. Apos are essential
for the biogenesis, structural integrity, and function of lipoprotein particles [15,16]. Struc-
turally, one of the most essential apo is apoA1 for HDL and apoB-100 for LDL and VLDL
formation [15,17]. Chylomicrons contain a truncated form of apoB (apoB-48) [18], and on
the more atherogenic Lp(a) particles, apoB is extended through the S-S bond by apo(a) [19].
Apos that interact with apoA1 and apoB containing lipoproteins, called exchangeable apos
and have well-characterized roles as cofactors and inhibitors in lipoprotein remodeling
processes include A2 [20], A4 [21], C1 [22], C2 [23], C3 [23], and E [24]. Other exchangeable
proteins are known as non-polar molecule carriers (apoD and apoM), lipid transfer proteins
(CETP and PLTP), lipase enzymes (LCAT), or inflammation-related proteins (AACT, HP,
PON1, SAA1, SAA4, and TF) [12,13].

The lipid and protein constituents together affect the structural integrity as well as
the metabolic fate and circulating plasma concentration of lipoproteins. The competitive
binding of exchangeable apos is modulated by the fluidity of the phospholipid monolayer
that is determined by species composition, studied mostly by using model membranes
and purified or artificial lipoproteins [25–31]. Advances in tandem mass spectrometry
detection (MS/MS) techniques and the availability of stable isotope-labeled internal stan-
dards [32–35] enable a steadily increasing number of both lipid species and proteins that
can be quantified from one sample [36–39]. The integration of these quantitative lipidomics
and proteomics techniques brings promising opportunities not only in basic research but
also in epidemiology and diagnostics [32,40–42].

In this study, we leveraged a multi-omics approach to determine lipidomic and pro-
teomic profile changes associated with different metabolic risk categories: hypercholes-
terolemic (HC), hypertriglyceridemic (HT), hyperlipidemic (HL), and hyperglycemic (HG),
relative to a normolipidemic (NL) control group. By discriminant analysis, we have found
unique concentration changes in both proteins and lipid species in each of the risk cat-
egories. Based on the concentration correlations between lipid species and proteins we
constructed protein–lipid connectivity networks that provide new insights into lipid and
protein constituents of lipoproteins unique to the individual metabolic categories. In sup-
port of our approach, the most significantly different lipid species and proteins and their
concentration correlation patterns were consistent with known pathways of lipid synthesis
and extracellular lipoprotein remodeling. Furthermore, using the machine learning artifi-
cial neural network (ANN) approach, known as “deep learning”, we have identified a set of
lipids and proteins that can accurately distinguish among all four pathological conditions
and controls. Together, our data provide new insights into molecular profiles of different
metabolic conditions and demonstrate the potential of integrated multi-omics to improve
the characterization and differentiation of metabolic disorders.
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2. Materials and Methods
2.1. Chemicals and Reagents

HPLC grade methanol (MeOH), dichloromethane (DCM), 1-propanol, 2-propanol,
sodium bicarbonate, sodium chloride, isopropanol, hexanes, ethanol, isopropanol, and
water were purchased from Fisher Scientific (Waltham, MA, USA). Ammonium acetate
(NH4AcO) was obtained from Millipore Sigma (St. Louis, MO, USA). Labeled d7-cholesterol
was purchased from Sigma-Aldrich (St. Louis, MO, USA). Cholesteryl-d7-palmitate was
purchased from Avanti Polar Lipids, (Alabaster, AL, USA). Labeled d98-tripalmitin was pur-
chased from CDN Isotopes, (Pointe-Claire, QC, Canada). NIST standard reference materials
were purchased from the National Institute of Standards and Technology (Gaithersburg,
MD, USA). The internal standards kit for the Lipidyzer platform was purchased from
AB SCIEX (Framingham, MA, USA). Labeled internal standard peptides for proteomics
analysis were purchased from Biosynth (Gardner, MA, USA). Human plasma samples
pooled for quality control (QC) were purchased from BioIVT, Inc. (Westbury, NY, USA).

2.2. Study Population and Samples

Serum samples from 146 specimens were purchased from BioIVT, Inc. (Westbury, NY,
USA). The study population included 81 males (55%) and 65 females (45%), with a mean
age of 60.6 ± 17.2 years. All samples were collected from individuals fasting for more than
8 h. Based on clinically measured levels of total cholesterol (Total-C), total triglycerides
(Total-TAG), and glucose, the samples were ordered from five categories. The mean levels in
the sample groups were as follows: hypercholesteremia, HC (n = 36, 274 (245–310) mg/dL
Total-C and 93 (50–125) mg/dL Total-TAG); hypertriglyceridemia, HT (n = 32, 188 (136–236)
mg/dL Total-C and 268 (161–380) mg/dL Total-TAG); hyperlipidemia, HL (n = 28, 279
(232–355) mg/dL Total-C and 299 (155–573) mg/dL Total-TAG); hyperglycemia HG (n = 29,
>180 mg/dL glucose, 122 (82–164) mg/dL Total-C and 146 (26–459) mg/dL Total-TAG);
and a normolipidemic, NL group (n = 21, Total-C < 200 mg/dL, Total-TAG < 150 mg/dL,
glucose < 180 mg/dL). Of note, these Total-C (FC + CE) and Total-TAG measurements
were obtained with our in-house developed LC-MS/MS method described in detail in
ref. [43]. Briefly, the sample extraction was conducted in 96-well plates. Each sample
was extracted in a single well, “in one-pot”, without the need for manual liquid phase
separation or sample transfer before LC-MS/MS analysis. For the simultaneous analysis of
FC, CE, and TAG species, UHPLC separation and in-source collision-induced dissociation
(CID) coupled MS/MS method was used. Aliquots of 50 µL of 1:100 dilute serum samples
in 10 mm sodium bicarbonate and 75 mm sodium chloride pH = 7.4 buffer were placed on a
96-well plate. Cholesteryl palmitate was used as the external calibrator for the CE lipid class
and the mixture of triolein, tripalmitin, and trilinolein in a ratio of 514:313:173, reflective
of the typical ratio in humans, was used as an external calibrator for the TAG lipid class.
QCs prepared from NIST SRM 1951c were analyzed with each plate. The internal standard
(IS) spiking mix of stable isotope labeled analogs were prepared in ethanol, containing
0.033 mg/dL d7-cholesterol (IS for FC), 0.098 mg/dL cholesteryl-d7-palmitate (IS for CE),
and 0.125 mg/dL d98-tripalmitin (IS for TAG). The UHPLC system Agilent 1290 (Agilent
Technologies, Santa Clara, CA, USA) coupled to a hybrid triple quadrupole/linear ion trap
Sciex 4000 QTrap (Sciex, Framingham, MA, USA) was used. The column was a Kinetex
HILIC 1.7 µm, 2.1 × 50 mm (Phenomenex, Torrance, CA, USA). Mobile phase A was
hexanes with 0.05% isopropanol. Mobile phase B was hexanes with 5% ethanol and 0.05%
isopropanol. Class-specific fragments were generated in-source for CE and TAG prior to
MS/MS. The multiple reaction monitoring (MRM) method in positive ion mode was used
for data acquisition. Collected raw data were processed with Multiquant software.

2.3. Ethics Approval and Consent to Participate

All samples were de-identified prior to shipment such that no personal identification
was associated with any sample. The project was approved as research not involving
identifiable human subjects under the U.S. Health and Human Services Department Policy
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for Protection of Human Research Subjects codified of Federal Regulations at 45 CFR
part 46.

2.4. Sample Preparation and Targeted Lipidomics Analysis

Lipids were extracted using a modified Bligh and Dyer extraction protocol [44]. Briefly,
2 mL methanol, 1 mL dichloromethane (DCM), and 1 mL water were added to 25 µL
serum samples containing one or two internal standards for each lipid class. The list of
deuterium-labeled internal standards spiked into all quality controls, and unknowns can
be found in Supplementary Table S1. The generated monophase mixture was incubated
at room temperature (20 ± 2 ◦C) for 30 min followed by the addition of 1 mL water and
0.9 mL DCM, gentle mixing, and 10-min centrifugation at 1200 RPM to assist in phase
separation. The lower layer containing DCM was transferred to a separate tube, and the
lipid extraction was repeated a second time. All collected lower phases containing lipids
were evaporated under nitrogen to dryness and reconstituted with 250 µL buffer containing
50:50 (v:v) DCM:MeOH and 10 mM NH4AcO.

In an earlier study using a similarly grouped sample set, we reported that HDL parti-
cles have lower SM/PL and higher PE/PL molar ratios than LDL and VLDL particles [45].
Within HDL, LDL, and VLDL fractions, we found higher SM/PL and lower PE/PL ratios
in HC and NL than in HT and HL samples. Consequently, the direction of these trends was
similarly observed in unfractionated samples as well. Therefore, in this study, we analyzed
lipids and proteins without fractionation and assumed that main lipid composition differ-
ences between sample groups would similarly apply to HDL, LDL, and VLDL fractions
as well.

The Lipidyzer platform (AB SCIEX, Framingham, MA, USA) was used to detect and
quantify lipid concentrations in the serum extracts, as described in detail elsewhere [46].
A 50 µL aliquot of the extracts was injected into a constant 50 µL/min flow of 50:50 (v:v)
DCM:MeOH and 10mM NH4AcO buffer and directly infused into the triple quadrupole
SCIEX QTRAP 5500 mass spectrometer. The infusion was repeated using two different
acquisition methods, both containing polarity switching in positive and negative modes.
The first method used the SelexION Differential Mobility Spectrometry (DMS) to analyze
PC, PE, SM, LPC, and LPE species. The second method was run without the DMS to select
for and analyze TAG, DAG, CER, CE, and FFA species. Each method cycles through its
respective list of MRM scans twenty times, and all quantitation was accomplished using
the average signal of the twenty cycles for both native lipid species and internal standards
to calculate response ratios. The response ratios were multiplied with the respective spiked
internal standard concentrations to obtain species concentration. All species except TAGs
were quantified based on a single unique MS/MS signal relative to the analogous MS/MS
signal of a labeled internal standard specie (Supplementary Table S1). TAGs were monitored
by 1–3 MRM transitions.

Lipid species had to have 10–20 %CVs and <30% missing values to be considered
quantifiable. After applying these criteria, the list of species included 12 SMs, 9 LPCs,
4 LPEs, 22 CEs, 22 PCs, 20 PEs, 6 CERs, 4 HCERs, 23 FFAs, 17 DAGs, and 435 TAGs. The
coefficient of variation (CV) for each lipid class was calculated using quality control (QC)
samples (Supplementary Table S2).

Summing the molar concentration of lipid species by class yielded lipid class con-
centrations (Table 1). Some species had a low %Abundance of 0.01–3% within the lipid
class. All quantified species had at least pmol/mL level of absolute concentrations and
were quantifiable with 10–20 %CVs and <30% missing values, sufficient to find statistically
significant changes relative to controls and find correlations with proteins within confidence
intervals around mean concentrations of individual lipid species.
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Table 1. Comparison of lipid class concentrations for the metabolic groups. The average lipid
concentrations (min/max) were calculated by summing individual species concentrations. One-
way ANOVA test was used to determine statistically significant differences between sample groups
(p-value < 0.05 was considered significant).

Lipid Class N

Mean Class Concentration (nmol/mL)
p-Value

FDR-Adjusted
p-ValueHL

(n = 28)
HC

(n = 36)
HT

(n = 32)
HG

(n = 29)
NL

(n = 21)

CE 22
6293.02

(3983.87/
9655.85)

6582.15
(2785.74/
11914.27)

4652.47
(2921.34/
6470.10)

3628.28
(1493.49/
8586.73)

3902.51
(2913.87/
5032.15)

<0.0001 <0.0001

CER 6
11.66
(6.31/
26.26)

11.74
(4.52/
17.16)

14.98
(5.58/

101.21)

9.97
(2.03/
25.18)

7.55
(4.53/
15.77)

<0.0001 <0.0001

DAG 17
112.60
(47.03/
166.63)

66.47
(16.74/
175.28)

91.61
(31.44/
144.29)

53.65
(10.23/
127.48)

43.65
(14.24/
111.77)

<0.0001 <0.0001

FFA 23
1631.17
(579.04/
3571.34)

1422.70
(477.73/
3878.03)

1541.25
(538.41/
2572.79)

1146.13
(435.13/
2406.97)

775.00
(361.17/
1506.86)

<0.0001 <0.0001

HCER 4
4.59

(2.42/
11.78)

5.04
(1.72/
10.58)

6.58
(2.05/
53.38)

4.96
(1.60/
14.58)

3.93
(2.80/
7.66)

0.0402 0.0442

LPC 9
1155.03
(588.88/
2091.95)

1043.70
(354.47/
2142.20)

834.88
(44.22/

1328.24)

611.82
(253.96/
1220.26

637.43
(471.16/
870.45)

<0.0001 <0.0001

LPE 4
6.01

(3.77/
10.20)

4.84
(1.51/
8.64)

5.65
(2.53/
9.59)

4.74
(1.77/
11.71)

5.67
(3.00/
11.70)

0.0482 0.0482

PC 22
1935.99

(1411.48/
3429.96)

1943.40
(789.95/
2986.54)

1613.68
(107.25/
3080.28)

1333.21
(625.37/
2998.97)

1565.61
(1136.61/
2293.60)

<0.0001 <0.0001

PE 20
101.81
(24.89/
162.07)

79.43
(19.79/
129.12)

76.98
(3.95/

126.43)

69.64
(19.03/
149.40)

66.83
(21.74/
161.89)

0.0013 0.0016

SM 12
643.17

(449.83/
961.88)

750.77
(289.47/
1240.61)

516.03
(47.06/
766.77)

498.27
(289.84/
909.32)

473.00
(331.12/
659.44)

<0.0001 <0.0001

TAG 435
3225.76

(1931.14/
7599.63)

1651.70
(343.76/
5488.81)

3121.76
(1308.20/
7254.68)

1464.9
(297.58/
4951.11)

1272.10
(415.40/
4257.05)

<0.0001 <0.0001

2.5. Categorization of Lipid Species by FA Carbon Chain Length and Saturation

We categorized the lipid species according to their number of double bonds on FA
carbon chains (Supplementary Table S3). The FA groups were annotated as odd chain,
saturated or mono-unsaturated (SFA/MUFA), double-unsaturated (DUFA), and poly-
unsaturated (PUFA). Lipid species that had an odd number of total FA carbons, generally
containing FA15:0 or FA17:0, were categorized as odd, regardless of the other FAs on the
molecule. PCs, PEs, and DAGs were categorized based on the annotation of the FA with
the greater number of double bonds. TAGs with an even number of total FA carbons were
categorized based on the FA group with the greatest number of double bonds.
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2.6. Sample Preparation and Targeted Proteomics Analysis

In this study, we conducted targeted proteomics analysis for a focused set of 20 apolipopro-
teins and proteins related to HDL, LDL, and VLDL remodeling. The proteomics data were
acquired with a Perfinity IDP workstation (Shimadzu Scientific) using on-line protein
digestion with an immobilized enzyme reactor (IMER) directly coupled to a HALO-C18
analytical column (Advanced Materials Technology, Wilmington, DE, USA). All samples
were diluted 1:100 with buffer containing 10 mM NaHCO3 and 150 mM NaCl at pH 7.4. To
a 100 µL aliquot from each diluted sample, a 50 µL of digest buffer containing 0.45% Zwitter-
gent 3–12 was added. Then, samples were mixed on a shaker plate at 500 rpm for 5 min and
placed directly into the autosampler at 8 ◦C for subsequent digestion and MRM analysis. A
detailed protocol of the procedure can be found in Toth et al. [47]. Labeled peptide internal
standards were co-injected with the sample onto the IMER (Supplementary Figure S7).
Peptides were trapped on a C18 trapping column, which is subsequently switched in-line
with an analytical column using the same stationary phase. Eluted peptides from the
analytical column were directly analyzed by MRM on a QTRAP 6500 (AB SCIEX, Fram-
ingham, MA, USA). A dilution series of plasma-based calibrators and QCs that had been
previously value-assigned for target proteins were analyzed with each sample plate, and
the calibrators were used to generate calibration curves of peptide area ratio versus protein
concentration. Targeted protein analysis method reproducibility was established using
QC samples from pooled human plasma. Protein concentration CVs for the QC samples
calculated for each protein are shown in Supplementary Table S2.

2.7. Data Processing and Statistical Analysis

Targeted lipidomics and proteomics mass spectrometry raw data processing was
performed with the Lipidomics Workflow Manager (AB SCIEX, USA) and Multiquant (AB
SCIEX, USA), respectively. The lipid species and protein concentration quantification were
performed based on the signal intensity relative to the corresponding internal standard
(Supplementary Table S4). Further data processing and formatting were performed using
JMP Pro software (SAS Institute, Cary, NC, USA). Prior to statistical analysis, the lipid
species and protein concentration data with more than 30% missing values and CV for
QC > 30% were removed. After applying these criteria, missing values for remaining
lipid species (574) and proteins (20) were imputed with one-half of the minimum value
for each variable. The non-parametric Wilcoxon and Kruskal–Wallis tests implemented in
JMP Pro were used for the evaluation of absolute plasma concentration differences. The
false discovery rate (FDR)-adjusted q-values were calculated with the Benjamini–Hochberg
procedure. Means comparison analysis of lipid and protein concentrations, cluster analysis,
and lipid–protein correlation network analysis were conducted using custom R and Python
scripts. Namely, the MetaboAnalyst and ggvenn R packages were used to build Venn
diagrams, heatmaps, and conduct the clustering. The Pearson’s correlations, p-values, and
q-values for the protein-correlation networks were calculated using the scipy.stats and
statmodels Python libraries. The volcano plots were visualized using the matplotlib and
seaborn Python libraries. Networks were visualized using the Cytoscape software [48].
Pathway enrichment analysis was performed based on the biological processes defined
in Gene Ontology [49] and signaling and metabolic pathways defined in Reactome [50]
databases using the Enrichr application programming interface (API) implemented in
Python [51]. From now on, we will refer to the analysis of both the Reactome pathways
and GO biological processes as “pathway analysis”. The p-value < 0.01 and q-value < 0.01
were used as the thresholds for statistical significance (unless noted). Predictor Screening
procedures and the ANN modeling were conducted using the JMP Pro software.

3. Results
3.1. Comparative Assessment of Lipidomic Profiles across Different Metabolic Categories

First, we assessed the overall differences in the lipid class concentrations across dif-
ferent metabolic conditions. Using the Lipidyzer platform we have determined and quan-
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tified a total of 574 lipid species from 11 lipid classes (Table 1). The analysis of vari-
ance (ANOVA) showed that the average concentration of lipid classes varied significantly
(p-value < 0.05) across the sample groups (Figure 1A, Table 1). Moreover, 8 classes, including
CE, CER, DAG, FFA, LPC, PC, SM, and TAG, showed highly significant differentiation with
p-values < 0.0001 (Table 1). Clustering analysis of concentrations by lipid classes revealed
three lipid-class clusters: CER/HCER, TAG/PE/FFA/DAG/LPE, and CE/SM/PC/LPC
(Figure 1A). The CER and HCER levels were highest in the HT and lowest in the NL group.
The TAG containing cluster showed higher concentrations in the HT and HL than in the
three other groups, while the concentrations of the CE containing cluster were higher for
the HC and HL sample categories.
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Figure 1. Dysregulated lipid classes and individual lipid species in metabolic groups. (A) Heat
map comparison and clustering of lipid class concentrations for hyperlipidemia (HL), hypercholes-
terolemia (HC), hypertriglyceridemia (HT), hyperglycemia (HG), and normolipidemic (NL) samples.
The lipid classes and sample groups are shown in rows and columns, respectively. The colors corre-
spond to the Z-score normalized by the grand mean of each lipid class concentration. (B) Volcano
plots show individual lipid species concentrations that were dysregulated relative to normal (NL)
samples. The horizontal line on the plots shows a p-value ≤ 0.05. (C) The Venn diagram summarizes
the number of lipid species significantly upregulated in different metabolic groups, the numbers in
parentheses show the number for downregulated lipids.

Then, we performed means comparison analysis by lipid species, comparing mean
concentrations in NL samples to the HC, HT, HL, and HG samples (Figure 1B). Out of
574 species, we found that the concentrations of 267 lipids in the HC, 547 lipids in the
HL, 517 lipids in the HT, and 148 lipids in the HG group were significantly different
(p-value < 0.05) when compared to the NL samples (Figure 1B, Supplementary Table S3).
The false discovery rate (FDR) for more than 95% of the significantly different lipid species
was low, FDR < 1%, otherwise the FDR was 1–18%.

Most lipid species were up-regulated relative to NL, including 93 lipid species that
were elevated in all four disorder groups (HT, HC, HL, and HG), 39 species in HT, HL,
and HC, 26 species in HG along with HL and HT, 252 species in the groups with high
triglyceride levels (HT and HL), and 22 in groups with high cholesterol (HC and HL)
(Figure 1C, Supplementary Table S5). The number of species that uniquely increased in
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a single sample group was relatively small and worthy of mention, specifically: in the
HC group PC(18:1/16:1), PC(18:1/18:1), SM(26:0), LCER(16:0), HCER(24:1), HCER(24:0),
and HCER(22:0); in the HT group TAG(42:1-FA18:1); in the HL group PC(16:0/20:4),
LPC(20:3), PE(P-16:0/18:1), PE(18:0/18:1), PE(18:0/18:2), PE(P-18:1/20:4), TAG(58:8-FA20:3),
DAG(16:0/18:0), TAG(42:0-FA14:0), TAG(44:0-FA12:0), TAG(58:9-FA20:4), and PE(16:0/18:1);
and in the HG group DAG(18:2/20:4), DAG(18:1/20:4), and DAG(16:0/20:4).

The concentration of species that were down-regulated compared to NL included
LPE(20:4), LPE(18:2), LPC(18:2) in all sample groups; PC(18:2/18:2), PE(P-16:0/22:4), and
HCER(24:0) in HT and HG; and TAG(54:0-FA18:0) in HC and HG; and 5 CEs, 7 PCs, 2 CERs,
2 SMs, 1 LPC, 2 TAGs in only HG (Figure 1B,C, Supplementary Tables S3 and S5).

Then, we sought to determine the common patterns in changes in lipid concentrations
within the same lipid class. We assessed the lipid species abundance within lipid classes
based on the FA group saturation. For each sample, we summed the lipid species concen-
trations within lipid classes by odd-chain FA, SFA/MUFA, DUFA, and PUFA containing
sub-classes and divided by the total lipid class concentrations, obtaining %Abundance
values (Figure 2A). Relative to NL, odd-chain FA containing CEs and LPCs were higher.
LPCs and LPEs with SFA/MUFA were higher, and those with DUFA and PUFA were lower.
Correspondingly, PC, PEs, and FFAs with PUFA were higher, but those with SFA/MUFA
showed no significant difference. By closer examination of the individual species, we
found that increase in FA(20:4) containing PEs corresponded with a lower abundance of
FFA(20:4) (Figure 2B). This is consistent with the hydrolysis of PUFA-containing PCs and
PEs, especially those with FA(20:4), to SFA/MUFA LPC/LPE and PUFA FFA products.
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3.2. Comparative Assessment of Proteins

Then, we determined changes in protein concentrations associated with different
metabolic conditions. As with lipid classes, we performed means comparison and cluster
analysis of the protein concentrations (Figure 3A). HG samples appeared most similar to
the NL samples, while HC, HL, and HT formed a separate cluster, and three major protein
clusters were identified. The first cluster included apo(a), AACT, PLTP, SAA1, SAA4,
HP, and apoA4, which showed higher levels of protein concentrations in HG samples as
compared to other sample groups. The second cluster of apoA1, apoA2, CETP, PON1,
apoD, apoM, and TF appeared up-regulated in HC samples. The third cluster included
apoC1, apoB, LCAT, apoC2, apoC3, and apoE, which had higher concentrations in the HL,
HC, and HT groups than in the HG and NL groups. Using one-way ANOVA analysis, we
found that the average concentrations of 13 out of 20 proteins were significantly different
across the sample groups (p-value < 0.05, FDR < 5%) (Table 2).
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Figure 3. Dysregulated proteins in metabolic groups. (A) Heat map comparison and clustering of
protein concentrations for hyperlipidemia (HL), hypercholesterolemia (HC), hypertriglyceridemia
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(HT), hyperglycemia (HG), and normolipidemic (NL) samples. The proteins and sample groups are
shown in rows and columns, respectively. The colors correspond to the Z-score normalized by the
grand mean of each protein concentration. (B) Volcano plots show individual protein concentrations
that were dysregulated relative to normal (NL) samples. The horizontal line on the plots shows a
p-value ≤ 0.05. (C) The Venn diagram summarizes the number of proteins significantly upregulated
in different metabolic groups, the numbers in parentheses are for down-regulated proteins.

Table 2. Comparison of protein concentrations for the metabolic groups. Average of measured protein
concentrations (min/max). One-way ANOVA test was used to determine statistically significant
differences between sample groups (p-value <0.05 was considered significant).

Protein
Mean Class Concentration (nmol/L)

p-Value FDR-Adjusted
p-ValueHL

(n = 28)
HC

(n = 36)
HT

(n = 32)
HG

(n = 29)
NL

(n = 21)

apoA1
42083.17
(12188.1/
66169.25)

56483.08
(25218.02/
95088.75)

44540.11
(32114.84/
70397.61)

37341.74
(21008.5/
51743.20)

43776.14
(27504.08/
75445.27)

<0.0001 <0.0001

AACT
31373.50
(7716.27/

113819.02)

34964.14
(5340.99/
72572.32)

32233.06
(18656.83/
54612.17)

46986.16
(9633.38/

101862.96)

27568.85
(21209.76/
40478.80)

0.0022 0.0039

apoA2
37812.64
(5204.16/
68486.21)

41216.74
(5033.16/
58668.71)

36878.18
(22066.13/
73083.55)

27421.17
(7478.85/
50263.66)

39002.86
(28271.1/
51640.55)

<0.0001 <0.0001

apoA4
1975.83
(174.47/
5096.85)

2061.60
(177.50/
5947.96)

2212.38
(653.78/
4666.87)

2146.20
(1095.56/
4497.41)

1425.91
(855.8/

2412.68)
0.0066 0.0110

apoB
2135.44
(438.21/
4035.01)

2207.65
(741.96/
3748.06)

1760.61
(894.51/
3366.66)

1360.11
(682.29/
3038.84)

1220.63
(801.20/
2503.91)

<0.0001 <0.0001

apoC1
11107.72
(2495.45/
17306.72)

13685.27
(5109.03/
43096.16)

10828.05
(5094.76/
16227.18)

7486.51
(2593.07/
17171.94)

8227.14
(5379.98/
13462.97)

<0.0001 <0.0001

apoC2
6016.09

(1563.75/
11102.30)

5443.62
(1401.34/
11685.60)

5535.84
(1740.988/
9993.20)

3590.02
(369.23/

11300.71)

2998.99
(1162.95/
7131.60)

<0.0001 <0.0001

apoC3
15971.44
(1169.71/
27413.37)

14438.28
(1479.65/
27848.45)

15485.42
(6080.41/
30489.17)

9869.37
(1282.52/
23024.64)

8056.58
(4673.48/
18165.67)

<0.0001 <0.0001

apoD
2159.77

(314.833/
11649.68)

2370.71
(908.66/
8286.79)

1995.23
(1164.22/
3638.30)

2121.42
(1256.00/
3785.67)

2322.35
(1405.64/
3247.54)

0.2224 0.2694

apoE
1849.06
(428.23/
4051.86)

1912.59
(56.99/

4304.84)

1784.22
(1034.24/
3063.06)

1512. 58
(703.88/
3917.80)

1149.86
(658.55/
2423.09)

0.0014 0.0028

apoM
910.14

(249.59/
2211.54)

986.90
(240.97/
1623.97)

819.74
(449.36/
1377.66)

684.93
(340.00/
1295.73)

910.80
(534.75/
1446.49)

0.0007 0.0016

CETP
32.15
(3.86/

114.79)

46.06
(10.53/
202.26)

43.04
(9.40/

216.23)

24.63
(4.68/
73.84)

33.36
(14.47/
74.90)

0.2490 0.2767
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Table 2. Cont.

Protein
Mean Class Concentration (nmol/L)

p-Value FDR-Adjusted
p-ValueHL

(n = 28)
HC

(n = 36)
HT

(n = 32)
HG

(n = 29)
NL

(n = 21)

HP
22627.85
(2830.18/
49552.20)

26019.40
(2791.24/
73051.78)

30434.21
(5063.66/
65007.75)

37418.85
(5029.59/
96991.16)

17136.29
(2724.09/
39682.59)

0.0011 0.0025

LCAT
104.62
(38.38/
169.55)

111.42
(35.77/
216.33)

106.36
(25.29/
176.85)

81.85
(25.05/
154.67)

76.81
(57.80/
123.69)

<0.0001 0.0003

apo(a)
66.42

(13.84/
468.77)

100.22
(13.67/
380.86)

54.40
(9.95/

230.45)

110.40
(22.10/
505.71)

82.53
(23.09/
205.41)

0.0610 0.0813

PLTP
74.76

(38.26/
134.08)

88.63
(19.33/
150.89)

76.80
(27.86/
126.74)

98.94
(61.72/
195.06)

76.33
(57.17/
113.82)

0.0226 0.0347

PON1
1462.74
(255.70/
2981.05)

1774.69
(268.72/
3472.60

1715.17
(579.82/
3216.10)

1442.07
(329.14/
3697.67)

1644.84
(747.88/
3996.51)

0.2681 0.2823

SAA1
1032.14
(142.51/

12268.88)

1190.87
(203.90/
9550.01)

866.73
(115.45/
4341.76)

1520.89
(62.15/

14491.09)

472.2
8(82.01/
2027.73)

0.2290 0.2694

SAA4
2347.91
(351.09/
4767.17)

2320.39
(765.17/
7827.47)

2015.95
(980.35/
4298.63)

2452.47
(561.43/
5812.54)

1713.41
(1124.85/
3026.67)

0.0583 0.0813

TF
12208.70
(3204.43/
75876.58)

10557.5
8(3015.28/
53645.74)

11204.71
(3628.40/
64739.72)

8036.81
(2535.74/
14123.04)

1230.71
(3922.83/

105927.36)
0.6225 0.6225

Compared to the NL samples, we found that 17 out of 20 proteins were significantly
different (p-value < 0.05, FDR < 5%) in at least one of the other four sample categories
(Supplementary Table S3). ApoE, apoA4, and HP were generally up-regulated relative to
the NL group. Apos B, C1, C2, C3, and LCAT were up-regulated in HL, HC, and HT, but
not in the HG group. SAA4 and AACT were elevated in HG and HL, and SAA1 appeared
up-regulated in HL and HC groups. The HG group was significantly differentiated from
the NL group by relative down-regulation of apos A1, A2, and C1. In addition, there was a
unique up-regulation of PLTP and down-regulation of apoM in HG, and down-regulation
of apoD in HT samples (Figure 3B,C).

3.3. Lipid–Protein Correlation Analysis

The correlations between lipid and protein concentrations within the same sample
group may indicate functional or physical lipid–protein interaction. To determine such
interactions, we closely examined the concentration correlations between proteins and
lipids by sample group. We designated Pearson correlation coefficients of r > |0.3| and
p-value < 0.05 as significant, and r > |0.5| and p-value < 0.002 as strong correlations
(Supplementary Table S6). The strength of significant correlations between proteins and
lipids did not correspond with their up- or down-regulation relative to the NL group
(Supplementary Figure S1). Furthermore, the strengths of correlations did not follow ranks
by %Abundance in the lipid classes (Supplementary Figure S2). Instead, the numbers
and strengths of the correlations showed recognizable differences among species cate-
gories (odd-chain FA, SFA/MUFA, DUFA, and PUFA) for each lipid class and protein
(Supplementary Figure S3). Therefore, we concluded that the strength of the lipid–protein
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correlation was not the result of simple coincidental associations and may indicate the par-
ticipation of correlating lipids and proteins in the same lipoproteins remodeling processes.

We found that, in the NL group, apoB and apoC2 correlated strongest with odd-chain
FA and PUFA CEs, while apoC3 correlated with SFA/MUFA and DUFA CEs, PCs, and
TAGs (Supplementary Figure S3). A unique feature of the HC group was the negative
correlation of apoA1 and apoA2 with TAGs containing mostly DUFA, PUFA, and odd-chain
FAs, while much fewer SFA/MUFA. Moreover, there were positive correlations of apos B,
C2, C3, and E with TAGs and PCs, with a higher preference for SFA/MUFA and DUFA
TAGs and PCs. In the HT group, apos A1, B, and C1 showed positive correlations with
TAGs containing mostly SFA/MUFA, while apos C2, C3, and E correlated with TAGs with
a preference toward PUFA TAGs. The HL group was unique in terms of few correlations
of apoA1 and apoA2 with lipid species, and instead, apoA4 was found to be correlating
negatively with many DUFA and PUFA CEs, and positively with a high number of TAGs
with SFA/MUFA, DUFA, and odd-chain FA. In the HG group, lipid species from all
classes correlated strongly and positively with apos B, C1, C2, C3, and M, especially PUFA
containing CEs, PCs, and DAGs, as well as odd-chain FA containing TAGs and FFAs.

3.4. Lipid–Protein Network Analysis by Sample Groups

To explore the differences in the protein–lipid association among metabolic condi-
tions, we conducted a topological analysis of protein–lipid correlation networks (Figure 4).
To build the networks, we used all strongly correlating lipid–protein pairs selected in
each sample group based on significant up- or down-regulation compared to the control
samples (p-value < 0.05) and strong Pearson correlations of r > |0.5| with corresponding
p-value < 0.002 (Supplementary Table S6).

The HL group samples gave a topological network where apoE appeared with the
largest sub-network of 111 positively correlating TAG species (Figure 4A). A separate sub-
network of CE, SM, and TAG species was around apoA4, including long-chain CE(20:2),
CE(22:4), CE(20:3), and SM(26:1). There were also strong positive correlations between
apoD and PE(18:0/18:1) and between SAA4 and LPE(10:4), as well as a negative correlation
between apo(a) and CER(22:0).

The network analysis performed for the HC group revealed apoC2 as a hub sur-
rounded by a sub-network of 37 TAGs, many of which also connected with apoC3 and
apoE (Figure 4B). Interestingly, TAG(52:2-FA16:0) was connected to apos B, C2, C3, and
E, while PC(16:0/18:1) to both apoA1 and apoC2. For the HT group, the protein–lipid
network revealed apoC3 as the central protein associated with various TAG, DAG, LPE,
CER, and CE species (Figure 4C), and some of the TAGs were shared by apoA2 or apoC3.
ApoB and HP showed strong positive correlations (r = 0.50–0.65, p-value < 0.005) with ten
CE species, and some also connected to apos A2, C3, and C1. The most unique feature of
the HG group (Figure 4D) was the high number of species around apoC1 from various
lipid classes including TAG, CE, CER, DAG, SM, PC, LPC, and FFA. ApoC1 also shared
PC, LPC, and SM species with apoA1 and apoA2. The latter two both correlated positively
with the same set of CEs and SMs. Interestingly, several DAG, CE, LPC, and SM species
around apoM in the HG network were also connected to apos C1, A1, and A2.
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Figure 4. Topological networks constructed based on correlations between lipid and protein con-
centrations. Networks were constructed for (A) hyperlipidemia (B) hypercholesterolemia (C) hyper-
triglyceridemia and (D) hyperglycemia by the selection of lipid–protein pairs based on the absolute
value of Pearson correlation (r > |0.5|) and the significance of the up- or down-regulation to the
control samples (p-value < 0.05). Proteins are shown as orange circles, and the size of the circles is
proportionate to the number of correlating lipid species, colored by lipid classes. (E) Comparison
of the number of lipid species correlated with hub proteins in each group. The protein-circle sizes
reflect the number of lipid species correlated with each protein. (F) The top-5 biological pathways
and processes that were uniquely enriched based on the sets of hub proteins in the networks of
hypercholesterolemia, hyperglycemia, and hypertriglyceridemia samples.

3.5. Pathway Enrichment Analysis Based on Protein Data

In this study, we investigated the panel of 20 apolipoproteins and proteins involved
in LDL, HDL, and VHDL remodeling. Since all 20 proteins measured in our study have
defined functions in lipid metabolism, pathway enrichment analysis can uncover specific
metabolic processes dysregulated in different sample categories. Furthermore, the biolog-
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ical functions defined for apolipoproteins allow us to link lipids to metabolic pathways
through the constructed protein–lipid networks.

The enrichment analysis was performed as described in the Methods section using
the sets of proteins that strongly correlated (r > |0.5|) with the highest number of lipid
species in each sample group (Figure 4E,F, Supplementary Table S7). Since a different set of
proteins emerged in each metabolic group, the output of the pathway enrichment analysis
was expected to be different as well. For the HC group, apos A1/B/C2/C3/E and LCAT
were uniquely associated with HDL-mediated lipid transport, very-low-density lipoprotein
particle remodeling, acylglycerol homeostasis, and triglyceride homeostasis. For the HT
group, apos A2/B/C1/C2/C3 was related to negative regulation of cholesterol transport
and lipoprotein particle clearance. For the HG group, A1/A2/C1/M and AACT indicated
the cholesterol esterification and HDL particle assembly. Several other pathways were
common to all sample groups, including signal transduction, cholesterol homeostasis, and
cholesterol transport. Nonetheless, the pathways that were unique to a metabolic condition
can be indirectly linked to a set of lipids through the same set of proteins.

3.6. Data-Driven Parameter Screening and Artificial Neural Network Analysis

Recent studies have demonstrated the power of the deep learning approach to accu-
rately predict dyslipidemic conditions. However, in most cases, only one condition, e.g.,
hyperlipidemia, or combined conditions as a single “dyslipidemia” condition, were investi-
gated [52–54]. Here, we explored the feasibility to build an ANN model to differentiate all
five sample categories (HC, HG, HL, HT, and NL) based on a data-driven selection of both
lipid species and proteins.

First, we randomly split the 146 samples into a training set (n = 102, 70%) and a test set
(n = 44, 30%). The training set included 26 HC, 20 HG, 18 HL, 23 HT, and 15 NL samples.
Then, we conducted 100 repeated cycles of the predictor selection using a bootstrap forest-
based Predictor Screening algorithm implemented in JMP software. The top 20 most
frequently selected variables were prioritized as the predictor pool (p) to build ANN
models. The selected 20 predictors included 2 proteins (AACT and apoC1) and 18 lipids
(Supplementary Table S8). By evaluating different types of the hidden layer and ANN
architecture, we found that an optimal ANN performance can be achieved by using a
fully-connected multilayer perceptron (MLP) network [55] with five Gaussian activation
function nodes in the hidden layer (Figure 5A).

To determine the set of predictors that gave the highest ANN model performance, we
used a step-wise systematic evaluation of all 20 predictors. The predictors P = {p_1, . . . ,
p_20} were sorted based on their relative contribution estimated by the predictor screening
algorithm. Step 1, we built ANN models by using the first predictor, p_1 as “leading
predictor”, and its combinations with every other predictor p_i∈P,i ∈ [2,20]. Each resulting
model was evaluated in terms of the accuracy for the training and test sets (Supplementary
Figure S4). The predictor combination that provided a model with the highest accuracy
was kept for the next step. In step 2, a third predictor was added to the predictor set, and
as in step 1, the model construction and evaluation were repeated. For the given leading
predictor, this process was repeated until the addition of one more variable did not improve
the model accuracy. Then, the second and each consecutive predictor (e.g., p_2, . . . p_20)
was selected as a “leading predictor” and steps 1 and 2 were repeated. After each cycle, the
models were compared based on overall model accuracy and the area under the receiver
operating characteristics (ROC) curve (AUC) by each sample group. Increasing the number
of predictors improved model accuracy both for the training and for the test set, but it
approached a plateau at 8 predictors, in the range of 0.90–0.95 and 0.71–0.79, respectively.
A total of nine models with 8 predictors were constructed. In terms of inclusion frequency,
the 8-predictor combinations included 2 proteins AACT > apoC1; 4 SMs, SM(14:0) >
SM(22:1) > SM(22:0) > >SM(16:0); 4 CEs, CE(18:0) > CE(18:2) > CE(16:0) > CE(20:2); 2 DAGs,
DAG(18:0/18:2) > >DAG(14:0/16:0); 3 TAGs; TAG(52:2) > >TAG(51:2) > TAG(52:7); and
2 LPCs, LPC(18:2) > >LPC(18:0); HCER(24:0) and CER(24:0). The combinations of the most
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frequently used predictors gave an accuracy of 0.92–0.95 derived from the confusion matrix
(Figure 5B) and the areas under the ROC curves (AUC) > 0.98 (Figure 5C). For the test set,
the overall accuracy was 0.74–79 (Figure 5D), and the ROC AUC was > 0.90 for all sample
groups (Figure 5E). The maximum accuracy was achieved for the training (0.96) and test
(0.80) sets using the following 8 variables AACT, SM(14:0), SM(22:1), CE(18:0), CE(18:2)
CE(16:0), LPC(18:2), and TAG(52:2).
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4. Discussion

In the present study, we applied combined targeted lipidomics and proteomics ap-
proaches and gained comparative insights into multiple metabolic disorders. The cor-
relation analysis of protein and lipid concentrations allowed us to create protein–lipid
interaction networks that provided new insights into functional and physical associations
between lipid species and apolipoproteins in different metabolic groups. For biological
interpretation of our data, we rely on established theories of lipid homeostasis [56–61]. The
lipid and protein compositions, as well as the relative particle numbers of HDL, LDL, and
VLDL particles, are the result of their excretion rate from cells followed by extracellular
remodeling. The continuous exchange of lipid species and proteins among all lipoprotein
particles and their in vivo environment leads to a dynamic equilibrium concentration of
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individual lipid species and proteins in a fasting state. Therefore, lipid species and protein
concentrations, measurable in whole plasma or serum samples, collectively characterize
the lipid homeostasis of each individual person.

The HDL, LDL, and VLDL lipid species composition is the result of interconnected
intracellular lipid synthesis pathways [62,63]. In our data, the interconnection of lipid
pathways is evidenced by the concerted up- or down-regulation of lipid class concentrations
(Figure 1A). For example, elevated TAG levels along with CERs and PEs were attributes of
both HT and HL, but to a lower extent of HG or HC samples. This observation suggests
a unique co-regulation of the TAG, CER, and PE de novo synthesis pathways in HT and
HL patients. As another example, the upregulation of both CE and SM levels indicates
an interplay between CE and SM synthesis pathways in HC and HL but not in other
groups (Figure 1A). Additional evidence of interconnected lipid synthesis pathways was
the corresponding abundance of DUFA and PUFA species within PC and PE classes,
including plasmalogen PEs (Figure 2A,C). For instance, the overall decreased abundance of
FA(18:2) across HC, HT, HL, and HG groups corresponded with an increased abundance
of FA(20:4)-containing species (Figure 2B). The abundance shifts of FA(20:4)-containing
species also corresponded with the increased abundance of shorter-FA-chain SM(14:0) and
SM(18:0) species (Figure 2D).

The plasma lipidome also reflects the activity of intra- and extracellular lipases that
hydrolyze PCs, PEs, and TAGs to LPCs, LPEs, and DAGs, respectively. The PUFA groups
in PC, PE, and TAG species are frequently paired with SFA/MUFA groups on the backbone.
Thus, the hydrolysis of the PUFA group produces SFA/MUFA-containing LPCs, PEs, and
DAGs, and vice versa. In the non-NL groups, we observed an elevated abundance of PUFA-
containing PCs, PEs, and TAGs along with the reduced abundance of PUFA-containing
and increased abundance of SFA/MUFA-containing LPCs, LPEs, and DAGs (Figure 2A).
Therefore, there is a higher preference for PUFA group hydrolysis from PCs, PEs, and TAGs
in the non-NL groups relative to the NL group. As an example, FA(20:4)-containing species
abundances are shown in Figure 2B. The reduced abundance of FA(20:4)-containing LPEs
corresponded with the increased abundance of FFA(20:4) (arachidonic acid), a precursor of
both pro- and anti-inflammatory eicosanoids [64].

The relative PC and LPC species composition is also affected by FC esterification,
intracellularly by ACAT [65] and extracellularly by LCAT [66]; both enzymes transfer
FA groups from PC to FC while producing CEs and LPCs. Increased intracellular ACAT
activity was linked to a higher abundance of CE(18:1) [65], while increased extracellular
LCAT activity to a higher abundance of CE(18:2) [66]. In the HT group, we found evidence
for the latter, observing a decrease in the class abundance of DUFA CEs, with an increase in
the class abundance of odd-chain FA and SFA/MUFA-containing CEs (Figure 2A).

The protein composition of lipoproteins fractions and sub-fractions was characterized in
numerous studies [56,57,67]. On average, small HDL particles contain two apoA1 molecules
while large HDL particles contain three apoA1. or 2–3 apoA1 and two apoA2 [15,31]. LDL and
VLDL particles are stabilized by a single apoB molecule per particle [15]. Considering these
stoichiometric and particle size/volume constraints, the combined concentration pattern of
lipids, apoA1, apoA2, and apoB is expected to provide a fingerprint that corresponds with
the relative particle number and size distribution of HDL, LDL, and VLDL particles.

Particle concentration and distribution by size dictate total surface area for interac-
tion with other exchangeable apos, i.e., C1, C2, C3, D, E, and M. These proteins are in
dynamic exchange among HDL, LDL, and VLDL particles. The exchange is affected by
the surface affinity and penetrability by these apos, attenuated by phospholipid species
composition [58,61]. Altogether, the relative concentration of exchangeable apos in plasma,
along with those of apoA1, apoA2, apoB, and lipid species, contributes to a metabolic
fingerprint that reflects the complexity of the within and between particle interactions.

The inverse correlation between apoA1 (or HDL particle number) and TAG concentra-
tions in plasma is widely reported [12]. It is generally explained by the concerted actions
of cholesteryl ester transferase (CETP) and lipase enzymes, resulting in the TAG transfer
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from VLDL to HDL particles, followed by hydrolysis of HDL TAGs, and delivery of the
remaining CE content to the liver by HDL and LDL particles [8]. According to our data, this
pathway is up-regulated in HC and NL groups where we observed the strongest negative
correlation of apoA1 and apoA2 with TAG species, despite normal or moderately elevated
TAG levels overall (Figure S3A). Interestingly, these negative correlations were significant
almost exclusively with odd-chain FA, DUFA, and PUFA-containing TAGs, while correla-
tions were few with SFA/MUFA-containing TAG species. This apparent selectivity of the
TAG lowering function of HDL corroborates studies showing the TAG lowering effect of
diets rich in n-3 omega fatty acids [66,68].

In theory, lipid–protein pairs are expected to correlate positively when they are simul-
taneously involved in the formation of a pool of particles that are similar in size. In other
words, at similar core volume and surface area, both protein and lipid concentration are a
function of particle number, thus the average protein and lipid concentrations show linear
correlation. ApoB-containing LDL and VLDL particles collectively carry more TAG and
CE molecules in plasma than apoA1-containing HDL particles. Therefore, some degree of
positive correlation of TAG and CE species with apoB is expected. During extracellular
remodeling, if the concentration of the lipid class and the abundance of specific species
within the class change at the same time, the correlation of specific TAG or CE species with
apoB may vary. The strongest apoB-TAG correlations were observed in the HC and HG
group (Figures 4 and S3A), in particular with higher abundant PUFA-containing TAGs
(Figure 2). In the HT group, apoB also correlated strongly with CEs (Figures 4 and S3A),
mostly with higher abundant SFA/MUFA and DUFA-containing CEs (Figure 2).

The number of apos C1, C2, C3, and E per particle is higher on LDL/VLDL (apoB
containing) than on HDL (apoA1 containing) [56,57,67]. Since LDL and VLDL particles also
carry more TAGs, the increase in the LDL/VLDL particle numbers corresponds with the
increases in both exchangeable apos and TAG species concentrations. In support, we found
significant correlations of exchangeable apos with apoB (Figure S3B), and similarly of TAG
and CE species with apoB (Figure S3A). As expected, we observed positive concentration
correlations of many lipid species with exchangeable apos as well, mainly TAGs with apos
C1, C2, C3, and E (Figures 4 and S3A). We also found that the number and relative strength
of correlations were unique to each sample group. In the HC and HT groups, apoC2 and
apoC3 correlated with TAG species, but there were fewer and weaker correlations in HT
(Figures 4 and S3A). In the HL group, only apoE correlated strongly with TAGs. In the HG
group, apoC1, C2, and apoC3 correlated strongly with nearly all monitored TAG species,
however very few and weaker correlations were found between apoE and TAG species.

The abovementioned differences in protein and lipid concentrations and strengths of
correlations observed for different donor groups can be used as evidence of differences in
metabolic remodeling pathways. Some of these pathways can be identified through path-
way enrichment analysis by using the sets of proteins whose concentration was the most
significantly changed in dyslipidemic samples as compared to the NL group (Figure 4D).
In HC, apos A1/B/C2/C3/E and LCAT proteins were associated with the dysregula-
tion of HDL-mediated lipid transport, very-low-density lipoprotein particle remodeling,
acylglycerol homeostasis, and triglyceride homeostasis. In HG, apos A1/A2/C1/M and
AACT were linked to cholesterol esterification and HDL particle assembly. In HT, apos
A2/B/C1/C2/C3 were related to negative regulation of cholesterol transport and lipopro-
tein particle clearance.

The concerted up- and down-shifts in lipids and protein concentrations and the relative
strength of correlations are fingerprints of intertwining metabolic processes and functions
for different metabolic categories. However, the construction of a predictive statistical
model to evaluate the differences among complex lipidomic and proteomic fingerprints is
a challenge. Traditional multivariate analysis tools, such as partial least square, principal
component, and stepwise logistic regression are insufficient for the prediction of multi-level
outcomes, especially in the case of a great number of intercorrelating measures [55]. To
overcome these limitations, we turned to a deep learning ANN approach preceded by
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systematic data-driven predictor screening. The resulting ANN models with the highest
accuracy contained several CEs, SMs, TAGs, and DAGs as significant classification factors.
Interestingly, SM(14:0) was the strongest predictor among SMs, consistent with the ANOVA
analysis, which showed its greatest increase in the HG group when other SMs were reduced.
The odd-chain FA15:0-containing TAG(51:2) also emerged as a top marker, consistent with
its variation in a wide range of 0.8–2.3 fold in all four non-NL groups. Similar significant
markers were LPC(18:2) and LPC(18:0), probably due to their link with obesity and type 2
diabetes [69,70]. In addition, AACT emerged as the strongest protein marker. AACT is a
serine protease inhibitor and inflammatory marker, also known as SerpinA3. We found
that it was elevated the most in the HG group. Another protein that emerged as a putative
marker was apoC1, a potent CETP inhibitor and LCAT activator, which was reduced in HG
while increased in the other four groups.

5. Conclusions

In this study, we applied targeted lipidomics and proteomics to the same human
serum samples to determine molecular characteristics of different metabolic conditions.
The quantitative data-driven analysis of absolute concentration differences and concentra-
tion correlations allowed us to establish protein–lipid connectivity networks unique to each
sample category and link them to defined metabolic pathways. These data also suggest the
changes in the composition of HDL, LDL, and VLDL particles under different patholog-
ical conditions. The integration of larger sample sets combined with detailed follow-up
experimental studies is needed to further validate and refine the condition–protein–lipid
associations observed in this work. Furthermore, inclusion of phenotypic characteristics,
such as gender, age, race, body mass index (BMI) and other parameters, may further inform
lipid and apolipoprotein-based biomarker discovery in metabolic disorders. Nonetheless,
our study demonstrates the existence of unique molecular fingerprints for each condition
that can be uncovered through systematic evaluation of proteomics and lipidomics profiles.
Leveraging the power of the machine-learning approach, we demonstrated the feasibility of
defining a small set of molecular features for simultaneous categorization of each metabolic
condition investigated in this work. Together, the application of our approach may improve
molecular classification of lipid metabolism-related chronic diseases to inform new effective
individualized therapeutic interventions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom12101439/s1, Figure S1: Pearson correlation between apolipopro-
teins and lipid species did not follow the trend in significant differentiation from the NL group;
Figure S2: Pearson correlation between apolipoproteins and lipid species did not follow the order
of %Abundance of species in lipid classes; Figure S3: Percent proportion of correlating lipid species
relative to the total number of monitored species, and correlation of apos A1 and B with other apos.
(a) Percentage of the number of lipid species that significantly correlated with apolipoproteins in CE,
PC, and TAG sub-classes (SFA/MUFA, PUFA, DUFA, or odd-chain FA) for HC, HT, HL, and HG.
Stacked bar graphs indicate Pearson correlations r > 0.3 (blue), r > 0.5 (red), r < −0.3 (green), and
r < −0.5 (brown) (regardless of up-or down-regulation relative to NL, as in Figure 4). (b) Pearson cor-
rection coefficient of apoA1 and apoB with exchangeable apos; Figure S4: Optimization of predictors
combinations using 3 to 14 variables from the list of top 20 predictors for the final ANN model. Each
ANN model was evaluated based on accuracy parameters for the training and test set; Figure S5: Lack
of agreement of Pearson correlations between proteins and lipid species (y-axis) versus between
proteins and lipid classes (x-axis), indicating unique information provided by correlation with lipid
species; Figure S6: Various degrees of up- and down-regulation of top 20 variables in metabolic
groups relative to the normolipidemic control group; Figure S7: Representative chromatograms for
targeted proteomics; Table S1: List of deuterium-labeled internal standards for Lipidyzer platform;
Table S2: The coefficient of variation (CV) for lipid class and proteins calculated for the quality control
(QC) samples; Table S3: Means comparison analysis for lipid species and proteins; Table S4: Sum-
mary table of lipids (nmol/mL) and proteins (nmol/L) concentrations; Table S5: Lipid species and
proteins significantly upregulated in different metabolic groups; Table S6: Lipid–protein correlation

https://www.mdpi.com/article/10.3390/biom12101439/s1
https://www.mdpi.com/article/10.3390/biom12101439/s1


Biomolecules 2022, 12, 1439 19 of 22

analysis; Table S7: Pathway enrichment analysis; Table S8: The top-20 predicted selected for the
ANN modeling.
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33. Holčapek, M.; Červená, B.; Cífková, E.; Lísa, M.; Chagovets, V.; Vostálová, J.; Bancířová, M.; Galuszka, J.; Hill, M. Lipidomic
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