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Abstract: Cancer cells are more vulnerable to abnormal redox fluctuations due to their imbalanced
antioxidant system, where cell surface receptors sense stress and trigger intracellular signal relay.
As canonical targets of many targeted therapies, cell receptors sensitize the cells to specific drugs.
On the other hand, cell target mutations are commonly associated with drug resistance. Thus,
exploring effective therapeutics targeting diverse cell receptors may open new clinical avenues
against aggressive cancers. This paper uses focused case studies to reveal the intrinsic relationship
between the cell receptors of different categories and the primary cancer hallmarks that are associated
with the responses to external or internal redox perturbations. Cold atmospheric plasma (CAP) is
examined as a promising redox modulation medium and highly selective anti-cancer therapeutic
modality featuring dynamically varying receptor targets and minimized drug resistance against
aggressive cancers.
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1. Introduction

Redox imbalance is defined as a disordered balance between the effects of oxidants and
antioxidants [1]. Cancer-related malignant transformations disrupt normal cell functioning
by intensifying cellular redox processes. Moreover, the functionality of the antioxidant
system is often disrupted in malignant cells, rendering cancer cells more vulnerable to
redox stress compared to normal cells. These phenomena collectively associate redox
imbalance in cancer cells with the key types of programmed cell death, such as apoptosis,
paraptosis, autophagic cell death, ferroptosis, necroptosis, and pyroptosis [2]. Importantly,
the fate of redox imbalance-stressed cells is determined by the concentration of reactive
oxygen species (ROS), and by the dominant pathways activated in response to the external
stress-related stimuli. Indeed, while low ROS levels stimulate normal cell functioning, high
levels of ROS typically cause acute cytotoxicity [1].

Cell surface receptors make cancer cells sensitive to various external stimuli. Many
targeted therapies and immunotherapies fail due to the evolved mutations in the targeted
receptors, triggering the development of dual-targeted strategies such as the combination of
venetoclax and rituximab in the treatment of refractory chronic lymphocytic leukemia [3,4].
Despite their great promise, dual-targeting approaches still rely on a limited number
of proven receptor-mediated signaling mechanisms and do not represent the ultimate
option for cancer cure. The search for new onco-therapeutics based on controlling receptor-
mediated redox balance in the cells is thus imperative and timely.

Among the various tools capable of manipulating cellular redox levels, cold at-
mospheric plasma (CAP), being a fourth state of matter, represents an emerging onco-
therapeutic modality and fulfills these requirements, with its selectivity against cancer cells
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versus normal cells having been demonstrated in multiple types of cancers [5–9]. Specifi-
cally, CAP has been shown capable of attenuating the growth of triple negative breast cancer
(TNBC) cells [5], halting the migrative ability of TNBC and bladder cancer cells [6], boosting
cellular immune response and enabling checkpoint blockade therapy against melanoma [7],
enhancing the uptake by and maturation of peripheral blood monocyte-derived dendritic
cells together with an inflammatory secretion profile in peritoneal carcinomatosis [9], and
reducing the metabolism of chondrosoma cells [8]. This selectivity owes to the unique
mechanisms of CAP in disrupting the antioxidant system of malignant cells that cannot be
achieved by normal chemical mixtures of the reactive species present in cold plasmas [5]
and may be linked to the differential contributions of its cocktail content.

Through classifying cell receptors by the cancer hallmarks they are primarily associ-
ated with and highlighting the main interactions between the ROS and these receptors, we
use a focused example of CAP as a highly selective anti-cancer modality. This approach
allows us to specify how the plasma-related receptor-mediated redox imbalance effects can
contribute to the development of targeted clinical procedures against aggressive cancers
(Figure 1). We argue that CAP may cause good selectivity against cancer cells by targeting
multiple and dynamically varying targets depending on the plasma dose (among other
factors), thereby potentially avoiding the common drug resistance issue. This paper con-
cludes with an analysis of the issues that need to be resolved along the way towards the
clinical translation of receptor-mediated, exposure dose-dependent plasma-based therapies
against aggressive cancers.

Biomolecules 2022, 12, x FOR PEER REVIEW 2 of 17 
 

Among the various tools capable of manipulating cellular redox levels, cold atmos-
pheric plasma (CAP), being a fourth state of matter, represents an emerging onco-thera-
peutic modality and fulfills these requirements, with its selectivity against cancer cells 
versus normal cells having been demonstrated in multiple types of cancers [5–9]. Specifi-
cally, CAP has been shown capable of attenuating the growth of triple negative breast 
cancer (TNBC) cells [5], halting the migrative ability of TNBC and bladder cancer cells [6], 
boosting cellular immune response and enabling checkpoint blockade therapy against 
melanoma [7], enhancing the uptake by and maturation of peripheral blood monocyte-
derived dendritic cells together with an inflammatory secretion profile in peritoneal car-
cinomatosis [9], and reducing the metabolism of chondrosoma cells [8]. This selectivity 
owes to the unique mechanisms of CAP in disrupting the antioxidant system of malignant 
cells that cannot be achieved by normal chemical mixtures of the reactive species present 
in cold plasmas [5] and may be linked to the differential contributions of its cocktail con-
tent.  

Through classifying cell receptors by the cancer hallmarks they are primarily associ-
ated with and highlighting the main interactions between the ROS and these receptors, 
we use a focused example of CAP as a highly selective anti-cancer modality. This ap-
proach allows us to specify how the plasma-related receptor-mediated redox imbalance 
effects can contribute to the development of targeted clinical procedures against aggres-
sive cancers (Figure 1). We argue that CAP may cause good selectivity against cancer cells 
by targeting multiple and dynamically varying targets depending on the plasma dose 
(among other factors), thereby potentially avoiding the common drug resistance issue. 
This paper concludes with an analysis of the issues that need to be resolved along the way 
towards the clinical translation of receptor-mediated, exposure dose-dependent plasma-
based therapies against aggressive cancers.  

 
Figure 1. Conceptual illustration on the association of primary receptor groups with critical carcin-
ogenesis events in response to redox imbalance. The 10 cancer hallmarks can be matched to four 
critical transition events during carcinogenesis: cell live/death control, epithelial-to-mesenchymal 
transition (EMT), immune response switch, and metabolic reprogramming [10]. Cell live/death and 
EMT are largely controlled by signaling involving growth factor receptors, the immune response 
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Figure 1. Conceptual illustration on the association of primary receptor groups with critical carcino-
genesis events in response to redox imbalance. The 10 cancer hallmarks can be matched to four
critical transition events during carcinogenesis: cell live/death control, epithelial-to-mesenchymal
transition (EMT), immune response switch, and metabolic reprogramming [10]. Cell live/death and
EMT are largely controlled by signaling involving growth factor receptors, the immune response
switch is tightly associated with Toll-like receptors, and metabolic reprogramming is closely linked to
steroid hormone receptors, among others, in response to redox imbalance. CAP, by imposing redox
stress in cells and creating redox imbalance in cancer cells, can selectively halt cancer cell growth and
EMT, induce anti-tumor immune response, and rewire altered metabolism in aggressive cells. Given
the redox nature of CAP, its roles in arresting cancer hallmarks, and the impact of redox imbalance on
cancer cells, it is likely that CAP conveys its selectivity against cancer cells by targeting multiple cell
receptors in a dynamically varying manner that needs in-depth exploration.
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2. Receptors Associated with Redox Imbalance
2.1. Growth Factor Receptors: Reprogrammed Cell Proliferation and Migration

Growth factor receptors are transmembrane proteins that transduce signals to the
intracellular space by binding to specific growth factors. There exist diversified types of
growth factor receptors, such as epidermal growth factor receptor (EGFR), transforming
growth factor β receptor (TGFβR), vascular endothelial growth factor receptor (VEGFR),
and platelet-derived growth factor receptor (PDGFR), each of which represents a family of
receptors instead of a single molecule. While EGFR and PDGFR family members are mainly
responsible for cell proliferation, TGFβR and VEGFR members are primarily involved in
cell migration. We select and focus on EGFR and TGFβR here to illustrate how growth
factors regulate cancer cell proliferation and migration through redox cycling.

2.1.1. EGFR-Mediated Redox Cycling Plays Dual Roles in Cell Proliferation

The EGFR family contains four members: EGFR (aka human epidermal growth factor
receptor (HER)1), HER2, HER3, and HER4 [11]. Each mature EGFR contains an extracellular
domain containing the ligand-binding region, a single transmembrane region, and an
intracellular tyrosine kinase domain for signal relay. There exist at least 12 different growth
factors capable of binding EGFR members, such as EGF, transforming growth factor α

(TGFα), amphiregulin, betacellulin, and neuregulins. These growth factors can trigger
homo- and/or heterodimerization of EGFR that results in trans-autophosphorylation and
subsequent activation of SH2 domain-dependent downstream signaling [12]. Below, we
take EGFR as the representative receptor of this family and focus on its roles in redox-
mediated cell proliferation.

EGFR is mainly responsible for cell proliferation, with both promotive and suppressive
roles being reported. For example, it has been deciphered that benzoapyrene, a known
mammary carcinogen in rodents, enhanced breast cancer cell growth by generating hy-
drogen peroxide (H2O2) and activating EGFR [13]. Pyrroloquinoline quinone, a redox
cofactor for bacterial dehydrogenases, has been implicated as an important nutrient in
mammals that can stimulate epithelial cell proliferation by activating EGFR through redox
cycling [14]. A copper chelate induced T-cell acute lymphoblastic leukemia cell apoptosis
and overcame the multidrug resistance via EGFR/AKT blockage [15]. Oxidative stress has
been demonstrated to affect retinal pigment epithelial cell survival via EGFR/AKT signal-
ing [16]. On the other hand, EGFR and Src kinases were documented to promote oxidative
stress-dependent apoptosis and loss of cell adhesion in epithelial cells [17]. Besides cell
life or death, EGFR is also involved in other processes such as epithelial-to-mesenchymal
transition (EMT) and inflammation with, mostly, its tumor-promotive role being reported.
For instance, redox regulation of EGFR steered hypoxic mammary cell migration towards
oxygen [18], angiotensin II induced EMT in renal epithelial cells via reactive oxygen species
(ROS)-mediated EGFR stimulation [19], and PM2.5 triggered pro-inflammatory mediator
over-secretion from human bronchial epithelial cells via oxidative stree-relayed EGFR
activation [20].

In light of the prominent and multi-faceted roles of EGFR, therapeutic strategies
taking advantage of EGFR signaling have been proposed for cancer treatment. For instance,
in vivo delivery of siRNAs targeting EGFR and BRD4 expression by peptide-modified
redox responsive PEG-PEI nanoparticles have been developed for treating triple negative
breast cancer cells [21], and redox-sensitive thiolated TPGS (GSH redox-sensitive thiolated
vitaminE-PEG1000-succinate)-based nanoparticles have been established to target EGFR as
a novel lung cancer therapy [22].

2.1.2. TGFβR-Mediated Redox Cycling Accelerates Cell Migration

TGFβR has three isoforms: TβRI, TβRII, and TβRIII. While TβRI and TβRII form a
hetero-tetramer that harbors serine/threonine protein kinases in the cytoplasmic domain
that are activated after binding of the ligand TGFβ, TβRIII functions as a co-receptor to
increase the ligand-receptor interaction affinity without catalytic activity [23,24]. TGFβ is
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not a single molecule but represents a family of structurally related proteins comprised
of TGFβ, activins/inhibins, and bone morphogenic proteins (BMPs). On ligand binding,
TGFβR dimerizes to induce serine/threonine phosphorylation followed by the phosphory-
lation of its intracellular effectors SMADs (referred to as canonical TGFβ/SMAD signaling)
or critical intermediates involved in other pathways such as PI3K/AKT/mTOR, MAPK,
and Rho-like GTPase signaling (known as TGFβ/non-SMAD pathways) [25].

The pro-invasive and pro-metastatic roles of TGFβR are evident in a broad panel
of cancers including colorectal cancer cells [26], triple negative breast cancer cells [27],
prostate cancer cells [28], gastric cancer cells [29], pancreatic cancer cells [30], nasopharyn-
geal cancer cells [31], lung adenocarcinoma cells [32], and osteosarcoma cells [33]. The
fundamental roles of TGFβ signaling in cancer metastasis has been attributed to its abil-
ity to foster cancer stemness, as exemplified by the elevated SOX4 expression in gastric
cancers sustained by TGFβ over-activation [34]. This, at least, has partially explained
the enhanced drug resistance accompanying increased TGFβRII [35]. Besides the typical
role of TGFβ in cancer metastasis, an over-represented TGFβRII level has been associated
with many other tumor-relevant traits such as the promotion of cancer cell growth and
survival of cancer-associated fibroblasts (CAFs) [36] and enhanced natural killer (NK) cell
activity in mice [37]. Importantly, these aforementioned functionalities of TGFβ have been
associated with redox regulation. For instance, pathways such as the ROS-NRF2 [38],
ROS-PI3K/AKT/mTOR [39], ROS-MAPK [40], and ROS-NFkB/NOX4 [41] signaling have
been identified to mediate TGFβ-triggered EMT. Controversially, TGFβ triggered apoptosis
in mouse liver cancer cells, breast cancer cells, pulmonary system adenocarcinoma cells,
and lymphoma cells via enhancing cellular ROS level [42], suggestive of the double-edged
roles of TGFβ in carcinogenesis.

Onco-therapeutic strategies through TGFβ signaling blockage have been proposed,
which include TGFβR inhibitors such as galunisertib, LY3200882, and vactosertib [43–45],
TGFβ traps such as AVID200 [46], M7824 [47] and luspatercept [48], antibodies neutralizing
TGFβ activity such as fresolimumab [49] and LY3022859 [50], antisense oligonucleotides
against TGFβ2 mRNA such as trabedersen [51], and ISTH0047 [52].

2.2. Toll-like Receptors: Activated Immune Response

Toll-like receptors (TLRs) are type I transmembrane glycoproteins carrying an ectodomain
that contains leucine-rich repeats (LRRs) for ligand recognition, an intracellular Toll-
interleukin 1 receptor domain (TIR) for signal transduction induction, and a transmembrane
domain; they can recognize damage-associated molecular patterns (DAMPs) or pathogen-
associated molecular patterns (PAMPs) and participate in immune responses [53]. On
binding of a ligand to a TLR, two receptor chains dimerize and recruit adaptor proteins
such as myeloid differentiation primary response gene 88 (MyD88) [54], leading to cytokine
production and transcription factor activation for the activated immune response.

There exist at least 10 TLRs in humans and mice: TLR1 to TLR10. In mammalian cells,
TLR1, TLR2, TLR5, TLR6, and TLR10 are expressed on the cell surface, TLR3, TLR7, TLR8,
and TLR9 localize within endosomal compartments, and TLR4 is expressed in both the
membrane and intracellular compartments [55]. TLRs are primarily expressed by innate
immune cells and participate in the adaptive immune response. TLRs are also present on
many cancer cells and play tumor-promotive or suppressive roles, the outcome of which
depends on the type of TLR, tumor cell, and immune cells infiltrating the tumor site.

While most TLRs, such as TLR2, TLR4, TLR5, TLR7, and TLR9, play dual roles in
carcinogenesis, TLR1 and TLR3 are largely tumor-suppressive, as demonstrated by induced
apoptosis by TLR3 in human non-small-cell lung cancer cells [56]. TLR1 is expressed
on dendritic cells (DCs), NK cells, eosinophils, monocytes, neutrophils, and B cells, and
TLR3 is primarily expressed in DCs and NK cells. Accordingly, a TLR1 agonist has been
designed [57] and applied for treating cancers such as leukemia [58]; oncolytic retrovirus
taking advantage of TLR3-dependent apoptosis has been proposed for ovarian cancer
treatment [59]; and a synergistic strategy combining a PLGA-particle vaccine carrying a
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TLR3/RIG-I ligand riboxxim and an immune checkpoint blockade has been proposed as an
effective anti-cancer immunotherapy [60]. Despite the relatively evident tumor-suppressive
roles of TLR1 and TLR3, controversies have been reported, such as the promoted tumor
growth and cisplatin resistance observed in head and neck cancer cells as a result of
activated TLR3 signaling [61]. Agonists of other TLRs have also been proposed to synergize
with immunotherapeutic agents for cancer treatment. For instance, a TLR7/8 agonist has
been combined with ICD amplifiers to eliminate solid tumors [62].

2.2.1. Redox-Dependent TLR Control on Immune Response via Cytokine Production

Various T cell cohorts, including T helper cell type 1 (Th1) and type 2 (Th2), are
involved in an adaptive immune response that controls the switch between cellular and
humoral immune responses. Specifically, Th1 cells secrete pro-inflammatory cytokines
such as interferon gamma (IFNγ) and interleukin 2 (IL2) to stimulate cytotoxic T cells, NK
cells, and macrophages and switch on cellular immune responses, and Th2 cells release
IL4/5/6/13 to activate B cells towards boosted humoral immune responses. Importantly,
the commitment of T cells to Th1 or Th2 cells crucially depends on the activation of redox-
sensitive signaling cascades, where an oxidative environment favors the Th1 phenotype
and anti-oxidative stress is prone to Th2 development [63]. It has been shown that low
doses of H2O2 reduced IFNγ production by Th1 clones and increased IL4 secretion by Th2
clones [64] (Figure 2).
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T cells with varied phenotypes have different redox statuses and thus different ROS
susceptibilities [65]. In general, an oxidative microenvironment exerts an opposite effect
on cytokine secretion by Th1 as compared with Th2 cells [64]. It was reported that an
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oxidative signal originating from the mitochondrial respiratory complex I enhanced IL4
expression, which resulted in an upregulation of Th2-driven inflammation [66]. IFNγ can
trigger NOX-mediated ROS formation; a study showed that T cells carrying intact NOX
(an oxidase of NADPH that generates ROS) exhibited the Th1 phenotype, whereas those
having mutant NOX did not after stimulation with immobilized anti-CD3 and anti-CD28
T cells in vivo [67]. Thus, increased ROS concentration is associated with an increased
number of Th2 cells and a reduced number of Th1 cells. That is, a pro-oxidant environment
may facilitate Th1 cell priming during the initial phase of an immune response but suppress
Th1 cell proliferation if the pro-oxidant signal is sustained [65] (Figure 2).

2.2.2. Redox-Dependent TLR Control on Immune Response via Transcription Factor Activation

NFkB, a downstream target of TLRs participating in the vital pathways that activate
cytokines, is a redox-sensitive dimeric transcription factor and known as a central regulator
of T cell immunity. NFkB-directed signaling can increase COX2 expression on macrophages
and monocytes, which results in tumor immune surveillance [54].

Effectors of the MAPK pathway, i.e., p38, JNK and ERK, are also known TLR targets
with prominent roles in redox-regulated cell immune responses. Specifically, the MAPK-
p38 pathway is activated in response to numerous cellular stimuli, including cytokines
and redox stress, activation of which is required for T cell survival [68], CD4+ T cell
differentiation [69], and CD8+ T cell cytokine secretion [70]. Scavenging ROS suppressed
JNK activation [71], suggesting its critical role in mediating redox signaling [72], and
JNK1/2 were indispensable for T cell priming into Th1 or Th2 lineages [73,74]. It has been
proven that ERK has indispensable functions in the activation and proliferation of CD8+
T cells [75,76], which can be activated by a low ROS dose but suppressed by a high ROS
concentration in T cells [77].

2.3. Steroid Hormone Receptors: Altered Metabolism

Metabolic reprogramming refers to collective alterations occurring within multiple
metabolic pathways in cancer cells, with a prime example being the Warburg effect. The
Warburg effect is a phenomenon by which cancer cells favor lactate production indepen-
dently of the oxygen level. Specifically, healthy cells generally consume glucose through
glycolysis that allows for pyruvate synthesis to fuel mitochondrial respiration towards
maximal ATP production under normoxia and convert pyruvates to lactates under hy-
poxia (namely aerobic glycolysis); this, although fueling ATP production, is suboptimal.
In the Warburg effect, cancer cells adopt aerobic glycolysis even under sufficient oxygen
supply [78].

Many steroid hormone receptors have been linked to the Warburg effect, including
androgen receptors (AR) [79], progesterone receptors (PR) [80], estrogen related receptors
(ERRs) [78], thyroid receptor (TR) [56], and mineralocorticoid receptors (MR) [81]. Below,
we selected AR and ERR to exemplify how receptors of this type contribute to cancer cell
metabolic reprogramming in response to redox fluctuation.

2.3.1. Androgen Receptor

As a member of the steroid hormone receptor family of the nuclear receptor super-
family, AR acts as a hormone-controlled transcription factor that relays the signals of both
natural and synthetic androgens to genes and transcriptional programs. On androgen
binding, AR is released from a chaperone complex in the cytosol, which results in AR
homo-dimerization, nuclear translocation, interaction with androgen response elements
and cofactors, and regulation of AR target gene expression.

AR positively controls several metabolism-associated pathways by regulating a vast
array of transcriptional networks. Specifically, AR regulates glucose homeostasis via con-
trolling the expression of glucose transporters and several enzymes involved in glycolysis,
promoting mitochondrial respiration via regulating enzymes of the tricarboxylic acid (TCA)
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cycle and the electron transport chain (ETC), and controling lipid biosynthesis and fatty
acid β-oxidation (FAO) [79].

Accumulated evidence has suggested AR as a master of metabolic reprogramming
in prostate cancer cells. The metabolism of the prostate gland is unique in that glandular
secretory epithelial prostate cells have a truncated mitochondrial TCA cycle to produce and
secrete citrate [73–76], and AR plays a critical role in this process as castration blocks citrate
secretion [77,78]. In prostate cancer cells, AR enhances aerobic glycolysis by rapidly pro-
moting glucose uptake and usage, promoting mitochondrial respiration, and stimulating
mitochondrial biogenesis. For instance, activated AR leads to a 50–450% increased glucose
uptake in prostate cancer cells [82–84] as it can induce the level of several genes encod-
ing glucose transporters such as SLC2A1, SLC2A3, SLC2A10, and SLC2A12 [82,85], and
glycolytic genes such as HK1, HK2, PFK, PFKP, PFKFB2, and ENO1 [82–84]. Besides the
promotive role of AR on the Warburg effect in prostate cancer cells, AR is also involved in
many other processes that contribute to cancer cell metabolic reprogramming. For instance,
AR increased the mitochondrial oxygen consumption rate up to two-fold following 48–72 h
of androgen exposure towards restored mitochondrial function for optimal ATP synthe-
sis [83,84,86–88] and enhanced de novo lipid synthesis by inducing genes associated with
the key steps of this process, such as ACLY, FASN, SCD, ELOVL5, and ELOV17 [87–111].

AR produces ROS, and oxidative stress evokes AR signaling and contributes to the
pro-survival and anti-apoptotic effects of prostate cancer cells in response to androgen
deprivation [112]. For instance, redox-protective proteins such as SOD2 were reduced
by androgen deprivation in castration-resistant prostate cancer cells [113,114], yet SOD2
repression contributed to the castration resistance of prostate cancer cells via AR reactiva-
tion through various mechanisms, including inducing the expression of genes involved
in steroid metabolism, such as AKR1C3 [115], and genes encoding nuclear receptor co-
regulators, such as NCOA4 [116]. Accordingly, SOD mimetics were proposed with ther-
apeutic effects on prostate cancer cells by reducing oxidative stress and suppressing AR
expression [117]. Also, small molecules such as A4B17 have been implicated as promis-
ing AR-positive prostate cancer therapeutics by suppressing AR target genes involved in
oxidative stress and metabolism [118]. These results collectively suggested the feasibil-
ity of antioxidant agents in the treatment of hormone-associated (castration-resistant or
AR-positive) prostate cancers.

2.3.2. Estrogen Related Receptors

Different from AR, ERRs are orphan nuclear receptors. ERRs have three members:
ERRα, ERRβ, and ERRγ [119]. Although ERRs share sequence homology with ERs, they
do not bind estrogens but rather estrogen-related response elements to take on actions. For
instance, ERRα could bind to specific DNA regions to modify gene expression associated
with breast cancer development [120], and ERRα could form a complex with ERRγ and
PGC-1α to modulate energy homeostasis in skeletal muscle cells [121].

ERRs are known as central transcriptional regulators of energy homeostasis [101,122].
They can stimulate glycolysis under normoxia by enhancing the expression of genes encod-
ing glycolytic enzymes, such as HIF cofactors (for HIF-dependent genes), or interacting
with Myc (for genes on synergistic activation of ERR and Myc), and regulate energy
metabolism by orchestrating mitochondrial biogenesis, FAO, and oxidative phosphoryla-
tion (OXPHOS).

ERRs have recently been positioned as not only master regulators of cellular energy
metabolism but also of ROS metabolism [123]. ERRs have both anti- and pro-oxidant
effects, the regulatory direction of which is cell type- and context-specific and with varied
mechanisms. Specifically, while ERRs regulate a large panel of genes encoding antioxi-
dant enzymes, they are involved in cellular ROS production via transcriptional control
of mitochondrial biogenesis and the ETC. While ERRs regulate a vast array of genes con-
trolling cellular ROS concentration, ROS affects the activity of the ERRs by inducing thiol
oxidation, which negatively regulates the binding affinity of ERRs to their ligands and
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targets [124,125]. Thus, enhanced understanding of the complexity of the interplay between
ERRs and oxidative stress is required before novel redox-dependent therapeutic strategies
can be established to take advantage of features of these family members.

3. Cold Atmospheric Plasma as an Emerging Redox-Modulating Tool against Aggressive
Cancers via Dynamically Varying Receptor Targets
3.1. CAP May Resolve Drug Resistance via Targeting a Set of Dynamically Varying Receptors

While cancer cells that lack antioxidant mechanisms seen in normal cells undergo
programmed cell death in response to oxidative stress, those having evolved the ability
to adapt to this stress phenotype survive. Redox stress can be sensed by various types
of receptors that convey the primary impact on distinct cancer hallmarks via activating
different pathways. Thus, approaches interfering with cellular redox levels and targeting
the ability to override redox imbalance may selectively trigger death events in cancer cells
and overcome drug resistance via targeting multiple and dynamically varying receptors,
which offers novel opportunities for treating aggressive cancers.

Despite the demonstrated selectivity of CAP for aggressive cancer cells, molecular
pathways underpinning the response of cancer cells to CAP treatment has long been con-
sidered a black box. With intensive investigations devoted to understanding the molecular
mechanisms that enable the observed selectivity of CAP against cancer cells, a common
sense has been achieved on the tilted redox balance as a result of external perturbation in
cancer cells that lack normal antioxidant systems, rendering malignant cells more vulnera-
ble to ROS-triggered programmed cell death [126]. A more chemically oriented explanation
that has been gaining increased popularity attributes the selectivity of CAP against cancers
to the membrane feature of malignant cells. That is, cells undergoing malignant progression
are characteristic of expressing NOX1, catalase, and SOD that can protect them from being
attacked by exogenous reactive oxygen and nitrogen species (RONS) [127]; the unique com-
position of CAP can synergistically sensitize tumor cells to external redox perturbation by
generating high concentrations of secondary singlet oxygen in tumor cells that inactivates
catalase and promotes aquaporin-mediated H2O2 influx towards activated RONS-triggered
cell death [128,129]. Other explanations include the over-represented aquaporins and low
cholesterol fraction in cancer cell cytoplasmic membranes that promotes RONS permis-
sion [130,131], rendering cancer cells more sensitive to redox modulation as manifested by
the selectivity of CAP against malignant tumor cells.

Various receptors have been reported to be involved in the signal relay in cancer cells
in response to CAP treatment. For instance, EGFR mediated the efficacy of CAP in killing
EGFR-overexpressing oral squamous cell carcinoma cells [132] and the expression of death
receptors such as TNFR1 and DR4/5 were noticeably enhanced in glioblastoma cells after
CAP treatment [133]. CAP is composed of various types of reactive oxygen and nitrogen
species, such as hydroxyl radical (OH·), singlet oxygen (1O2), superoxide (O2−), nitric
oxide (NO·), hydrogen peroxide (H2O2), protonated forms of peroxynitrite (ONOOH), and
ozone (O3). While some species interact with the cancer cell surface and affect receptor-
mediated signaling, some enter the cell and create redox stress. Importantly, these reactive
species interact and dynamically transform into each other and create additional reactive
species (Figure 3), rendering the role of CAP on cancer cells dynamically controlled by
factors such as ROS concentration, as determined by CAP parameters and tumor cell
surface characteristics and dictated by cell type and state. Besides, different receptors
may have different sensitivities to different combinations of reactive species. Thus, CAP
may function in a similar way to targeted therapy but differ in having multiple targets
that vary dynamically with the concentration of reactive species and tumor cell state
for a given cancer type. This may endow CAP with extreme clinical significance, as
failing in the blockage of one particular pathway as a result of evolved mutations in
the associated sensing receptors in cancer cells is not sufficient to disable the efficacy of
CAP. In addition, by varying the treatment duration and/or dose of CAP, a dynamically
varying set of targeted receptors may be obtained that guarantees its selectivity against
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malignant cells. These may collectively suggest a substantially reduced likelihood of
developing drug resistance, a critical and intrinsic issue of targeted therapies, in CAP-based
treatment modalities. Indeed, CAP has been shown capable of blocking three cancer cell
survival pathways to overcome drug resistance [134]. However, additional and more
focused investigations are required to validate this hypothesis towards our advanced
understandings of possible benefits that CAP can bring to cancer management.
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Figure 3. Illustrative diagram showing interactions and creations of reactive species. CAP is com-
posed of various types of reactive oxygen and nitrogen species, including hydroxyl radical (OH•),
singlet oxygen (1O2), superoxide (O2−), nitric oxide (NO•), hydrogen peroxide (H2O2), and proto-
nated forms of peroxynitrite (ONOOH). These species dynamically interact to transform into each
other or create new species, the process of which is determined, under the context of CAP-cell
interactions, by CAP ejection parameters and cell surface traits. In this diagram, ‘red’ colored species
are added to a reaction, and ‘green’ colored species are removed from the corresponding reactant.

3.2. Challenges Hindering the Clinical Translation of CAP as an Onco-Therapy

As a promising onco-therapeutic, alone or combined with other treatment modalities,
the clinical translation of CAP for cancer control is still at its initial stage. The first clinical
endeavor was made by Dr. Keith Millikan, whose use of CAP expanded the life span of a
75-year-old patient carrying late-stage pancreatic cancer for two additional years [135,136].
The first clinical trial using CAP as an oncotherapy (NCT04267575) was approved in 2019 by
the FDA and carried out by US Medical Innovations, where 17 out of the 20 solid malignant
tumor patients recruited were still alive by the completion of this study [135]. These results
collectively suggested the safety and clinical efficacy of CAP in cancer treatment.

Though CAP has showcased its great promise as an onco-therapy in clinics, it is
worth mentioning that the biological outcome of CAP is dose-dependent [137] and may
vary with the tumor type or cancer state [138]. Besides CAP-triggered apoptosis that
has been widely reported, CAP was shown capable of inducing autophagy in human
melanoma cells [139,140]; arresting cells at the G0/G1 stage in AR-independent prostate
cancer cells [141]; inducing ferroptosis in human lung cancer cells [142] and malignant
mesothelioma cells [143]; causing senescence in melanoma cells [144]; and triggering
immunogenic cell death (ICD) in melanoma cells [145], A549 lung carcinoma cells [146]
in vitro, and in murine CT26 colorectal tumors in vivo [147]. Importantly, the sensitivity
of cancer cells to redox modulation differs significantly. Taking prostate cancers as an
example, while AR-independent prostate cancer cells are sensitive to CAP-induced ROS
elevation [141], antioxidant treatment is feasible in AR-positive or castration-resistant
prostate cancers [118]. These evidences suggest that although the dose-dependent feature
of CAP largely improves its flexibility in cancer treatment that may prevent malignant cells
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from developing drug resistance, it also creates complexity in determining the optimal
dose for a particular patient. Thus, establishing a CAP-based diagnostic and therapeutic
platform that can accurately locate the dose and medication strategy (e.g., CAP alone
or being combined with other agents; treatment frequency; therapeutic methodology) of
CAP for an individual patient becomes of particular importance and challenges its clinical
translation. Receptors are likely to play a significant role in this delineation.

Lastly, besides the effect on cancer cells, determining whether and how CAP affects
other tissues such as extracellular matrices (ECM) and collagens requires intensive investi-
gations before CAP can be safely translated into clinics as a onco-therapeutic approach. For
instance, CAP was shown to influence cellular behaviors towards accelerated or suppressed
chondrogenesis and endochondral ossification [148] and modify dentin collagen through
the crosslinking effect [9]. Thus, determining how to maximize the onco-therapeutic effi-
cacy of CAP while minimizing these potential side effects via selectively activating a panel
of receptors may represent a promising solution.

4. Conclusions

As the primary sensors of cells to the external environment, receptors largely mediate
cell responses to external stimuli perturbation and offer a lens through which to delineate
precise molecular mechanisms of CAP in cell redox level manipulation and cancer treat-
ment. In this way, cell surface receptors largely characterize cell responsiveness to CAP
in modulating cellular redox imbalance, determining the spectrum of cancers feasible for
receiving CAP treatment, and explaining the anti-cancer efficacy of this emerging redox
modulating tool for aggressive cancers. Importantly, the demonstrated efficacy of CAP in
selectively halting cancer cell proliferation and migration, triggering immune response, and
reprogramming cell metabolism can be attributed to a differential combination of receptor-
mediated cell signaling in response to CAP-triggered redox fluctuation and toxicity. Thus,
CAP differs from canonical targeted therapies in having multiple and dynamically varying
sets of targeted receptors, the dominance of which is determined by factors such as the
dose and treatment strategy of CAP, as well as the type and disease course of the tumor.
Dysregulation of these cancer attributes collectively results in the very high anti-cancer
capacity of CAP and significantly reduces the rate at which cancer cells idevelop drug
resistance after receiving CAP treatment. Despite the promising contribution of CAP to the
cancer cure, less focus has been put on the role of receptors in mediating CAP’s selectivity
against malignant cells, the emphasis of which may result in the clarification of this black
box (i.e., CAP) from the ‘receptor’ perspective and should lead to one important future
trend. This also adds complexity to the clinical use of CAP as a precision onco-therapy,
where the establishment of a theranostic system capable of precisely diagnosing the dose of
CAP for a particular patient and suggesting the treatment strategy accordingly becomes
imperative and warrants intensive attention.
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