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Abstract: Abnormal lipid metabolism often occurs under hypoxic microenvironment, which is an
important energy supplement for cancer cell proliferation and metastasis. We aimed to explore the
lipid metabolism characteristics and gene expression features of pancreatic ductal adenocarcinoma
(PDAC) related to hypoxia and identify biomarkers for molecular classification based on hypoxic
lipid metabolism that are evaluable for PDAC prognosis and therapy. The multiple datasets were
analyzed integratively, including corresponding clinical information of samples. PDAC possesses a
distinct metabolic profile and oxygen level compared with normal pancreatic tissues, according to the
bioinformatics methods. In addition, a study on untargeted metabolomics using Ultra Performance
Liquid Chromatography Tandem Mass Spectrometry(UPLC-MS) revealed lipid metabolites differ-
ences affected by oxygen. Analysis of PDAC gene expression profiling in The Cancer Genome Atlas
(TCGA) revealed that the sphingolipid process correlates closely with HIF1α. According to the char-
acters of HIF-1 and sphingolipid, samples can be clustered into three subgroups using non-negative
matrix factorization clustering. In cluster2, patients had an increased survival time. Relatively high
MUC16 mutation arises in cluster2 and may positively influence the cancer survival rates. This study
explored the expression pattern of lipid metabolism under hypoxia microenvironment in PDAC.
On the basis of metabolic signatures, we identified the prognosis subtypes linking lipid metabolism
to hypoxia. The classifications may be conducive to developing personalized treatment programs
targeting metabolic profiles.

Keywords: pancreatic cancer; HIF-1α; hypoxia lipid metabolism; sphingolipid

1. Introduction

Pancreatic cancer remains a stable incidence that is associated with the prevalence of
obesity, diabetes, and alcohol consumption [1]. In recent decades, the number of pancreatic
cancer cases was almost the same as the number of deaths. Intensive chemotherapy, such as
FOLFIRINOX—the combination of fluorouracil, leucovorin, irinotecan, and oxaliplatin—has
resulted in longer overall survival than gemcitabine as first-line treatment in metastatic
pancreatic cancer [2]. However, the five-year survival of pancreatic ductal adenocarcinoma
(PDAC) in advanced stages is dismal and has not been improved significantly by current
therapeutic options. In order to break through the bottleneck of chemotherapy, genomics
and proteomics may potentially guide the development of new therapies [3].

Oxygen is rather essential to drive bioenergetics for energy metabolism in cells. We
understand the cellular changes in O2 levels through the discovery of hypoxia-inducible
factors (HIFs) and the regulation by the von Hippel–Lindau (VHL) tumor suppressor
protein [G] (pVHL) and prolyl hydroxylases (PHD1-3 or EGLN1-3), members of the α-
ketoglutarate dioxygenase superfamily [4,5]. Changes in the decrease of O2 levels occur
in the epigenome, noncoding RNAs, the metabolome, biochemical reactions, and diverse
homeostatic measures of survival under hypoxic stress [6]. Adaptation to oxygen starvation
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exists in both primary and metastatic neoplasms. Hypoxia exists in a large number of
serious tumor types, and it elicits a wide variety of adaptive changes. In tumors, the
high rate of proliferation and metastasis, abnormal tumor-associated angiogenesis, and
drug resistance are related to the occurrence of hypoxia [7]. The cancer cells show the
important signs of deregulation of lipid metabolism. Lipid can function as components
of cellular membranes when it is also used as mediators of cancer-relevant phenotypes
on transformation promotion and growth [8]. Many drugs targeting lipid metabolism
have been developed as a therapeutic strategy for cancer and the inhibition of certain vital
enzymes involved in lipid metabolism could inhibit progression and metastasis [9]. Related
research has proved that there is significant disorder of lipid metabolism related to the
Hypoxia inducible factor (HIF) in clear cell renal cell carcinoma (ccRCC) [10]. Hypoxia,
as well as lipid disorder, is vital alternation of the tumor environment. Recent research
has confirmed that HIF-1 regulated lipid metabolic reprogramming and influenced lipid
accumulation and lipolysis in the progression of cancer [11,12]. Therefore, a method of
targeting lipid metabolic alterations by HIF-1 has great potential for cancer therapy. A metabolic
view from metabolomics could provide a new angle on familiar subjects—cancers.

In this study, we analyzed metabolomics along with multiple public datasets by
bioinformatic tools to explore data and the clinical features of PDAC with a focus on
the hypoxia lipid metabolism. We identified metabolic subtypes by the gene expression
characteristics and possible molecular mechanisms according to the combination of hypoxia
and lipid metabolism. Our findings suggest that there exist subgroups based on hypoxia
and sphingolipid which are highly related to PDAC gene mutation and patient survival.

2. Materials and Methods
2.1. Untargeted Metabolic Analysis and Data Preprocessing

The human PDAC cell lines PANC-1 and CFPAC-1 were obtained from ATCC and
maintained in DMEM or IMDM medium (Invitrogen, Carlsbad, CA, USA) containing
10% fetal bovine serum (Invitrogen) and 1% penicillin/streptomycin (Invitrogen) at 37 ◦C
with 5% CO2. We chose a chemical hypoxia model -cobalt chloride [13]. Some studies have
proven that it has the similar effect as the treatment of 1% O2 in cellular metabolism [14,15].
Approximately 8 × 106 cells were seeded on the 100 mm plates (Jet Biofil, Guangzhou,
China) with or without 200 µM CoCl2 (Sigma, Germany) for 24 h. Samples collected with
1 mL ultra-pure water included approximately 107 cells with different culture conditions
and were maintained and labeled. Quality controls (QCs) were run for quality assessment.
Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (LC-MS) peaks
were identified according to mass (m/z) and retention time (RT). We used MetaboQuest
(http://omicscraft.com/tools/, accessed on 20 April 2021) that can search mass values
against major compound databases, including HMDB [16], METLIN [17], KEGG [18],
MMCD [19], and LIPID MAPS [20] to assign putative IDs to the analytes detected by
LC-MS. Metabolites with |log2-fold change (FC)| ≥ 1 were considered as differential
metabolites. MetaboAnalyst (www.metaboanalyst.ca, accessed on 2 May 2021) [21] was
used to upload metabolites lists obtained from previous statistical analysis for metabolite
set enrichment analysis by pathway-associated metabolite sets (SMPDB [22] or KEGG).

2.2. Acquisition of PDAC Datasets

The RNA-seq data of GSE28735 and GSE62452 was downloaded from the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, accessed on 15 March
2021) database. The following four RNA-seq datasets were merged into one metadata
set. The expression profiles, corresponding clinical information, and somatic mutation
data of PDAC were obtained from The Cancer Genome Atlas(TCGA) database (https://
portal.gdc.cancer.gov/, accessed on 17 May 2021). Gene expression data, somatic mutation
data, and clinical data were retrieved from the International Cancer Genome Consortium
(ICGC) portal (https://dcc.icgc.org/projects, PACA-CA, PACA-AU, accessed on 16 May
2021). The mRNA expressional profiles and clinical information of PDAC cohort GSE71729
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(16 May 2021) from GEO were downloaded. Samples were filtered to exclude any samples
labeled as cell lines, xenografts, or normal. A total of 563 samples were ultimately included
in the cluster. All the cohort mRNA matrixes were normalized by Z-score.

2.3. DEGs Analysis in GEO Datasets

If there were multiple probes annotated to the same gene, we chose the probe with the
maximum expression level to represent the expression level of this gene. The data were
processed by log2 transformation for analysis. Statistical software R (version 4.1.2, https://
www.r-project.org/, accessed on 2 April 2022) and packages of Bioconductor (http://www.
bioconductor.org/, accessed on 2 April 2022) [23] were downloaded to conduct significance
analysis of different expression genes (DEGs) between PDAC samples and normal samples.
Limma package of Bioconductor was used to select significant DEGs [24], where the
standard was FDR < 0.05 and |log2-fold change (FC)| ≥ 1. Employing DAVID(https:
//david.ncifcrf.gov/home.jsp, accessed on 17 May 2022) [25], we explored significant
DEGs by gene ID conversion and Gene ontology (GO) term enrichment analysis, including
biological process, cellular component and molecular function, and KEGG pathway enrichment
analysis. p-values were adjusted for multiple testing using false discovery rate(FDR) method.

2.4. Identification of Subtype-Relevant Pathways

We calculated mRNA expression of genes in mRNA expression by Spearman’s cor-
relation in the TCGA dataset. It was considered as positive correlation with HIF1α when
Spearman’s correlation was >0 and the q-value was less than 0.05. We integrated and
processed the expression data frame and clinical data in the TCGA dataset and divided
samples into two groups (low, high) according to the median values of each gene mRNA
expression. Survival curves were plotted using the Kaplan–Meier (K-M) method by means
of the survival package. The analysis of overall survival (OS) was considered statistically
significant when it showed that p < 0.05. Gene Expression Profiling Interactive Analysis
2 (GEPIA2, http://gepia2.cancer-pku.cn, accessed on 19 May 2022) [26] merged TCGA
normal and Genotype-Tissue Expression(GTEx) sample data and transformed expression
data by log 2(TPM + 1). Parameter was set as |log2FC| Cutoff < 1 and q-value < 0.05.

2.5. Metabolic Subgroup Classification and Subgroup Analysis

Genesets “KEGG_HIF-1_signaling_pathway” (hsa04066) and “GOBP_SPHINGOLIPID
_METABOLIC_PROCESS” (GO:0006665) were used as hypoxia lipid metabolism genes.
Consensus clustering was performed using ConsensusClusterPlus [27]. Euclidean distances
were used as the distance metric. The clustering number was set as 10, and the consistency
matrix and consistency cumulative distribution function were calculated to determine
the best classification. Using the “GenVisR” package [28], somatic mutation data were
visualized. With consensus clustering, we classified the dataset according to preexisting
PDAC subtypes Bailey [29] and Moffitt [30]. The Bailey subtype was based on DEGs
results from the publication result [24], which were filtered for genes with FDR <0.05 and
|log2-fold change| >1, resulting in 214 ADEX, 1182 squamous, 164 pancreatic progenitor,
and 297 immunogenic genes. The Moffitt subtype was based on the 50 gene signatures in
publication result [25].

2.6. Quantitative Real-Time PCR (RT-PCR)

We used an RNA Quick Purification kit(RN001, ESscience, Shanghai, China) to extract
total RNA. The PrimeScript™ RT Master Mix reagent kit (TaKaRa, Beijing, China) was used
for mRNA reverse transcription according to the manufacturer’s instructions. Quantitative
RT-PCR was performed using an AriaMx Real-Time PCR System (Agilent, Palo alto, CA,
USA) with TB Green® Premix Ex Taq™ (TaKaRa). Primer sequences (Sangon Biotech,
Shanghai, China) for quantitative RT-PCR are shown in Table S2. By the ∆∆Ct method, the
relative expression levels of the target genes were analyzed. We performed the experiments
in triplicate and repeated at least three times.
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2.7. Statistical Analysis

The statistical analysis was performed with GraphPad Prism9 statistical software
and R 4.1.2 (https://www.r-project.org/, accessed on 2 April 2022). The comparisons of
two-sample data were performed using t-tests. Kaplan–Meier survival analysis was used
to compare the differences in OS between different groups. p or FDR < 0.05 was considered
statistically significant.

3. Results
3.1. Subsection
3.1.1. Identification of Oxygen Change and Lipid Catabolism Changes in PDAC

In order to identify gene expression alterations, we separately screened the differen-
tially expressed genes (DEGs) in GSE28735 and GSE62452 with pairs of normal and PDAC
tissues. The results of DEGs were visualized by the volcano plot (Figure 1a). Between the
two data sets, 302 DEGs were overlapping and further examined for biological function
using GO functional enrichment and KEGG pathway analyses (Figure S1a). Among the en-
riched results, it showed that DEGs were related with hypoxia and lipid metabolism, such
as lipid catabolic process (GO:0016042), response to hypoxia (GO:0001666), triglyceride
lipase activity (GO:0004806), and lipid digestion (GO:0044241) (Figure 1b). In addition,
KEGG pathway analysis showed that the related pathway included fat digestion and ab-
sorption (KEGG:hsa04975) and Glycerolipid metabolism (KEGG:hsa00561) (Figure 1c). The
results showed that PDAC exhibits oxygen change and some alterations of lipid metabolism,
mostly on catabolism.
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Figure 1. Identification of the occurrence of lipid metabolism disorder and oxygen change in PDAC
datasets. (a) The volcano plot of analyses of DEGs in GSE28735 and GSE62452. (b) The GO molecular
functions, biological processes, and cell components related to oxygen and lipid change. (c) The
KEGG pathways enrichment in overlapping DEGs. (GO _BP: Gene ontology biological process; GO
_MF: Gene ontology molecular function) (GSE28735: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=gse28735; GSE62452: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse62452,
accessed on 15 March 2021).
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3.1.2. LC-MS-Based Metabolomic Analysis and the Metabolomic Differences Analysis of
Normoxic and Hypoxic Culture

To further understand the metabolites in the state of cells, we selected two types
of PDAC cell lines and investigated. First, we constructed an in vitro hypoxia model in
two cell lines, PANC-1 and CFPAC-1, using CoCl2. The sufficient induction of hypoxia
was confirmed by increasing expression of HIF-1α protein (Figure S1b). We performed
metabolomic analysis of samples from cultured cells under normal or simulative hypoxia
condition, respectively, using LC-MS. As shown in Figure 2a, a total number of 266 identi-
fied metabolites were analyzed. Among them, 164 metabolites were identified as enriched,
while 102 types were shown as depleted. The annotation of metabolites number was shown
in Table S1. The heat map implies that in both cell lines, a number of metabolites have strong
changes that resulted in metabolic variation. (Figure 2b). In hypoxic, metabolites such as
Phosphatidylcholine and Ethanolamine phosphate were overexpressed at the same time.
They could interfere with the Glycerophospholipid metabolism. Cancer cells with high
proliferation need a large amount of glycerophospholipids, particularly for membrane
production. In two types of cell lines, the substance including L-histidine, Carnosine,
and L-Glutamate involved in histidine metabolism was also down-regulated under
hypoxia. The intake and metabolism of histidine was shown to influence the sensitivity
to methotrexate in cancer cells [31]. SMPDB (The Small Molecule Pathway Database) is a
database containing more than 30,000 small molecule pathways found in humans only,
and the majority of these pathways are not found in other pathway databases. It is de-
signed specifically for pathway discovery in metabolomics, transcriptomics, proteomics,
and systems biology. The metabolites such as adenosine monophosphate, L-Carnitine,
glycerophosphocholine, and 1,2-dipalmitoyl-sn-glycero-3-PC have changed, leading to
the suppressed lipid metabolic effect such as beta oxidation of very long chain fatty acids
and oxidation of branched chain fatty acids in SMPDB (Figure 2c). This was in good
agreement with the results of lipid catabolic changes in the GEO datasets above. On
the other hand, some substances, such as L-Serine and Choline, remained unchanged;
they are the participants in Glycine, serine, and threonine metabolism. This might be
because many factors could influence Glycine, serine, and threonine metabolism, such as
obesity [32] and diabetes [33] as well as hypoxia. We also noticed that some metabolite
changes are not consistent between PANC-1 and CFPAC-1; this might be attributed to
the different origin of the cell lines. PANC-1 is an epithelioid cell line started from a
human pancreatic ductal carcinoma, while CFPAC-1 is a cell line with the characteristics
of pancreatic duct cells originated from a patient with a tumor in the head of the pancreas
and cystic fibrosis (CF). It expresses the CF gene and manifests the most common CF
mutation. The different metabolic changes between the two cells strongly suggest that
patients with pancreatic cancer may also have different metabolic patterns.
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Figure 2. Analysis of metabolomic data of CoCl2 treated PDAC cell lines. (a) Bubble chart of all
metabolite molecules detected. The abscissa is the retention time, the ordinate is the mass-to-charge
ratio, the size of the point is the relative abundance of metabolites. (b) Heatmap of metabolites in
PANC-1 and CFPAC-1 cells affected by the use of CoCl2. (c) The SMPDB pathways enriched in
upregulated and downregulated metabolites.

3.1.3. Transcriptomics Data Analysis Focus on HIF-1α

To get more precise and deeper analysis results, we downloaded the data of PDAC
patients from TCGA, which possesses large-scale patient samples and complete data in
multiple kinds of cancers. We aimed to investigate changes by genes affected by hypoxic
environment, and HIF-1α was thought to be the core of the hypoxia. The gene expres-
sion profiles of the PDAC dataset obtained from TCGA were analyzed, and a total of
5874 genes were statistically significant (q-value < 0.05) and positive correlated (Spear-
man’s correlation > 0) with HIF-1α in 186 patients. The top 20 ranked genes are visualized
in Figure 3a. Through the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the
above genes were further analyzed by enrichment pathways analysis. Finally, 122 KEGG
pathways were enriched. It was significantly shown that staphylococcus aureus infection
attained a higher enrichment score. Under hypoxia, the capacity of neutrophils to kill
bacteria could be impaired [34]. The result might explain why staphylococcus aureus
infection was markedly affected, and it was regarded as a significant cause of morbidity
and mortality in cancer patients. In results, quite a number of genes were hit in the pathway
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of focal adhesion. One of the critical steps in cancer progression cell adhesion seems to
be related to the changes of HIF-1α. In addition, there were some lipid-related pathways.
Sphingolipids participate in a wide variety of biological mechanisms as bioactive lipids;
here is the evidence that imbalances in sphingolipid metabolism exist in many tumors. It
plays a role in cell death, survival, and therapy resistance in cancer. For example, ceramide,
as a member of sphingolipid and a regulator of apoptosis, is one of the molecular obstacles
that inhibit cancerous cells from achieving necessary proliferation. In recent years, modula-
tion targeting the sphingolipid metabolic pathways has been on the leading edge of drug
discovery for cancer therapeutics. Notably, sphingolipid signaling pathway was included
(Figure 3b). Using the Kaplan–Meier survival analysis [35], batch filtering of positively
correlated gene results displayed 504 genes that have significant association with the OS of
PDAC patients in the TCGA dataset. Survival time differed in patients with the relatively
high versus low expression of protein of these genes. These were all factors resulting in the
patients’ poor survival in PDAC. We evaluated the expression of the genes above in normal
and tumor samples of the TCGA and GTEx databases. The mRNA expression levels of
genes in PDAC cancers were analyzed by GEPIA2, and 252 genes were significant. Using
multiple filter genes, a KEGG item—Sphingolipid signaling pathway—showed significantly
differential enrichment, and the overlapping genes were GNAI3, KRAS, NRAS, MAPK1,
SGMS2, and PPP2R5E. The mRNA expression level of crossover genes and Kaplan–Meier
survival analysis (GNAI3, KRAS, NRAS, MAPK1, SGMS2, and PPP2R5E) in this metabolic
pathway are shown in Figure S1c,d. Because the KRAS and NRAS mutation are thought to
be the overwhelming inner characteristics of PDAC [36], we detected the mRNA level of
four other genes in two PDAC lines and found that hypoxic culture markedly increased
expression of GNAI3, MAPK1, SGMS2, and PPP2R5E, which are involved in the process of
Sphingolipid signaling pathway. (Figure 3c).
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3.1.4. PDAC Subtypes Identified by HIF-1 and Sphingolipid Genes

We integrated RNA-seq data from multiple PDAC datasets including TCGA PAAD,
GSE71729, ICGC PACA-CA, and PACA-AU. A total of 563 patients remained in the sample
after excluding non-PDAC samples and samples without clinically informative features (in
detail: 176 of TCGA, 125 of GSE71729, 182 of PACA-CA, and 80 of PACA-AU). We obtained
genes belonging to the KEGG gene set HIF-1 signaling pathway (hsa04066) (n = 109), and
the GO gene set SPHINGOLIPID METABOLIC PROCESS (GO:0006665) (n = 162) was used
for consensus cluster analysis, which is a highly effective technique in biological research.
The approach combines data from different experiments, increases the credibility in the
common features of all the datasets, and reveals the important characteristics among them.
We chose K = 3 as the optimal choice by the corresponding cumulative distribution function
(CDF) curve and the delta area plot (Figure S2a,b). Consensus clustering method was
applied on the merged dataset to cluster the PDACs into three subtypes (Figure 4a). The
cases of group cluster2 in merging data was 32.5% (183/563), followed by cluster1 10.48%
(59/563), and cluster3 57.02% (321/563). Principal component analysis(PCA) (Figure 4b)
indicated that groups could successfully discriminate and classify samples according to
the characteristic subtype classification. Further, we investigated the three subgroups’
prognoses. The survival curve indicated that the samples in cluster1 invariably had shorter
survival time, in days, while cluster2 predicted the longest survival time. Overall, the
survival results in cluster3 that are similar to the cluster1 were poorer (Figure 4c). The
results revealed that the hypoxia lipid metabolic subtypes had existed in PDAC, and they
were accompanied by a different prognoses.
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3.1.5. Distribution of Mutation Characteristics and Association with Other PDAC Subtypes

Expression levels of HIF-1 and sphingolipid genes among the metabolic subgroups
are visualized in Figure S3a. The heatmap indicated that there is a subtle difference among
mRNA expression in the clusters. Further, we analyzed the alternation of genes partici-
pating in HIF-1 signaling pathway among different groups. The cluster3 had many more
changes on related genes than cluster2 (Figure 5a). BCL-2 protein could control cell death
and significantly changed in cluster3. RELA, as a critical transcriptional factor for response
to hypoxia, increased in cluster1 and 3 by comparison with cluster2. ELOVL1, SMPD3, and
DEGS1 were involved in sphingolipid metabolic process and achieved the rise in cluster1
and 3. Gene expression analysis revealed increased expression of HIF1α-associated genes
P4HA1 in cluster3 and increased expression of the sphingolipid signaling genes SPHK1 and
SPHK2 in cluster1 (Figure S2d). To clarify the clinical signature difference among the three
clusters, the results demonstrated that there was no significant difference based on age or
gender (Figure S3b). To search for affected pathways associated with mRNA expression in
the clusters, we performed a comprehensive analysis, including differentially expressed
analysis and functional enrichment. Filtered genes revealed significant difference of func-
tion. Pathways enriched among cluster1 correlated genes included ubiquitin-mediated
proteolysis, autophagy, TGFβ signaling and lipid, and atherosclerosis. Chemokine sig-
naling pathway, cholinergic synapse, and calcium signaling pathways were remarkably
affected in cluster2. Ras signaling pathway, MAPK signaling pathway, and Rap1 signaling
pathway changed in samples divided into cluster3 (Figure S2c). In the somatic alterations,
the most common driver genes (KRAS, CDKN2A, TP53, and SMAD4) were still in the
top position. There was a remarkably higher variation in MUC16 mutation in cluster2
than in the cluster1 and cluster3 subgroups (Figure 5b). Previous studies indicated that
the mutation number of MUC16 was closely correlated with tumor mutational burden
(TMB), and the high mutation number of MUC16 was correlated with better overall sur-
vival (OS) [37,38]. There exists PDAC gene expression subtypes associated with survival
in previous studies. The basal-like (Moffitt [25]) and squamous (Bailey [24]) groups have
the poor outcomes. To investigate the relationship between our classification and previous
subtypes, we divided samples into the various subtypes and analyzed the composition
of each cluster (Figure 5c). The cluster1 and 3, with worse outcomes, included mainly
basal-like cases (59.32%; 82.86%) and contained squamous (38.98%; 34.57%), respectively.
The majority of cluster2 with longer survival time were classical samples (63.93%) and
had fewer samples in the basal-like (36.1%) and squamous groups (4.37%). The results
show that pathways related to hypoxia lipid metabolism can help us recognize the PDAC
subtypes with different prognoses.
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Figure 5. Characters of the PDAC subtypes and comparison with other prognostic subtypes. (a) The
volcano charts of HIF-1-related genes among groups. (b) The somatic mutations and copy number
mutations of the three clusters. (c) The comparison bar chart of the number of patients in PDAC
subtypes with Moffitt and Bailey. (TCGA: https://portal.gdc.cancer.gov/, accessed on 17 May 2021;
GSE71729: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse71729, accessed on 16 May
2021; ICGC: https://dcc.icgc.org/projects, accessed on 16 May 2021).

4. Discussion

Though there are improvements in survival of PDAC patients under the first-line and
second-line palliative therapies and adjuvant treatment, the overall 5-year survival for
pancreatic cancer has still changed little. The urgency for the development of personalized
treatment has created the focus on the relevant tumor subtypes [39]. The molecular het-
erogeneity in PDAC leads to the diverse types accompanied with the difference of gene
expression and structural variations [24,25]. For example, PDAC patients with BRAC1/2
mutation are often sensitive to cisplatin therapy and benefit from subsequently mainte-
nance therapy using Olaparib [40]. Although BRAC1/2 mutation occurs only in 4–7%
of PDAC patients, it forges a path for individual therapy based on gene features. The
more we know about the gene profile characteristics of PDAC, the more chance for us
to translate the variation information into clinical practice for outcome prognostication
and treatment choice to improve the survival benefit. Our results show that, based on the
oxygen regulation and sphingolipid metabolism, the gene expressions were significantly
different and led to the patient outcome discrepancy.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse71729
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Hypoxia facilitates pathways—such as angiogenesis, growth-factor signaling, genetic
instability, apoptosis, invasion, and metastasis—and increases resistance to radiation ther-
apy and chemotherapy [41]. When the oxygen level is reduced, cells respond through
hypoxia-inducible transcription factor 1 (HIF-1). HIF-1 consists of the hypoxic response fac-
tor HIF-1α and the constitutively expressed aryl hydrocarbon receptor nuclear translocator
(ARNT) (also known as HIF-1β). In the hypoxia status, HIF-1 binds to hypoxia-response
elements (HREs), activating the downstream genes. The activation of hypoxia-inducible fac-
tor 1 (HIF1) up-regulated the sterol regulatory element-binding protein (SREBP)-1, which
can impact FAS by transcriptional regulation [42]. GLS1 mRNA and protein expression are
associated with hypoxia-inducible factor and are involved in tumor growth and metastasis
in colorectal cancer [43]. Lipids are important elements in many overlapping oncogenic
signaling pathways. Status of hypoxia may influence the anti-tumor-immunity process
and lead to the loss of immunotherapy response in cancers [44]. Therefore, the treatment
targeting hypoxia to overcome the resistance of tumor cells and immunotherapy is a highly
potential research area. To target hypoxic tumor cells, approaches including hypoxia-
activated prodrugs, gene therapy, specific targeting of HIFs, and targeting pathways related
with hypoxia have been researched widely [45].

Sphingolipids are the structural components of cell membranes and also regulate
growth, proliferation, migration, invasion, and metastasis by signaling functions; addi-
tionally, the sphingolipid metabolism process generates resistance to chemotherapy and
radiotherapy. Tumors exhibit increased ceramide metabolism mainly by increased activi-
ties of materials such as glucosyl-ceramide synthase (GCS) and increases the generation
of sphingolipids [46]. Therapeutic targeting of sphingolipids chemicals, such as FTY720
targeting sphingolipid signaling, has demonstrated potential function in cancer therapy.
Studies indicate antiproliferative effect, apoptosis-inducing ability, and drugs of additive
effect of FTY720 in diverse cancer cells like pancreatic cancer [47,48].

In this study, we utilized multiple bioinformation analyses to identify the impact of
gene-associated hypoxia lipid metabolism in PDAC. PDAC transcriptome analysis and
untargeted metabolic analysis demonstrated that a low level of HIF-1α protein is correlated
with the lipid metabolic process. In addition, on the basis of the signature of HIF-1 and
sphingolipid, we classified samples into three different clusters with different molecular
characteristics and survival outcomes. The results demonstrated that cluster2 predicted
long survival time, and the MUC16 mutation is high. MUC16 (previously known as CA125)
is a type I transmembrane mucin protein with a C-terminal domain, a tandem repeat
region, and an extracellular N-terminal section. Several studies have shown that MUC16
was found to be one of the top frequently mutated genes. Its overexpression affects the
growth and metastasis function [49,50]. In addition, the group of patients with MUC16
mutation had better survival outcomes in gastric cancer [26,27]. In cluster3, samples
expressed relatively higher gene expression of P4HA1 and had short overall survival. The
role of P4HA1 in PDAC was revealed, which can regulate HIF1α activity and led to high
proliferation, chemoresistance, and cancer cell stemness [51]. Targeting P4HA1 may be a
potential therapeutic approach for PDAC. By observation, we note that the levels of SPHK1
and SPHK2—which are key enzymes in the phosphorylation of sphingosine to sphingosine
1-phosphate (S1P)—were highest in the cluster1. The SPHK2 inhibitors ABC294640 and
SK1-I (a competitive inhibitor of SPHK1) have proved their clinical value and can suppress
the growth of tumors via multiple mechanisms [52,53].

Our research proves that PDAC has the striking disorder in lipid metabolism that may
be regulated by the hypoxia environment. Metabolism-associated molecular classification
relying on hypoxia lipid metabolism genes has decent concurrence with previous molecular
subtypes in patients’ prognosis. With this new viewpoint, we investigate the classification
focus on lipid metabolism in PDAC. Doubtless, with the help of the metabolism difference,
doctors can divide patients by priority and estimate the prognosis and exploit the specific
and precise therapeutic strategies targeting multiple metabolic dependencies.
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5. Conclusions

By enriched analysis in different expression genes significantly, we find abnormal lipid
metabolisms and oxygen changes exist in PDAC. Untargeted metabolomics in two types of
PDAC cells clearly show HIF-1α protein-associated metabolites. By identifying metabolites
likely perturbed in hypoxia, the analysis included many lipid metabolism pathways. The
identification of the genes positively with HIF-1α in the TCGA PDAC data resulted from
our multiple analyses. The sphingolipid signaling pathway was enriched using the genes
screened. On the basis of genes of HIF-1 pathway and sphingolipid process, three subclasses
were identified. Subgroups are found to correlate to different patient survival. Patients in
cluster2 had a significant survival advantage over those in the other groups.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12101533/s1, Figure S1 The hypoxia culture efficiency and
supplement of data analysis in GEO and TCGA; Figure S2 Extra information of PDAC subtypes;
Figure S3 Distribution characters of clusters; Table S1 The annotation of metabolites shown in the
heatmap of metabolic analysis; Table S2 Primer sequences for RT-qPCR in the research.
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