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Abstract: Unconventional myosins are a superfamily of actin-based motor proteins that perform
a number of roles in fundamental cellular processes, including (but not limited to) intracellular
trafficking, cell motility, endocytosis, exocytosis and cytokinesis. 40 myosins genes have been
identified in humans, which belong to different 12 classes based on their domain structure and
organisation. These genes are widely expressed in different tissues, and mutations leading to loss
of function are associated with a wide variety of pathologies while over-expression often results
in cancer. Caenorhabditis elegans (C. elegans) is a small, free-living, non-parasitic nematode. ~38%
of the genome of C. elegans has predicted orthologues in the human genome, making it a valuable
tool to study the function of human counterparts and human diseases. To date, 8 unconventional
myosin genes have been identified in the nematode, from 6 different classes with high homology to
human paralogues. The hum-1 and hum-5 (heavy chain of an unconventional myosin) genes encode
myosin of class I, hum-2 of class V, hum-3 and hum-8 of class VI, hum-6 of class VII and hum-7 of
class IX. The hum-4 gene encodes a high molecular mass myosin (307 kDa) that is one of the most
highly divergent myosins and is a member of class XII. Mutations in many of the human orthologues
are lethal, indicating their essential properties. However, a functional characterisation for many of
these genes in C. elegans has not yet been performed. This article reviews the current knowledge of
unconventional myosin genes in C. elegans and explores the potential use of the nematode to study
the function and regulation of myosin motors to provide valuable insights into their role in diseases.
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1. Introduction

Myosins are ubiquitously expressed, multifunctional motor proteins that converts the
energy generated from the hydrolysis of ATP to facilitate movement. They are involved
in a wide range of cellular processes including cargo transport, formation of actin-based
projections at the plasma membrane, steady state distribution of membrane compartments,
cytokinesis, and muscle contraction. Myosins share a common domain organisation com-
prised of head, neck and tail regions [1]. The myosin head is composed of the motor
domain, which contains the sites for catalytic activity, and the neck region, which func-
tions as the lever arm. This neck region contains a variable number of IQ motifs, which
are units of 23 amino acids with the sequence IQXXXRGXXXR that serve as a binding
site for calmodulin, or calmodulin-like proteins such as myosin light chains [2,3]. The
myosin superfamily is traditionally grouped into conventional class II myosins and the
more divergent unconventional myosins. Conventional myosins are characterised by a
tail region consisting of a coiled-coil forming sequence which promotes homodimer for-
mation of long-rod structured tails that self-associate to form bipolar filaments [4–6]. The
remaining myosins are the unconventional myosins with highly diverse tails, which bind
either directly or through adaptor proteins to various cargoes including but not limited to
membrane vesicles, organelles, larger protein complexes or ribonucleoproteins [7–9]. Thus,
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myosin motors are essential in many biological processes such as intracellular trafficking,
mechanical support and force sensing.

The functional diversity of myosin motors is reflected in the large number of genes
within this superfamily. At least 35 classes of myosins have been identified in eukaryotes,
12 of which are found in the human genome [10]. Class I and class II myosins are proposed
to be the most ancient [11]; indeed, all eukaryotic animal cells examined contain at least
one myosin II gene and multiple myosin I genes. In addition, myosins of class V are
found widely, if not universally. The simple model organisms Saccharomyces cerevisiae and
Schizosaccharomyces pombe both encode genes for myosins from class I, II and V [12–16]. The
multicellular, complex model organisms Drosophila melanogaster and Caenorhabditis elegans
express in addition to the basic myosin repertoire of I, II and V also myosins from class VI
and VII [17–19]. All of these myosin classes have been implicated in diseases in humans,
such as cancer, hearing loss, neurodegeneration and myopathies [20]. Many of the disease
mechanisms remain to be established and therefore, a model organism with orthologues of
these human disease-causing genes is vital for elucidating disease pathogenesis.

C. elegans is a microscopic soil nematode that is now established as a powerful genetic
model organism [21], being studied extensively with respect to development and genetics,
cell lineage, and more recently, the role of ageing in human health and disease [22]. This
is due to the versatility of the worm with its short life cycle, stereotypical development,
small size, and notably, its transparency. In addition, approximately 38% of the C. elegans
genome has predicted orthologues in the human genome. To date, eight unconventional
myosin genes from six different classes with high homology to human paralogues have
been identified in the nematode [23] (Figure 1). The hum-1 and hum-5 (heavy chain of an
unconventional myosin) genes encode members of myosins of class I, hum-2 of class V,
hum-3 and hum-8 of class VI, hum-6 of class VII and hum-7 of class IX. The hum-4 gene
encodes a high molecular mass myosin (307 kDa) of class XII one of the most highly
divergent myosins. Mutations or deletions of most of these myosins in humans are lethal,
indicating their essential properties [20]. This review will provide an overview of the
current knowledge of myosin genes in C. elegans and discuss the potential use of this model
organism to study the role of myosin motors in human disease.
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ductive system in blue and pharynx in teal. This figure has been created using https://app.bioren-
der.com (accessed on 25 October 2022). 

2. HUM-1 and HUM-5 
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brane-associated motor proteins. Higher eukaryotes typically express eight distinct myo-
sin I genes, MYO1A-MYO1H [45]. Myosin I motors follow the typical domain organisation 
with a light-chain binding neck domain that can bind between one to six calmodulins or 
calmodulin-like light chains, and a tail domain that is comprised of a myosin I family tail 
homology (TH1) domain, which encompasses a polybasic pleckstrin homology (PH) do-
main able to bind to anionic phospholipid membranes (Figure 2) [46,47]. Six of the myosin 
I genes in higher eukaryotes encode short-tailed isoforms (MYO1A-MYO1D, MYO1G, 
and MYO1H), whilst two encode long-tailed isoforms (MYO1E and MYO1F) that contain 
additional proline-rich (TH2) and Src homology 3 (SH3/TH3) domains [47]. All myosins 
of class I have a relatively low duty ratio compared to myosins of other classes [48]. They 
can be grouped into either fast movers or strain sensors whose activity is regulated by 
load. 
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Figure 1. (A) Table providing an overview of myosin genes and their properties found in C. elegans.
1 [24,25] 2 [25–27] 3 [28–30] 4 [30–32] 5 [24,25] 6 [33] 7 [25,27,34] 8 [25,34,35] 9 [36,37] 10 [38]
11 [26,34,39] 12 [34,40,41] 13 [26,34,42,43] 14 [24,34,42,44] 15 [34,40]. (B) Schematic of tissue distri-
bution in C. elegans. Body wall muscle is shown in red, the nervous system in green, intestines in
purple, gonads/reproductive system in blue and pharynx in teal. This figure has been created using
https://app.biorender.com (accessed on 25 October 2022).

2. HUM-1 and HUM-5

Class I myosins are a large and diverse class, comprising various monomeric membrane-
associated motor proteins. Higher eukaryotes typically express eight distinct myosin I
genes, MYO1A-MYO1H [45]. Myosin I motors follow the typical domain organisation
with a light-chain binding neck domain that can bind between one to six calmodulins or
calmodulin-like light chains, and a tail domain that is comprised of a myosin I family tail
homology (TH1) domain, which encompasses a polybasic pleckstrin homology (PH) do-
main able to bind to anionic phospholipid membranes (Figure 2) [46,47]. Six of the myosin
I genes in higher eukaryotes encode short-tailed isoforms (MYO1A-MYO1D, MYO1G,
and MYO1H), whilst two encode long-tailed isoforms (MYO1E and MYO1F) that contain
additional proline-rich (TH2) and Src homology 3 (SH3/TH3) domains [47]. All myosins of
class I have a relatively low duty ratio compared to myosins of other classes [48]. They can
be grouped into either fast movers or strain sensors whose activity is regulated by load.
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Figure 2. Schematic of the domain organisation of myosin isoforms found in C. elegans. All motors
are comprised of a head region termed the motor domain, a neck region with variable number of
IQ motifs, and highly variable tail regions. Abbreviations are as follows; TH1—tail homology 1;
PH—pleckstrin homology; TH2—tail homology 2; SH3—Src homology 3; SAH—single alpha helical;
MyTH—myosin tail homology; FERM—4.1 protein-ezrin-radixin-moesin.

C. elegans express two distinct myosins of class I, HUM-1 and HUM-5, encoding
proteins of 134 kDa and 117 kDa, respectively [23]. HUM-1 is a homologue of human
MYO1E, sharing a 56% sequence identity, while HUM-5 is a homologue of human MYO1D,
with 49% sequence identity. HUM-1, a so called long tailed myosin of class I contains a
short lever arm with a single IQ motif, whereas HUM-5 has two IQ motifs in the neck
domain and a short basic tail [23,49].
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HUM-1 is expressed in various tissues, including within the mechanosensory pos-
terior ventral process and outer labial lateral neurons and the C. elegans germline [24,25].
Its direct human homologue, MYO1E, is widely expressed and found in most cell types,
often at regions of the plasma membrane with dynamic actin structures such as adherens
junctions, focal adhesions, and lamellipodia [47,50]. MYO1E is generally involved in the
maintenance of plasma membrane tension, the stability of cell–cell adhesion, as well as
clathrin-mediated endocytosis [47,51,52]. A HUM-1 knockout worm has been generated
(hum-1(ok634)) (Caenorhabditis Genetics Center), however, details of associated pheno-
types have not yet been described. HUM-5, on the other hand, is expressed in an array
of tissues that includes intestinal tissue, body wall muscle, and sensory neurons [25–27].
HUM-5 has also been identified as a potential regulator of axon guidance [53]. Its mam-
malian homologue, MYO1D, is also highly expressed in the central and peripheral nervous
systems and has been suggested to play a role in the fusion of early endosomes and the
maintenance of plasma membrane tension ([54–56]. As with HUM-1, a HUM-5 knockout
has been generated (hum-5(ok1885)), but no phenotypic analyses have yet been published
on the strain.

The human orthologues of HUM-1 and HUM-5, MYO1E and MYO1D, respectively,
have been implicated in a variety of diseases. A missense mutation in MYO1E causes
focal segmental glomerulosclerosis and a homozygous truncation mutation in the motor
domain of MYO1E has been linked to nephrotic syndrome, both childhood—onset forms
of kidney disease [57,58]. Increased MYO1E expression has also been found to play a role
in metastasis of breast cancers [59], whereas MYO1D expression has been shown to be
mis-regulated in several prostate cancers [60].

3. HUM-2

The hum-2 gene is an orthologue of human MYO5A, a class V myosin [23]. Humans
contain three genes for myosins of class V, which express MYO5A, MYO5B and MYOV5C,
all of which are alternatively spliced to produce further isoforms. Genes for class V myosins
are also present in other model organisms; Drosophila contain a single MYO5 gene called
didum, while the yeasts Saccharomyces cerevesiae and Schizosaccharomyces pombe both have
two MYO5 genes, MYO2 and MYO4, and myo51 and myo52, respectively [12,61]. HUM-2
shares a 39% sequence identity with human MYO5A, 38% with Drosophila didum, and
30–33% with the yeast myosins of class V. HUM-2 contains a very long neck region with six
IQ motifs, which is common to all class V myosins, and allows a large step size of 36 nm,
the pitch of the helical actin filament. The tail region contains three coiled-coil domains,
important for dimerization, and a globular tail domain, which has been shown to enable
cargo binding in other members of class V myosins (Figure 2). There is divergence in the
sequence of HUM-2 and human MYO5 throughout the length of the motor protein.

Myosins of class V form a dimer and display processive movement in a hand-over-
hand fashion. They are kinetically adapted to move processively, because of their large
working stroke/step size and high duty ratio, which is the fraction of the time the mo-
tor is attached to an actin filament during one complete cycle [62,63]. MYO5A is widely
expressed in many tissues, including the brain, peripheral nervous system and pituitary
gland [64]. Whilst the kinetic and motile properties of HUM-2 have yet to be elucidated,
tissue expression is similar to its human orthologue in a number of different neurons,
including dorsal B and D type motor neurons, posterior lateral type N interneuron, and
posterior ventral process neurons in both the adult and larval stages [28–30]. HUM-2 knock
out strains (hum-2(ok596)) have been generated (Caenorhabditis Genetics Center), however,
no detailed analysis has been performed so far. Mutations in human MYO5A give rise to
the rare, autosomal recessive Griscelli Type 1 disease, characterised by neurological impair-
ment [65]. Future studies may utilise HUM-2 and the very well-defined and genetically
tractable nervous system in C. elegans to explore basic mechanistic pathways that might be
underpin complex human neurological diseases.
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4. HUM-3 and HUM-8

Myosins of class VI are unique amongst myosin motors in that they move towards the
minus end of actin filaments [66]. C. elegans possesses two genes for myosins of class VI,
hum-3 (spe-15) and hum-8, which are orthologues of the human MYO6 gene. In contrast,
humans express a single MYO6 gene that can undergo alternative splicing to produce four
different isoforms [67]. Human MYO6 shares a 48% sequence identity with HUM-3, and
45% with HUM-8. The Drosophila genome also encodes a single MYO6, known as jaguar,
which shares 44% and 39% sequence identities with HUM-3 and HUM-8, respectively. The
sequence differences are scattered throughout the protein, but many motifs and regulatory
elements are conserved, such as the GESGAGKT sequence of the ATP-binding P-loop,
and the phosphorylatable TEDS-rule site (Thr405 in human MYO6) in the motor domain.
In the tail, the RRL motif is conserved, whilst the WWY motif is altered in both Hum-3
(MWY) and Hum-8 (MWF). Comparing the sequences of HUM-3 and HUM-8 yields a
63% sequence identity between them, which is enough divergence to suggest functional
variation. Yeasts do not possess orthologues to MYO6 in their genome.

HUM-3 and HUM-8 follow a domain organisation typical of class VI myosins, con-
sisting of a motor domain followed by a neck region containing a single IQ motif, and a
tail that terminates in a cargo-binding domain (CBD) (Figure 2). Both C. elegans MYO6s
also have sequences corresponding to the two unique inserts characteristic of myosins of
this class: a 53-residue insertion (reverse gear or insert-2) between its converter and light
chain-binding domain that is solely responsible for the reverse directionality of MYO6,
and a second shorter insert (insert-1) near the nucleotide-binding pocket which has been
shown to modulate nucleotide binding [68,69]. Interestingly, unlike human MYO6, both
HUM-3 and HUM-8 have an N-terminal extension, 8 and 73 residues, respectively. These
extensions have no homology to known domains or motifs, with the precise function yet to
be elucidated.

Mammalian MYO6 is monomeric, has a large working stroke (~18 nm) and a high
duty ratio, and is weakly processive as a dimer [70–73]. In the presence of high load or
ADP, MYO6 switches from a dimeric transporter to a dynamic tension sensor, translocating
along actin to maintain force in a system, and anchoring membrane compartments (e.g.,
endosomes) to actin filaments [74,75]. The kinetic and biophysical properties of HUM-3
and HUM-8 have yet to be elucidated.

Human MYO6 is widely expressed, including in neuronal tissues, the inner ear hair
cells of the cochlea, and the intestine. MYO6 undergoes alternative splicing of two inserts
in its CBD: the small insert (SI, adding nine residues) and the large insert (LI, adding
21–31 residues). Human MYO6 has four splice isoforms (holding the SI, LI, both, or none),
which have differential interaction networks and binding partners and are expressed in
different cell types and tissues [67]. The predominant functions of human MYO6 are linked
to endocytosis, protein secretion, autophagy, and the regulation of actin filament dynamics
and involve a wide range of adaptor proteins [67,76–81]. The expression of HUM-3 and
HUM-8 indicates a differential expression pattern between the two worm MYO6s. HUM-3
is present in wide array of neurons, including anterior ventral process class neurons and
the neurosecretory motor neuron, as well as in the C. elegans germline [30–32]. HUM-8, in
contrast, is expressed in a few select tissues, such as the intestine and the posterior ventral
process neuron [24,25]. Interestingly, the distinct expression of HUM-3 and HUM-8 is seen
in tissues analogous to those where the different splice variants of human MYO6 are found.

Very little is known about the functions, biochemical and biophysical properties of
either HUM-3 and HUM-8. The disruption of HUM-8 using RNA interference causes
cytokinesis defects within the germline, which coincides with the role of human MYO6 in
membrane delivery during mammalian cytokinesis [82,83]. HUM-3 on the other hand is
essential for spermiogenesis in C. elegans, as HUM-3 knockout worms are almost completely
self-sterile and display gross cytological defects in the morphology of budding spermatids
and the residual body. The spermatids typically fail to activate to form ameboid sperma-
tozoa and are characterised by the improper partitioning of Golgi-derived fibrous body
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membrane organelles (FB-Mos) and mitochondria [84,85]. Detailed studies have shown
that HUM-3 is involved in the final cytokinetic step during spermatid budding, where
it assembles into stable ring-like structures that contract to seal cortical actin, constrict
the membrane, and promote cytokinesis [86]. Interestingly, mammalian MYO6 is also
expressed in mammalian testes, and has been shown to regulate the formation of actin
structures and the three-dimensional organisation of membrane compartments during
spermatid development [87–89].

Mutations in human MYO6 have been linked to several diseases such as hearing loss
and familial hypertrophic cardiomyopathy [88,90]. Furthermore, MYO6 overexpression
correlates with clinically aggressive behaviour in both ovarian and prostate carcinomas,
which is believed to be linked to the role of MYO6 in cellular migration [91,92].

5. HUM-4

The hum-4 gene encodes a myosin with a very large (~300 kDa) heavy chain that is
unique to C.elegans, and is the founding member of class XII [23]. The motor domain is not
well conserved, with little homology to other myosin classes. The closest orthologue to
HUM-4 in humans is a myosin of class XV, MYO15A and in Drosophila Myo10a. HUM-4
shares a 26% sequence identity to both human MYO15A and Drosophila Myo10a (Myo10a
and MYO15a are 36% identical). Phylogeny analysis suggest a common origin for classes
XII and XV [93]. Whilst the motor domain is less well conserved, the tail domain shows high
degrees of similarity. Both myosins contain two myosin tail homology 4 (MyTH4) domains,
a FERM (4.1 protein, Ezrin, Radixin, Moesin) domain, and a SH3 domain (Figure 2).
Myosins of class XV are found in higher metazoan groups but not in nematodes, whereas
class XII myosins are only present in nematodes, which is consistent with a common origin
for class XII/XV myosins. Therefore, although belonging to a myosin of a different class,
HUM-4 could be a valid model for studying the function, regulation and effect of mutations
in the tail of MYO15A.

HUM-4 contains a unique 200 amino acid N-terminal extension, the function of which
is unknown and with no shared homology to known domains. Another unique feature of
this class of myosin is the position of the putative coiled-coil region at the carboxyl-terminal
region of the tail. It has yet to be elucidated whether HUM-4 does form a dimer, but recent
data suggests that human MYO15A is kinetically adapted for processive motility when
oligomerised [94].

In humans, myosins of class XV were first discovered associated with congenital,
recessive nonsyndromic deafness [95] and nearly 200 mutations in this gene were identified
as causative of DFNB3 [96]. In humans, cochlear hair cells possess a bundle of actin-based
stereocilia that detect sound. MYO15A is required for trafficking of essential compounds
for stereocilia development, thus mutations in this myosin cause hereditary hearing loss.
In C. elegans, HUM-4 is expressed in sensory neurons [33]. These neurons are essential for
chemotaxis and mechanosensation, suggesting a potential role for this motor in regulating
the worm’s response to its environment [97,98].

6. HUM-6

The 266 kDa HUM-6 protein is a myosin of class VII, and is an orthologue of human
MYO7a, sharing a 53% sequence identity. In Drosophila a myosin of class VII called crinkled
is expressed, which is 62% identical to human MYO7a [99]. The HUM-6 motor domain
is followed by a neck region containing four IQ motifs (human MYO7a contains five IQ
motifs), and a large tail domain containing two MyTH4 (myosin tail homology domain 4)
and two FERM domains (Figure 2). Unlike human MYO7a, HUM-6 does not contain an
SH3 domain.

In humans, MYO7a is widely expressed in the cochlea, retina, testis, lung and kid-
ney [100–102], and interacts through the MyTH4-FERM domain in its tail to a number
of different adaptor proteins and cell surface receptors such as cadherins and integrins
thereby regulating cell–cell and cell-matrix adhesion [103]. In C. elegans the orthologue,
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HUM-6 is expressed in a number of different cell types, including the intestine which
contains polarised cellular projections, suggesting an analogous function of HUM-6 to
myo7a and its function in maintaining cellular projections [25]. HUM-6 is also expressed in
the neurosecretory motor neuron and sensory neurons and the hypodermis [27,34].

Mutations in human MYO7a cause congenital deafness and blindness, clinically
known as human Usher syndrome 1B [104] and non-syndromic deafness DFNB2 and
DFNA11 [105–108]. Intriguingly, several of the causative mutations in human MYO7a are
located at conserved residues also present in HUM-6, such as Asp218Asn in the motor
domain [109] and Leu1087Pro in the tail [110], further highlighting the potential use of
C. elegans to model human diseases.

7. HUM-7

The hum-7 gene encodes a myosin of class IX [19]. Humans have 2 myosin genes of
class IX—myo9a and myo9b while no MYO9 orthologue has been identified in Drosophila.
HUM-7 is 34% identical to MYO9A and 30% to MYO9B. The domain organisation of
myosins of class IX has several distinguishing features, including a Ras-association domain
at the N-terminus of the protein (Figure 2). The motor domain has a number of unique
mechanochemical properties, including a rate-limiting ATP-hydrolysis step and an unusu-
ally high-affinity for F-actin across different nucleotide states [111,112]. Also found in the
head domain is a unique ~140 amino acid insertion, which interacts with actin filaments
and contains an additional calmodulin-binding site. This insertion has been postulated to
enable processive movement of the single headed MYO9 [113]. The neck region in HUM-7
and human MYO9B contains four IQ motifs, whilst human MYO9A has six IQ motifs. The
tail region contains two atypical zinc ion-binding C1 domains in C. elegans, and one in both
human MYO9A and MYO9B. A Rho GTPase activating protein domain is located at the
C-terminus [114]. This domain catalyses GTP hydrolysis by small monomeric GTPases of
the Rho subfamily, switching them from the active GTP-bound “on” state to the inactive
GDP-bound “off” state.

Compared with the other unconventional myosins discussed above, a number of
studies have been performed with HUM-7, providing insights into the unique properties
of this motorised signalling molecule. Liao and colleagues demonstrated that HUM-7
moves processively towards the plus-end of actin filaments, which has not previously
been observed with monomeric motors [113]. This processive movement could be due
the unique insert, which acts as an actin tether [115]. It has also been shown that the
rate-limiting step in the ATPase cycle of MYO9B is ATP hydrolysis, rather than phosphate
release as in other myosins characterised to date [111]. These characteristics are likely due
to the unique domain organisation of MYO9.

Defects in the activity of the two human MYO9 proteins are linked to a number of
diseases. Mutations in MYO9A for example lead to Myasthenic Syndrome, a disorder char-
acterised by altered transmission of signals from nerve cells to muscles [116]. It has been
also been suggested that mutations in MYO9B are associated with a number of intestinal dis-
orders, such as celiac disease, Crohn’s disease, ulcerative colitis and pancreatitis [117–119].
The mechanisms how loss of MYO9B function leads to pathogenesis in these disorders
have yet to be determined. The genetic tractability of C. elegans makes it an ideal organism
to study the impacts of mutations in MYO9 and its effects on Rho activity and associated
cell signalling pathways.

In the nematode, HUM-7 has been shown to modulate RHO-1/RhoA activity during
embryonic morphogenesis [35]. HUM-7 acts a GTPase-activating protein (GAP) for RHO-
1/RhoA and CDC-42 GTPases. In this pathway HUM-7 is regulated by SAX-3/ROBO
controlling F-actin dynamics through RHO-1/RhoA during epidermal cell migration in
developing worms. Interestingly, this pathway is conserved in cultured human lung cancer
cells [120], highlighting furthermore the potential of C. elegans as a model organism and
further work may yield new insights into previously unknown diseases linked to altered
HUM-7/MYO9A/B.



Biomolecules 2022, 12, 1889 8 of 14

C. elegans Myosins of Class II

The class II family of myosin motors were traditionally termed ‘conventional’ myosins.
Class II myosins are hexameric complexes, composed of two heavy chains, two essential
and two regulatory light chains. The light chains confer structural stability and regulation
via phosphorylation, respectively. These molecular motors are characterised by their
ability to assemble into thick filaments, low duty ratio (the time spent in the ATPase
mechanochemical cycle strongly bound to actin), the ability of individual motor “heads” to
operate independently of each other, and their rate-limiting phosphate release. Myosin II
is not just found within muscle cells—non-muscle myosin II is ubiquitously expressed in
various mammalian cell types. They have been implicated in a wide range of biological
processes such as cell adhesion, cell migration, cell division and phagocytosis [44,121] to
name just a few. The overall structure of the sarcomere, (the fundamental unit of contraction
in which muscle myosin is found) is conserved from C. elegans to humans, and extensive
work has utilised nematode to probe many processes involved in muscle development,
muscle ageing and myopathies [122], the scope of which goes beyond this review. We will,
however, provide a brief over view of isoforms of myosin class II in C. elegans.

Humans have 14 myosin class II genes, three of which are non-muscle myosin II and
one which is a smooth-muscle specific isoform. C. elegans have four muscle myosin genes,
termed mhc-a, mhc-b, mhc-c and mhc-d. They also have three non-muscle myosin genes
(nmy-1, nmy-2 and nmy-3), and two further genes myo-5 and myo-6 which have yet to be
characterised [19]. C. elegans have both striated and non-striated muscles. Non-striated
muscles include 20 pharyngeal muscle cells, two stomatointestinal muscles, one anal
depressor muscle, one anal sphincter muscle, eight vulval muscles, eight uterine muscles,
and 10 contractile gonadal sheath cells [122]. They also have 95 striated body wall muscle
cells, which form a single layer of cells and are arranged in four longitudinal bands of two
mutually offset rows of cells, named quadrants, running from head to tail. These muscles
are the functional equivalents of vertebrate skeletal muscles. MHC-A and MHC-B proteins
are the most abundant, and are found exclusively in the body wall muscle [36,37,123,124].

The high homology between C. elegans muscle components and their human coun-
terparts has been utilised in numerous studies of myosin folding, particularly of the
chaperone, UNC-45. UNC-45 (uncoordinated-45) was originally identified as a result of
mutations causing structural disruption of thick filaments in body wall muscle in C. ele-
gans [36,125,126]. The UNC-45 gene is essential in C. elegans, whilst missense mutations
result in disorganized and reduced numbers of myosin-containing thick filaments giving
rise to a slow-moving, or uncoordinated, phenotype of adult worms [127,128]. UNC-45
homologs are present throughout metazoans, including worms, flies, frogs, mice and
humans [36,129–132]. Gazda and colleagues reported the crystallisation of the C. elegans
UNC-45 protein [133], a key step in understanding chaperone function to fold myosin and
assemble thick filaments. This work using C. elegans as model organism to garner insights
into a long-standing question in myosin research, namely how myosin is incorporated into
thick filaments, highlights some of the landmark discoveries the nematode can provide in
the field.

Whilst C. elegans have proven a useful model for studying muscle folding, they have
also been proposed to be suitable as a model system for a number of myopathies. MHC-B
shares a 54% sequence homology to human beta-cardiac myosin, a protein which counts for
~30% of known missense mutations that give rise to dilated and hypertrophic cardiomyopa-
thy [134]. The lack of a cardiac and circulatory system in C. elegans does limit a full-systemic
model of cardiac disease. Despite this, it has been proposed that the nematode can be used
to model protein–protein interactions in human cardiomyocytes because of the functional
interactions in C. elegans body wall muscle [135]. The need to study the effect of these mu-
tations on molecular function at the mechanochemical ATPase level cannot be overstated.
Indeed, the nematode has been used to measure ATPase activity, force generation and
motility in muscle contraction [136]. Mutations in C. elegans myosins have also been used
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to study myosin storage myopathy [137] and congenital myopathies [138], whilst drug
screens have been successfully utilised in the nematode for RYR1-related myopathy [139].

8. Conclusions and Future Perspectives

Myosins are fundamentally important for directed movement on actin filaments, a
process which is required for a wide range of cellular activities. The human genome has a
repertoire of 12 myosin classes, all adapted to perform specific functions within the cell
types they are expressed. Many of these myosins have orthologues to C. elegans myosin,
as has been discussed in this review. Moreover, C. elegans is a well-established organism
for the study of aging and longevity. The role of unconventional myosin motors in aging
has yet to be explored. The conservation of endogenous locations and functions highlights
the benefit of studying these unconventional myosin motors in such a well-established
model organism.

The role of myosin motors in human disease makes it an attractive clinical drug target,
fuelling the need to initiate further studies on this family of motor proteins. C. elegans is a
well-established in vivo model system that has emerged as an extremely valuable resource
in pharmacological drug discovery. To make potential use of C. elegans in a pharmacological
screen for modulators of myosin activity, requires a more complete understanding of the
cellular, biochemical, and biophysical characteristics of the C. elegans myosin homologues,
which can form the basis of future work.
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