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Abstract: Objective: Type I interferon receptor signaling contributes to several autoimmune and
vascular diseases such as lupus, atherosclerosis and stroke. The purpose of this study was to assess
the influence of type I interferon receptor deficiency on the formation and progression of experimental
abdominal aortic aneurysms (AAAs). Methods: AAAs were induced in type I interferon receptor
subunit 1 (IFNAR1)-deficient and wild type control male mice via intra-infrarenal aortic infusion
of porcine pancreatic elastase. Immunostaining for IFNAR1 was evaluated in experimental and
clinical aneurysmal abdominal aortae. The initiation and progression of experimental AAAs were
assessed via ultrasound imaging prior to (day 0) and days 3, 7 and 14 following elastase infusion.
Aneurysmal histopathology was analyzed at sacrifice. Results: Increased aortic medial and adventitial
IFNAR1 expression was present in both clinical AAAs harvested at surgery and experimental AAAs.
Following AAA induction, wild type mice experienced progressive, time-dependent infrarenal aortic
enlargement. This progression was substantially attenuated in IFNAR1-deficient mice. On histological
analyses, medial elastin degradation, smooth muscle cell depletion, leukocyte accumulation and
neoangiogenesis were markedly diminished in IFNAR1-deficient mice in comparison to wild type
mice. Conclusion: IFNAR1 deficiency limited experimental AAA progression in response to intra-
aortic elastase infusion. Combined with clinical observations, these results suggest an important role
for IFNAR1 activity in AAA pathogenesis.

Keywords: abdominal aortic aneurysm; type I interferon receptor; leukocytes; angiogenesis

1. Introduction

Type I interferons (IFNs) are cytokines produced by plasmacytoid dendritic cells and
other immune cells following exposure to antigenic stimuli including bacteria, viruses,
autoantigens and tumors [1,2]. For example, Type 1 IFN expression is increased in patients
with the SARS-CoV-2 virus (COVID-19) [3–7]. Most type I IFNs signal through the type I
IFN heterodimer receptor subunit (IFNAR) 1/IFNAR2 to initiate intracellular signaling
cascades and type 1 IFN-regulated gene expression [1]. While critical for host defense,
dysregulated type I IFN/IFNAR signaling is also associated with autoimmune diseases
such as lupus and type 1 diabetes [8–10].

In vascular diseases, type I IFNs promote atherosclerosis by altering the functional
phenotypes of immune cells, vascular endothelial and smooth muscle cells (SMC) [11].
Genetic deficiency or antibody inhibition of IFNAR1 reduced cerebral infraction volume in
a mouse ischemic stroke model [12]. IFNAR1 deficiency also protected against hypoxia-
induced pulmonary arterial hypertension [13].
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Abdominal aortic aneurysm (AAA) is a chronic life-threatening inflammatory disease
characterized by progressive enlargement of the infrarenal aorta leading to rupture and po-
tentially sudden death. Both innate and adaptive immune responses potentially contribute
to AAA pathogenesis. Pharmacological depletion or genetic deficiency of macrophages,
mast cells, neutrophils and B cells suppressed experimental AAAs [14–17]. Genetic defi-
ciency or antibody neutralization of IFN-γ, interleukin (IL)-17 or tumor necrosis factor-α
attenuated experimental AAAs [18–20], as did treatment with transforming growth factor-
β, IL-10 and IL-19 [14,21–23]. However, the role of IFNAR1 activity in AAA pathogenesis
has not been previously investigated.

In the present study, both human AAA surgical specimens and mice deficient for IFNAR1
were employed to examine the role of type I IFN activity in aortic aneurysm pathogenesis.

2. Materials and Methods
2.1. Experimental AAA Modeling

IFNAR1-deficient (IFNAR1−/−, B6.129S2-Ifnar1tm1Agt/Mmjax, MMRC strain #032045-
JAX) and wild type (WT, strain #000664) mice on a C57BL/6J background were obtained
from the Jackson Laboratory, Bar Harbor, Maine, USA and housed at the Stanford University
Research Animal Facility (Stanford, CA, USA). IFNAR1−/− mice display no remarkable
phenotypic anomalies by the age of 6 months [24]. AAAs were induced in male mice
at 10–12 weeks of age by transient intra-infrarenal aortic infusion of porcine pancreatic
elastase (PPE) as previously described [25,26]. Briefly, following median laparotomy,
isolation and control of the infrarenal aorta, an aortotomy was created via a 30-G needle.
Thirty microliters of PPE in phosphate-buffered saline (Type 1, 1.5 units/mL, catalog
#E-1250-100MG; Sigma-Aldrich, St. Louis, MO, USA) was infused via a syringe pump
(Model 100, KD Scientific, Holliston, MA, USA). Following PPE infusion, the aortotomy
and laparotomy were closed with 10–0 nylon (Microsurgery Instruments Inc, Bellaire, TX,
USA). and 6–0 silk (Ad Surgical, Sunnyvale, CA, USA) sutures, respectively. Mice were
recovered and housed in separate cages with free access to water and food. The mouse
PPE infusion model produces a fusiform, focal AAA, independent of serum lipid levels
or systemic blood pressure, that recapitulates both clinical and pathological features of
human AAA disease except for the absence of intraluminal thrombus and progression to
rupture [27–30]. All procedures were performed under sterile conditions in compliance
with Stanford Laboratory Animal Care Guidelines and approved by the Stanford University
Administrative Panel on Laboratory Animal Care (protocol #11131).

2.2. Immunohistochemistry for IFNAR1

Non-aneurysmal human abdominal aortae were obtained from two organ donors.
Infrarenal human AAA specimens were obtained from patients undergoing open surgical
repair (n = 6). Collection and use of these specimens were approved by the Human Subject
Research Review Board at Xiangya Hospital, Central South University School of Medicine,
Changsha, Hunan, China. Non-aneurysmal and aneurysmal mouse aortae were prepared
via intra-infrarenal aortic infusion of phosphate-buffered saline (non-aneurysmal) and
PPE (aneurysmal), respectively (n = 3 mice/group). All human and mouse aortae were
fixed with 4% paraformaldehyde, embedded in paraffin and sectioned (4 µm). Sections
were stained with a rabbit anti-IFNAR1 polyclonal antibody (ab244357, Abcam, Waltham,
MA, USA) or purified normal rabbit IgG (AB-105-C, R&D Systems, Minneapolis, MN,
USA), and detected with mouse- and rabbit-specific HRP (house radish peroxidase)/DAB
(3,3′-diaminobenzidine) detection kits (ab64264, Abcam, Waltham, MA, USA) as described
previously [22,31]. IFNAR1 expression was quantified as the percentage of positive staining
area with the total aortic cross-sectional (ACS) area using Image J Fuji software (Ver 2.0.0-
rc-43/1.53m).
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2.3. In Vivo Assessment of AAA Formation and Progression

Serial transabdominal ultrasonography was employed to monitor AAA formation and
progression. Although controversy exists regarding the optimal measurement criteria for
clinical AAA diameter (e.g., external to external vs. anterior to anterior [32,33]), resolution
limitations of mouse transabdominal ultrasonography at 40 MHz make definition of aortic
mural boundaries and wall thickness impractical. Thus, for the present study, AAAs were
defined and monitored as a function of luminal aortic diameters. As noted previously, this
model does not accumulate aortic mural thrombus. Transverse maximal infrarenal aortic
diameters were measured prior to (baseline or day 0) and days 3, 7 and 14 following PPE
infusion using the Vevo 2100 ultrasound system (Visualsonics, Toronto, ON, Canada) as
previously described [30,34]. An AAA was defined as a ≥50% increase in aortic diameter
over the baseline.

2.4. Histological Analyses

Acetone-fixed frozen aortic sections were prepared from mice 14 days after PPE
infusion and used for Verhoeff’s Van Gieson (EVG) stain and immunohistochemistry as
described previously [29]. Monoclonal antibodies (mAb) for immunohistochemistry were
biotinylated anti-SMC α actin (Clone 1A4 from Thermo Fisher Scientific Inc, Waltham, MA,
USA as well as CD68 (Clone FA-11 for macrophages), CD4 (Clone GK 1.5), CD8 (Clone
53-5.8), B220 (Clone RA3-6B2 for B cells) and CD31 (Clone 390 for blood vessels) from
Biolegend Inc, San Diego, CA, USA. Biotinylated anti-rat IgG (Catalog number 112-065-006)
and streptavidin-peroxidase conjugate (Catalog number 016-030-084) were obtained from
Jackson ImmunoResearch Inc., West Grove, PA, USA. Peroxidase substrate AEC (3-amino-
9-ethylcarbazole) kits were purchased from Vector Laboratories, Burlingame, CA, USA.
Aortic macrophage accumulation, medial elastin degradation and SMC loss were scored as
grade I (mild) to IV (severe) using previously reported histological grading criteria [29].
Other subsets of leukocytes and neovessels were quantitated as the number of leukocyte
subset-antibody positive cells and CD31-positive vessels per ACS, respectively [29]. All
histological assessments were analyzed by a single experienced experimental pathologist
who was blinded to experimental group assignment.

2.5. Data Analysis

All continuous variables were tested for normal distribution using the Shapiro–Wilk
test. When normally distributed, data were reported as mean and standard deviation
(SD), with the Student’s t-test or repeated measures two-way analysis of variance followed
by Newman–Keuls post-test used to test statistical significance between groups. If not
normally distributed, data were reported as median and 25% and 75% interquartile inter-
vals, with the nonparametric Mann–Whitney test used to test statistical difference between
groups. The difference in experimental AAA incidence was tested by the Log-Rank test.
All analyses were performed using Prism (Ver 9.0; GraphPad Software LLC, San Diego, CA,
USA). Significance was determined at the p < 0.05 level.

3. Results
3.1. IFNAR1 Expression in Experimental and Clinical AAAs

To assess whether IFNAR1 expression is altered in aneurysmal aortae, non-aneurysmal
and aneurysmal aortic sections obtained from mice and patients were immuno-stained
using a rabbit anti-IFNAR1 polyclonal antibody. Although some staining was present in
the media of non-aneurysmal mouse aortae (Figure 1A, PBS infusion), transmural IFNAR1
stain was dramatically increased in experimental AAAs (Figure 1B, PPE infusion), with
a significantly larger IFNAR1 stain-positive area in aneurysmal (0.8 ± 0.2: positive stain-
ing/total ACS area) vs. non-aneurysmal (0.3± 0.1) aortae (p < 0.05, 3 mice/group). Normal
rabbit IgG as the negative control antibody revealed no staining over the background in
either aneurysmal or non-aneurysmal aortae (Figure 1C,D).



Biomolecules 2022, 12, 1541 4 of 14

Biomolecules 2021, 11, x FOR PEER REVIEW 4 of 14 
 

positive staining/total ACS area) vs. non-aneurysmal (0.3 ± 0.1) aortae (p < 0.05, 3 

mice/group). Normal rabbit IgG as the negative control antibody revealed no staining 

over the background in either aneurysmal or non-aneurysmal aortae (Figure 1C,D). 

 

Figure 1. Immunostaining of type I IFN receptor subunit 1 in non-aneurysmal and aneurysmal 

mouse aortae. Fourteen days following intra-infrarenal aortic elastase (aneurysm group) or phos-

phate-buffered saline infusion (non-aneurysm group), the involved aorta was harvested, fixed with 

10% formalin, embedded in paraffin and sectioned (4 μm). Sections were stained with a rabbit anti-

human type I interferon receptor subunit 1 (IFNAR1) polyclonal antibody (cross-reacts with mouse 

IFNAR1) or negative control antibody (normal rabbit IgG) via the immunoperoxidase procedure 

and visualized with peroxidase substrate 3,3′-diaminobenzidine. (A,B) Representative IFNAR1 

staining from non-aneurysmal (A) and aneurysmal (B) aortae. (C,D) No staining with normal rabbit 

IgG. These results were reproduced in 3 mice in each group. Scale bar: 50 μm. 

In human organ donor specimens, no or rare IFNAR1 stain was detected in non-an-

eurysmal aortae (Figure 2A,B). In sections obtained from aneurysmal aortae in AAA pa-

tients, positive transmural IFNAR1 staining was readily apparent (Figure 2C,H). Positive 

staining was most pronounced in the adventitia, particularly within leukocyte aggregates 

(mean and SD: 2.9 ± 2.2) vs. the media (0.2 ± 0.1) (p < 0.05, 6 patients/group). No staining 

was seen on non-aneurysmal organ donor (not shown) or aneurysmal (Figure 2I) aortae 

using control rabbit IgG. Thus, IFNAR1 expression appears increased in both experi-

mental and clinical AAAs. 

Figure 1. Immunostaining of type I IFN receptor subunit 1 in non-aneurysmal and aneurys-
mal mouse aortae. Fourteen days following intra-infrarenal aortic elastase (aneurysm group) or
phosphate-buffered saline infusion (non-aneurysm group), the involved aorta was harvested, fixed
with 10% formalin, embedded in paraffin and sectioned (4 µm). Sections were stained with a rabbit
anti-human type I interferon receptor subunit 1 (IFNAR1) polyclonal antibody (cross-reacts with
mouse IFNAR1) or negative control antibody (normal rabbit IgG) via the immunoperoxidase proce-
dure and visualized with peroxidase substrate 3,3′-diaminobenzidine. (A,B) Representative IFNAR1
staining from non-aneurysmal (A) and aneurysmal (B) aortae. (C,D) No staining with normal rabbit
IgG. These results were reproduced in 3 mice in each group. Scale bar: 50 µm.

In human organ donor specimens, no or rare IFNAR1 stain was detected in non-
aneurysmal aortae (Figure 2A,B). In sections obtained from aneurysmal aortae in AAA
patients, positive transmural IFNAR1 staining was readily apparent (Figure 2C,H). Positive
staining was most pronounced in the adventitia, particularly within leukocyte aggregates
(mean and SD: 2.9 ± 2.2) vs. the media (0.2 ± 0.1) (p < 0.05, 6 patients/group). No staining
was seen on non-aneurysmal organ donor (not shown) or aneurysmal (Figure 2I) aortae
using control rabbit IgG. Thus, IFNAR1 expression appears increased in both experimental
and clinical AAAs.



Biomolecules 2022, 12, 1541 5 of 14Biomolecules 2021, 11, x FOR PEER REVIEW 5 of 14 
 

 

Figure 2. Immunostaining of type I IFN receptor subunit 1 in non-aneurysmal and aneurysmal 

human aortae. Formalin-fixed paraffin sections were prepared from aortic specimens harvested at 

organ donation (n = 2) or AAA repair (n = 6), stained with a rabbit anti-human type I interferon 

receptor subunit 1 (IFNAR1) polyclonal antibody or negative control antibody (normal rabbit IgG), 

and visualized with peroxidase substrate 3,3′-diaminobenzidine. (A,B) Rare or no IFNAR1 staining 

detected in organ donor aortae. (C–H) IFNAR1 staining was localized in the media and adventitia 

(within and outside of lymphocyte aggregates) of AAA specimens. (I) No staining noted in aneu-

rysmal (I) and non-aneurysmal organ donor aortae (not shown) with negative control antibody. 

Scale bar: 50 μm. 

3.2. Attenuated AAA Formation and Progression in IFNAR1−/− Mice 

To test the hypothesis that INFAR1 activity contributes to experimental AAA patho-

genesis, aneurysms were induced in male IFNAR1−/− and age-matched WT mice. Baseline 

aortic diameter was similar between IFNAR1−/− and WT mice (Figure 3A,B). Following 

PPE infusion, a time-dependent, progressive aortic enlargement was observed in both 

groups (Figure 3A,B). However, reduced enlargement was noted in IFNAR1−/− mice at all 

time points following AAA induction, with the final aortic diameter of 1.04 ± 0.08 and 1.24 

± 0.09 mm in IFNAR1−/− and WT mice, respectively (Day 14, Figure 3A,B). AAAs, defined 

by a ≥50% increase in aortic diameter over the baseline level, formed in only 7 of 12 IF-

NAR1−/− (58.3%) vs. all WT mice following PPE infusion (Figure 3C). Thus, genetic IF-

NAR1 deficiency was associated with reduced formation and progression of experimental 

AAAs. 

Figure 2. Immunostaining of type I IFN receptor subunit 1 in non-aneurysmal and aneurysmal
human aortae. Formalin-fixed paraffin sections were prepared from aortic specimens harvested at
organ donation (n = 2) or AAA repair (n = 6), stained with a rabbit anti-human type I interferon
receptor subunit 1 (IFNAR1) polyclonal antibody or negative control antibody (normal rabbit IgG),
and visualized with peroxidase substrate 3,3′-diaminobenzidine. (A,B) Rare or no IFNAR1 staining
detected in organ donor aortae. (C–H) IFNAR1 staining was localized in the media and adventitia
(within and outside of lymphocyte aggregates) of AAA specimens. (I) No staining noted in aneurys-
mal (I) and non-aneurysmal organ donor aortae (not shown) with negative control antibody. Scale
bar: 50 µm.

3.2. Attenuated AAA Formation and Progression in IFNAR1−/− Mice

To test the hypothesis that INFAR1 activity contributes to experimental AAA patho-
genesis, aneurysms were induced in male IFNAR1−/− and age-matched WT mice. Baseline
aortic diameter was similar between IFNAR1−/− and WT mice (Figure 3A,B). Following
PPE infusion, a time-dependent, progressive aortic enlargement was observed in both
groups (Figure 3A,B). However, reduced enlargement was noted in IFNAR1−/− mice at
all time points following AAA induction, with the final aortic diameter of 1.04 ± 0.08 and
1.24 ± 0.09 mm in IFNAR1−/− and WT mice, respectively (Day 14, Figure 3A,B). AAAs,
defined by a ≥50% increase in aortic diameter over the baseline level, formed in only 7 of
12 IFNAR1−/− (58.3%) vs. all WT mice following PPE infusion (Figure 3C). Thus, genetic
IFNAR1 deficiency was associated with reduced formation and progression of experimental
AAAs.
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Figure 3. Type I IFN receptor subunit 1 deficiency attenuates the formation and progression
of experimental AAAs. Male wild type (WT, n = 10) and type I interferon receptor subunit 1-
deficient (IFNAR1−/−, n = 12) mice on C57BL/6J genetic background received intra-aortic porcine
pancreatic elastase (PPE) infusion for AAA induction. Maximal transverse aortic diameters were
measured at baseline and indicated days following PPE infusion via transabdominal ultrasonography.
(A) Representative images from IFNAR1−/− and WT mice at baseline and 14 days following PPE
infusion. (B) Mean and standard deviation (SD) of aortic diameters at baseline and days 3, 7 and
14 after PPE infusion. Two-way ANOVA followed by two group comparison, ** p < 0.01 compared
to WT mice at the same time point. (C) AAA incidence. An AAA was defined as a more than 50%
increase in the aortic diameter over the baseline. ** p < 0.01 compared to WT mice by log-rank test.

3.3. Attenuated Medial Elastin Degradation and Smooth Muscle Cell Depletion in
IFNAR1−/− Mice

Medial elastolysis and SMC depletion are characteristic features of AAA pathogenesis.
To assess the influence of IFNAR1 deficiency on medial integrity, we performed aortic EVG
and SMC-α actin staining following PPE infusion (Figure 4). In WT mice, both medial
elastin and SMCs were significantly degraded and depleted, respectively, by 14 days
following PPE infusion. However, genetic deficiency of IFNAR1 was associated with
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significant medial elastin and SMC retention. Thus, IFNAR1 deficiency enhanced medial
integrity in the PPE-induced experimental AAA model.
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Figure 4. Type 1 IFN receptor subunit 1 deficiency reduces medial elastin degradation and smooth
muscle cell depletion in experimental AAAs. Acetone-fixed aortic frozen sections were prepared
from wild type (WT, n = 7) and type 1 IFN receptor subunit 1-deficient (IFNAR1−/−, n = 12) mice
2 weeks after elastase infusion and stained using the Verhoeff’s Van Gieson (EVG) procedure and
immunostaining for medial elastin and smooth muscle cells (SMCs), respectively. Elastin degradation
and SMC depletion were graded as I (mild) to IV (severe). (A) Representative histologic images
demonstrate relative medial elastin and SMC preservation in IFNAR1−/− as compared to WT mice.
(B,C) Quantification (median and interquartile) of medial elastin and SMC destruction scores between
groups. Nonparametric Mann–Whitney test, ** p < 0.01 compared to WT mice. Scale bar: 200 µm.

3.4. Attenuated Mural Leukocyte Accumulation in IFNAR1−/− Mice

To evaluate the influence of IFNAR1 activity on mural leukocyte cellularity in experi-
mental AAAs, we stained aortic sections with leukocyte subset-specific mAbs at sacrifice
(Figure 5). In WT mice, macrophages, identified as CD68+ cells, accounted for most leuko-
cytes, followed by CD4+, CD8+ and B220+ cells, respectively. In contrast, AAAs created
in IFNAR1-deficient mice demonstrated reduced accumulation of all leukocyte subsets,
reflecting a more than 90% reduction compared to WT mice. These results confirm that
genetic IFNAR1 deficiency was associated with attenuated leukocyte accumulation in
experimental AAAs.
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Figure 5. Type I IFN receptor subunit 1 deficiency reduces aortic leukocyte accumulation in ex-
perimental AAAs. Aortic frozen sections from elastase-infused wild type (WT, n = 7) and type 1 IFN
receptor subunit 1-deficient (IFNAR1−/−, n = 12) mice were stained with monoclonal antibodies
against CD68 for macrophages, CD4 for CD4+ T cells, CD8 for CD8+ T cells and B220 for B cells.
Macrophage accumulation was scored from I (mild) to IV (severe). Other leukocytes were enumerated
as positively stained cells/aortic cross-section (ACS). (A) Representative images for macrophages,
CD4+ and CD8+ T cells and B cells in elastase-infused WT and IFNAR1−/−mice. (B–E) Quantification
(median and interquartile) of mural macrophages, CD4+ T cells, CD8+ T cells and B cells between
groups. Nonparametric Mann–Whitney test, ** p < 0.01 compared to WT mice. Scale bar: 200 µm.
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3.5. Attenuated Mural Angiogenesis in IFNAR1−/− Mice

Mural neoangiogenesis is an additional characteristic morphologic feature of clinical
and experimental AAAs that may promote mural instability, diameter enlargement and
rupture. As seen in Figure 6, dense mural neovessels (39.3± 10.6 vessels/ACS), as identified
by CD31 antibody immunostaining, were present in WT AAAs. However, in AAAs created
in IFNAR1−/− mice, neovessel density was 7.1 ± 2.6 vessels/ACS, a >80% reduction
relative to WT mice (p < 0.01). These results indicate that IFNAR1 deficiency was associated
with attenuated aneurysmal angiogenesis.
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Figure 6. Type I IFN receptor subunit 1 deficiency is protective against mural angiogenesis in
experimental AAAs. Aortic frozen sections from elastase-infused wild type (WT, n = 7) and type I
IFN receptor subunit 1-deficient (IFNAR1−/−, n = 12) mice were stained with an anti-mouse CD31
monoclonal antibody to identify neovessels. (A) Representative CD31 immunohistochemical images
for neoangiogenesis in AAAs from WT and IFNAR1−/− mice. (B) Mean and standard deviation of
mural neoangiogenesis quantified as the number of CD31-positive vessels per aortic cross-section
(ACS). Student t’s test, ** p < 0.01 compared to WT mice. Scale bar: 200 µm.

4. Discussion

IFNAR1 expression was increased in experimental and clinical AAAs. IFNAR1 de-
ficiency was associated with reduced incidence and progression of experimental AAAs
following aneurysm induction. In histological analyses, IFNAR1 deficiency was associated
with relative preservation of medial elastin and SMC density, reduced mural macrophage,
T and B cell infiltration and neoangiogenesis. These findings suggest a causal or enhancing
role for IFNAR1 activation in AAA pathogenesis.

Plasmacytoid dendritic cells were previously noted to be present in experimental and
clinical AAA, expressing IFN-α, an avid ligand for IFNAR1 [35]. Plasmacytoid dendritic
cells were mobilized rapidly from bone marrow into peripheral blood during experimental
AAA formation and progression [36]. Pharmacological interventions such as antibody-
mediated plasmacytoid dendritic cell depletion and type 1 IFN signaling inhibition were
effective in suppressing experimental AAAs in conjunction with reduced aortic T cell accu-
mulation [35,36]. The current findings in IFNAR1-deficient mice complement the previous
observations and reinforce the significance of IFNAR1 activity in AAA pathogenesis.

Reduced aortic mural leukocyte accumulation and neoangiogenesis noted in IFNAR1-
deficient mice are consistent with the hypothesized role of leukocytes and angiogenesis in
AAA pathogenesis. Pharmacological depletion or genetic deficiency of macrophages, B cells,
CD4+ or CD8+ T cells suppressed experimental AAAs [14,17,18,37,38]. Anti-angiogenesis
strategies including VEGF-A sequestration/neutralization, VEGF receptor 2 inhibition
and alternative angiogenic inhibitors suppress, whereas proangiogenic interventions such
as VEGF-A supplementation augmented, experimental AAAs [25,31,39–41]. Conversely,
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pharmacological stabilization of the proangiogenic transcription factor hypoxia inducible
factor-1α reversed diabetes-related AAA suppression in experimental AAAs [42,43].

Type I IFNs and IFNAR1-mediated signaling induce immune responses to bacterial
and viral infection, implying a potential relationship between AAA disease and pathogen-
driven immune responses. Respiratory and genitourinary tract, skin, abdominal cavity
and even bloodstream bacterial infections are all associated with aortic aneurysms, with
an odds ratio of 1.2–3.1 after adjusting for major co-morbid risk factors and medication
regimen [44]. HIV patients are also at higher risk, with an adjusted odds ratio of 4.5 [45].
Cytomegalovirus gene UL75 is also more frequently detected in aortae of AAA patients
compared to healthy controls [46]. However, antimicrobial therapeutic trials to suppress
early AAA disease (e.g., roxithromycin [47,48] and azithromycin [49]) have proven incon-
clusive or ineffective, suggesting that infection alters disease progression through immune
responses (including type I IFN signaling) rather than the microbiological properties of the
inciting pathogen itself.

Perhaps most importantly in this regard, the COVID-19 pandemic, caused by the
SARS-CoV-2 pathogen, has affected more than 96 million Americans as of 19 October 2022
(https://covid.cdc.gov/covid-data-tracker). In a national commercial laboratory COVID-
19 seroprevalence study, anti-SARS-CoV-2 nucleocapsid antibody, an index for SARS-COV-
2 infection, was detected in nearly 50% and 33% of people aged 50–64 and >65 years,
respectively—the population susceptible to AAA disease [50]. Long-term COVID-19
syndrome affects multiple organ systems, including the cardiovascular system, even in
fully vaccinated individuals [51–53]. In COVID-19 patients, the type 1 IFN response is
augmented in asymptomatic and mildly infected patients as well as the early phases of
severe disease as compared to late phase or critically ill patients [3–6,54].

COVID-19 may increase clinical AAA risk [55,56]. COVID-19 patients under surveil-
lance for smaller AAAs experienced unexpectedly rapid aneurysm enlargement regardless
of sex, baseline diameter or other traditional risk factors [57–62]. Conversely, vaccination
with inactivated SARS-CoV-2 vaccine attenuates type 1 IFN response [3]. Thus, understand-
ing the consequences of vaccination and post-acute SARS-CoV-2 infection on aneurysm
enlargement, rupture risk and/or need for emergent surgical repair in convalescent COVID-
19 patients will improve overall care and, potentially, outcomes for patients with AAA
disease [55]. Additionally, a potential critical question is whether vaccination with the
United States Food and Drug Administration (US FDA)-approved mRNA and adenovirus
vaccines will limit further progression of existing AAAs in convalescent COVID-19 patients.

Type 1 IFNs are closely linked to autoimmune diseases [9]. AAA risk was increased in
patients with autoimmune diseases such as lupus and psoriasis [63–67], and anti-rheumatic
therapies were associated with reduced rates of AAA enlargement [68]. While autoantigens
and other autoimmunity components may contribute to AAA disease [69,70], the current
findings linking IFNAR1 to experimental AAA pathogenesis provide further insights into
the positive association between autoimmune diseases and aortic aneurysms.

IFNAR1/IFNAR2 heterodimer receptor activation promotes sequential phosphory-
lation of tyrosine kinase/STAT2 and Janus-activated kinase/STAT1 to trigger type 1 IFN-
mediated inflammatory responses [38]. Small molecule inhibitors to tyrosine kinase or
Janus-activated kinase, including baricitinib, tofacitinib, ruxolitinib, upadcitinib, fedratinib
and oclacitinib, are indicated for treatment of certain autoimmune diseases and malignant
tumors [71]. The humanized anti-IFNAR1 antagonist mAb, anifrolumab, was recently
approved by the US FDA for treatment of systemic lupus erythematosus [72]. These results
add to a growing body of literature suggesting that agents targeting type I IFN-mediated
inflammatory responses, depending on their therapeutic index and potential efficacy in
this application, may be of value in clinical AAA disease management.

In conclusion, IFNAR1 appears to play a role in experimental aneurysm formation
and progression. Pharmacological strategies targeting IFNAR1 or the type 1 IFN-mediated
proinflammatory pathway may enhance medical regimens for AAA disease management.

https://covid.cdc.gov/covid-data-tracker
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