
����������
�������

Citation: Fox, S.A.; Vacher, M.; Farah,

C.S. Transcriptomic Biomarker

Signatures for Discrimination of Oral

Cancer Surgical Margins. Biomolecules

2022, 12, 464. https://doi.org/

10.3390/biom12030464

Academic Editor: William Cho

Received: 28 January 2022

Accepted: 11 March 2022

Published: 17 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Transcriptomic Biomarker Signatures for Discrimination of
Oral Cancer Surgical Margins
Simon A. Fox 1 , Michael Vacher 2 and Camile S. Farah 1,*

1 Australian Centre for Oral Oncology Research & Education, P.O. Box 285, Nedlands, WA 6909, Australia;
simon@oralmedpath.com.au

2 Australian eHealth Research Centre, The Commonwealth Scientific & Industrial Research Organisation,
Floreat, WA 6104, Australia; michael.vacher@csiro.au

* Correspondence: camile@oralmedpath.com.au

Abstract: Relapse after surgery for oral squamous cell carcinoma (OSCC) contributes significantly
to morbidity, mortality and poor outcomes. The current histopathological diagnostic techniques
are insufficiently sensitive for the detection of oral cancer and minimal residual disease in surgical
margins. We used whole-transcriptome gene expression and small noncoding RNA profiles from
tumour, close margin and distant margin biopsies from 18 patients undergoing surgical resection
for OSCC. By applying multivariate regression algorithms (sPLS-DA) suitable for higher dimension
data, we objectively identified biomarker signatures for tumour and marginal tissue zones. We
were able to define molecular signatures that discriminated tumours from the marginal zones and
between the close and distant margins. These signatures included genes not previously associated
with OSCC, such as MAMDC2, SYNPO2 and ARMH4. For discrimination of the normal and tumour
sampling zones, we were able to derive an effective gene-based classifying model for molecular
abnormality based on a panel of eight genes (MMP1, MMP12, MYO1B, TNFRSF12A, WDR66, LAMC2,
SLC16A1 and PLAU). We demonstrated the classification performance of these gene signatures in
an independent validation dataset of OSCC tumour and marginal gene expression profiles. These
biomarker signatures may contribute to the earlier detection of tumour cells and complement existing
surgical and histopathological techniques used to determine clear surgical margins.

Keywords: oral squamous cell carcinoma; surgical margins; gene expression profiling; gene biomarker
signature; multivariate statistics

1. Introduction

Oral squamous cell carcinoma (OSCC) is the most common and deadly head and
neck cancer (HNC), affecting more than 750,000 people worldwide [1]. In the last three
decades, diagnostic progress in OSCC has been limited, and overall patient survival has
improved by less than 10%, with 5-year survival rates of 8–27% reported for patients with
metastatic disease [2,3]. Therapeutic protocols for OSCC include surgery, radiotherapy
and chemotherapy; however, surgical resection of tumours remains the cornerstone of the
initial definitive management of OSCC. The outcomes of surgical resection of OSCC have
long been affected by limitations in the evaluation of surgical margins using pre-operative
white light visual examination, palpation of the lesion and microscopic evaluation of
frozen sections at a histopathological level. Regional failure and distant tumour recurrence
continue to account for the high mortality rate of OSCC patients. Local relapse rates of
20% have been reported for oral cancer cases with confirmed tumour-free “non-involved”
surgical margins defined by traditional examination [4,5]. This local relapse may occur
due to minimal residual disease from incomplete resection that is not detected by routine
histopathological investigation or premalignant tissue that gives rise to a later tumour
through field cancerisation [6] or through independent multiclonal expansion of precur-
sor tissue [7]. The ability to detect residual abnormality in oral cancer surgical margins
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using highly sensitive molecular techniques to assay for specific biomarkers would offer
a superior assessment of surgical performance and inform decision-making regarding
postoperative treatment. Once confirmed, these markers may be used for real-time in vivo
endomicroscopic assessments of tumour margins, enabling live molecular imaging. Such
interventions have the potential to guide the surgical removal of tumours and improve
patient outcomes by minimising the retention of abnormal tissue within the surgical bed.

Many different statistical methods have been applied to the identification of biomark-
ers; however, generally, variables are evaluated for statistically significant behaviour be-
tween sample groups using classical statistical tests by focussing upon candidate biomark-
ers individually. When working with highly complex datasets such as those generated
by transcriptome analysis, classification techniques can be extremely powerful in the
identification of biomarkers [8]. In contrast to classical methods, multivariate methods
incorporate the correlation structure of the data and accommodate interactions among
candidate biomarkers. This approach has the potential to develop biomarker panels with
superior prognostic performance to individual biomarkers with regards to sensitivity,
specificity and reliability [8]. Partial least squares-discriminant analysis (PLS-DA) is a
multivariate regression method that has been widely used for classification purposes and
biomarker discovery in large datasets such as metabolomics [9], proteomics [10] and tran-
scriptomics [11]. Sparse PLS-DA (sPLS-DA) is an extension of the technique that improves
the application of classification and biomarker discovery by providing automatic variable
selection [12].

Previously, we have reported that the margins determined using Narrow Band Imag-
ing (NBI) harbour less molecular abnormality than those derived using conventional white
light techniques [13,14]. In these studies, we have generated global mRNA and microRNA
(miRNA) expression data for tumour (T), conventional margins determined by white
light examination (M) and a more molecularly distant margin determined by NBI (N).
We know from our own data [13] and from clinical evidence of local recurrence [5] that
tumour-adjacent tissues may harbour significant aberrations. Here, we use the more distant
NBI-defined surgical margins as the control tissue to build a predictive biomarker panel
for molecular abnormality in the tumour margin. We apply sPLS-DA to develop classifica-
tion models for the discrimination of tumour margins and the identification of molecular
abnormality in the margins. More importantly, we demonstrate the generalisation of our
biomarker statistical models by validation in an external dataset.

2. Materials and Methods
2.1. Patient Group and Sample Collection

The details of the patient group and sample collection have been previously de-
scribed [13,15]. Briefly, eighteen patients with oral cavity SCC were enrolled prospectively.
Patient demographics, tumour characteristics and surgery have been described by us
previously [13,15]. The study conformed to the principles outlined in the Declaration of
Helsinki (2008), with ethical approval from the Royal Brisbane and Women’s Hospital
Human Research Ethics Committee (HREC/08/QRBW20 and HREC/10/QRBW336). All
subjects provided written informed consent to participate in the study. Prior to surgery, the
OSCC sites were visualised using conventional white light illumination and then Narrow
Band Imaging (NBI) using an Olympus NBI ENF-VQ nasendoscope with CLV-180 light
source and processor (Olympus Medical Systems Corp., Tokyo, Japan). The OSCC resection
was taken to ≥5 mm beyond the NBI-defined surgical margin; following which, 4-mm
punch biopsies were taken from: (1) 5 mm beyond the limit of tissue abnormality visible
by NBI (defined here as normal (N)), 5 mm beyond the limit of tissue abnormality visible
by conventional white light (defined here as the margin (M)) and the core of the primary
tumour (defined here as T). The relative locations of the sampling sites have been illustrated
by us previously (Figure 1 in Reference [13]). The tumour histology was predominantly
moderate (10)-to-well (7)-differentiated OSCC, with one case of verrucous carcinoma. Inde-
pendent histopathology indicated “clear” margins for all but one resection, although only
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two had margins with >5 mm separation from disease. One “close” margin had just 1 mm
of separation. Applying this approach, five-year disease-free survival (DFS) was 84.21%,
and the local recurrence rate (LRR) was 5.26% [15].
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Figure 1. Classification performance sPLS-DA-derived gene expression signatures on all sample
groups: N vs. M vs. T. (A) Two-dimensional sample plots for the multinomial classifier for 3 groups
with confidence ellipse plots. (B) Corresponding ROC curves. (C) Loading plots for multinomial N
vs. M vs. T classifiers showing the contribution of each gene to the signature. (D) Heatmap of the
gene expression across all samples for the multinomial N vs. M vs. T classifiers.

2.2. Gene Expression Profiling and Bioinformatics

The detailed protocols for gene and miRNA expression profiling have been previously
described by us [13,14]. The processed transcriptome and miRNA expression matrices
from these studies were used in the present study and are available at ArrayExpress: E-
MTAB-5933 and E-MTAB-6470. Briefly, mRNA expression data was obtained using Human
Genome U133 Plus 2.0 Arrays (Affymetrix, Santa Clara, CA, USA). Following quality con-
trol filtering, the remaining array data was pre-processed using the GCRMA normalisation
method [16]. Individual mRNA probes were mapped to genes using the manufacturer’s
annotation data. In cases where multiple probes were associated with a single gene, the
probe with the highest Median Absolute Deviation was kept. Additionally, probes not
located within a gene were discarded from the analysis. The functional annotation of the
genes was performed using the DAVID [17] and Harmonizome [18] databases.
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2.3. Sample Classification and Feature Selection

To identify the classifying gene (or miRNA) expression signatures characteristic of
different tissue zones (N, M and T), we performed sPLS-DA [12], as implemented in the
mixOmics R package [19]. This method combines sample classification and feature selection
in a one-step process, allowing the identification of key variables (i.e., genes) specific to
each group (tissue zone). To maximise the classification performance, we identified the
optimal number of components and number of variables to select per component using the
“tune” method implemented in the mixOmics package. Briefly the “tune” function uses a
grid search approach to test multiple combinations of parameters (number of components
and number of variables selected on each component) and identify the set of parameters
providing the lowest error rate. Specifically, we used this function to perform a 10-fold
cross-validation, repeated 10 times and with a range from 5 to 100 variables per component.
The set of parameters providing the lowest Balanced Error Rate (BER) were retained to
fit the final models. The performance and discriminative ability of the final classifier
were assessed using the Area Under the Curve (AUC) approach, averaged over 10 cross-
validations using one vs. all comparison. The plotting functions of the mixOmics package
were used to generate all plots except the loading plots, which were generated from the
mixOmics output using Prism v 6.07 (GraphPad Software).

2.4. External Validation Dataset

An external gene expression dataset was used for additional validation of the classi-
fying signature biomarkers downloaded from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/ accessed on 11 June 2021): GSE31056 [20], from which data was obtained
for oral cavity OSCC tumours, surgical margins and adjacent normal tissue for 23 patients
from a Canadian population. This dataset was generated using the same Human Genome
U133 Plus 2.0 Array platform used in our study.

3. Results
3.1. Differential Gene Expression Profiling

The results of the differential gene and miRNA expression analysis from the three
pairwise comparisons between the N, M and T sample groups have been previously
reported by us [13,14]. In brief, there were a total of 4794 genes differentially expressed
with individual comparisons showing 4387 genes for T vs. N, 3266 genes for T vs. M and
7 genes for N vs. M. Similarly, there were a total of 119 miRNA differentially expressed
with individual comparisons showing 109 miRNAs for T vs. N, 81 miRNAs for T vs. M
and 7 miRNAs for N vs. M. Thus, as we have previously reported, the N samples were
more molecularly distinct from the tumours than the M samples, supporting the use of an
adjunctive optical imaging approach for surgical resection of the oral cavity SCC [15].

3.2. Identification of Classifying Biomarkers for Tumour, Margin and Normal Tissues

Initially, we explored whether we could derive classifying features in the gene expres-
sion data using sPLS-DA for multinominal discrimination across all three tissue locations
to assess the classifying performance and identify genes that may be of biological sig-
nificance. Following preliminary modelling using the dataset of differentially expressed
genes and tuning to identify a classifying subset, we derived a set of genes with optimal
performance for distinguishing the three groups. The classifying performance of this
model is presented in Figure 1A,B based on the expression of 14 genes, which were inde-
pendently weighted within the model (Figure 1C). Expression of these genes across all
sample zones is illustrated in Figure 1D. Using this model, discrimination of the T samples
was highly effective; however, discrimination of the normal (N) and margin (M) samples
was less effective (Figure 1A,B). Therefore, we removed the T samples and repeated the
analysis to derive a binomial classifier for the remaining samples and reveal molecular
differences between the normal and peritumoral tissue. The resulting binomial model
consisted of 20 genes (Figure 2C) with good classifying performance for discriminating N

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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and M samples (Figure 2A,B). This analysis indicates that marginal tissue, while histologi-
cally tumour-free, can be readily distinguished from the more distant normal tissue in our
dataset using this panel of 20 gene expression biomarkers.
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Figure 2. Classification performance sPLS-DA-derived gene expression signatures for binomial
comparison: N vs. M. (A) Two-dimensional sample plots for the 2 groups with confidence ellipse plots.
(B) Corresponding ROC curve. (C) Loading plots for N vs. M classifiers showing the contribution
of each gene to the signature. (D) Heatmap of the gene expression across all samples for the N vs.
M classifiers.

In addition to the gene expression dataset, we also analysed the comprehensive mi-
croRNA expression data available for the same samples that we explored as another source
of classifying features across the three tissue groups using sPLS-DA. Using a similar strategy,
we identified differentially expressed miRNA by pairwise comparisons between the sample
groups and derived a classifying model based upon miRNA expression alone. We found
that the classification performance of the miRNA expression-based model (Figure 3A–C)
was broadly inferior to the gene expression model, especially for the T and M zones
(Figure 1A). We also examined the performance of elastic net regression [21] for the identifi-
cation of biomarkers and sample classification using the gene expression dataset. When we
ran this process for multinomial classification of the N, M and T samples using a training set
consisting of two-thirds of the dataset, we were unable to identify a subset of genes optimal
for building a prediction model, and we consistently found that elastic net regression gave
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an inferior discriminating performance to sPLS-DA. As a consequence, we focussed on the
application of sPLS-DA and the use of mRNA-based signatures only.
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3.3. Development of a Biomarker Signature for Classification of Tumour Margins

In order to develop discriminating biomarkers able to identify residual abnormality
in OSCC surgical margins, our strategy was to first identify classifier genes that were
upregulated in tumour tissue and could reliably be applied to distinguish tumour tissue
from normal tissue. These biomarkers could then be used to interrogate the corresponding
peritumoral margin (M) biopsy samples.

We used sPLS-DA to derive a classifying gene expression panel that discriminated T
from N samples using the subset of genes that were significantly upregulated in tumour
tissue. For this T vs. N analysis, cross-validation tuning of the parameters showed that the
best discriminating performance using sPLS-DA occurred when eight genes were selected
(Figure 4A). Following identification of the optimal values, the methods were applied to the
entire dataset of 31 samples (18 T and 13 N), and a list of genes for binomial classification
were obtained. For sPLS-DA, the eight genes of the model and their weightings are
shown in Figure 4A, and as expected, their classification performance for T vs. N was
excellent (Figure 4B). This gene signature sPLS-DA model was applied to the 18 marginal
samples, where 13 samples were predicted as normal while five were predicted as tumours
(Figure 4C). Some predictions were unambiguous (e.g., samples 53-18-M as T and 50-17-M
as normal), while others were more borderline (e.g., samples 35-12-M or 29-10-M as T), as
shown in the prediction score plot (Figure 4C). The expression of these classifiers in all
samples across the entire dataset is illustrated in Figure 4D. This gene signature and the
associated algorithms represent tools that can be applied toward the classification of tissues.
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Figure 4. Classification performance of sparse Partial Least-Squares Discriminant Analysis-derived
gene signatures for tumour vs. normal (T vs. N) using genes upregulated in tumours. (A) Loading plot
of a discriminating gene panel. (B) ROC curve for tumour vs. normal discrimination. (C) Prediction
score plot for the prediction of margins classed as T or N. (D) Heatmap of gene expression for the T
vs. N gene models in all the samples.

3.4. Validation in External Datasets

In order to test the generalisability of our model and investigate its clinical applicabil-
ity, we performed validation using an independent OSCC dataset of tumour, marginal and
normal samples [20]. Initially, we explored this dataset using the model trained with all
three zones and all significant expressed genes as derived in Figure 1A. We applied this
model to the validation dataset, with the resulting confusion matrix of the classifying per-
formance shown in Figure 5A. For this dataset derived from a Canadian OSCC population,
the multinomial three-way classifier performed well for the classification of tumour (T)
samples but performed poorly for discrimination between normal and margin samples
(Figure 3A). This may reflect difficulties in classifying these samples or differences between
the sampling strategies between the studies, since our own study used NBI to define the N
zone for sampling [13]. We next used our binomial classifying model for T vs. N, as shown
in Figure 4A, and then applied it to all marginal (M) samples in the validation dataset.
For this population, there was gene expression data for multiple marginal zone samples
for most patients, and we applied our classifier to all these samples. Expression of the
classifying gene panel in all the samples in the validation data (N, M and T) is visualised by
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a heatmap in Figure 5B. Of 49 M samples from 24 patients, 13 were classified as tumours
(T) by our classifier (Figure 5C, prediction score 0.5 or greater). We next examined whether
the presence of molecular abnormality in the margins as classified by our model may have
value in the prediction of recurrence. We stratified the patients in the independent cohort,
with at least one margin predicted as T in our analysis, into a “high-risk” group. We then
performed a survival analysis, which showed that the differences between the groups
were not statistically significant (Figure 5D). These results demonstrated that, while our
classifying signatures were effective in identifying tumour samples in the independent
cohort, the statistical model signature of abnormality in the margins could not be used to
discriminate the samples associated with recurrence.
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margins using the binary classifier for T vs. N in the validation data. (D) Survival plot for tumour
recurrence for patients with primary margins predicted as T or N.

4. Discussion

Several studies have investigated transcriptional dysregulation and disease-specific
signatures in OSCC in the context of investigating carcinogenic processes, prognostic
signatures and molecular targets [22,23]. Inadequate surgical removal of the primary
tumour is one important factor associated with patient survival [24]. The presence of
residual disease or epithelial dysplasia in the surgical resection margins is recognised as a
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contributor to disease recurrence, and molecular analysis is one approach that has been
explored to address this challenge [6,25].

In this study, we investigated a multivariate statistical method for its ability to identify
classifying gene signatures for OSCC relative to normal tissue and for identifying biological
features that distinguish OSCC margins. We also sought to examine the application of this
methodology in the detection of abnormality in surgical margins. We were interested in
exploring the application of sPLS-DA, since this relatively recently described statistical
approach has demonstrated advantages in classification from high-dimensional data but
has not as yet been widely applied to tumour classification and biomarker derivation [12].
Our strategy used paired tissue samples from the same patient group, since that molecular
context should be more informative for the investigation of abnormality in surgical margins,
rather than normal tissue from unrelated patients. The methodological approaches to the
identification of classifying gene signatures in OSCC to date have predominantly employed
differential gene expression and focussed upon genes that are overexpressed in tumour
tissue using univariate statistical methods.

Since classifying biomarkers derived from discovery-based analyses are frequently
significant contributors to disease processes [8], we initially applied sPLS-DA to identify
features that discriminated between the three tissue groups. Interestingly, it was the
downregulation of a panel of genes expressed in N and M zones that was most effective at
classifying T samples (Figure 1C), suggesting that the dysregulation of particular tumour
suppressors is a more common feature for classifying tumour tissue. Both MAMDC2 and
SYNPO2 have been characterised as tumour suppressors in solid cancers, although not
previously described in OSCC [26,27], and ABCA8 has been reported downregulated in
OSCC [28]. In the tumour zone, we found the downregulation of ROR1, a molecule that has
been associated with tumour progression and proposed as a therapeutic target in a number
of cancers other than HNSCC [29]. Our findings of lower expression in OSCC tumour
tissue are consistent with another recent study [30] and suggest a different role in this
cancer. Furthermore, there is evidence showing ROR1 is expressed in a number of normal
tissues, including oesophageal epithelium [31], indicating that targeted therapies may result
in toxicity in normal tissues, including oral epithelia, according to our expression data.
These classifiers showed excellent discrimination of the T samples but were less effective at
discriminating N and M. We speculated that the significant molecular differences between T
and the other zones influenced the derivation of the biomarkers, and hence, we performed
an analysis of the N and M samples only. In this way, we sought to explore the molecular
differences that might differentiate marginal tissue from more distant normal sites to gain
insights into genes’ driving biology in peritumoral tissue. We were able to generate a
panel of genes that discriminated these zones. It should be noted that such markers and
molecular differences can reflect both the potential for residual tumour tissue within the
margin and also the influence of soluble tumour-derived factors upon the marginal cells
and their compositions. Many of the classifying genes for the classification of normal
and marginal tissues have not previously been described with reference to OSCC but
are dysregulated in other cancers. ARMH4 (C14orf37, UT2) has been implicated as a
tumour suppressor in myeloma and was found here downregulated in margins relative
to the normal tissue [32]. FGFBP2 is an effector of cytotoxic cell activity and potentially
antitumour immunity [33], and the downregulation seen in the marginal tissue may reflect
the suppression of antitumour immunity.

For discrimination of the normal and tumour sampling zones, we were able to derive
an effective gene-based classifying model for molecular abnormality based on a panel of
eight genes (MMP1, MMP12, MYO1B, TNFRSF12A, WDR66, LAMC2, SLC16A1 and PLAU).
Since we ultimately aimed for biomarkers that could be used to detect abnormality in
marginal tissues, we focussed upon genes upregulated in the tumour tissue. Many of the
genes identified in the resulting classifying biomarkers have been previously identified
as dysregulated in cancer, including MMP1 and MMP12. Matrix metalloproteinases like
MMP1 and MMP12 are key enzymes involved in extracellular matrix degradation during
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tissue remodelling and are frequently reported as upregulated in cancer, associated with
invasion and metastases and potential therapeutic targets [34]. In OSCC, MMP1 has
previously been reported as overexpressed in tumours relative to normal tissue [28,35]
and proposed as a biomarker of disease recurrence [20,36]. MMP12 has been reported as
upregulated in tongue SCC [28]. The upregulation of MYO1B has been associated with
lymph node metastases and cellular invasion in HNSCC [37].

The immune-related gene TNFRSF12A has been significantly associated with overall
survival (OS) in HNSCC, with the high-protein expression of TNFRSF12A correlated
with poor OS [38]. TNFRSF12A was also significantly correlated with activated CD8+ T
cells, CD4+ T cells, follicular helper T cells and regulatory T cells, implying the possible
involvement of this gene in immunoregulation and the development of HNSCC.

PLAU (plasminogen activator urokinase) mRNA has also been shown to be signif-
icantly elevated in HNSCC tumour samples over normal specimens, with evidence for
PLAU as an independent indicator for HNSCC prognosis [39] associated with poorer clin-
ical outcomes [40]. Furthermore, PLAU expression has been positively correlated with
the presence of M1-type macrophages and negatively associated with CD4+ T cells, Treg
cells and follicular helper T cells. Intriguingly, this finding may be explained by evidence
that PLAU can regulate the expression of TNFRSF12A [40], previously implicated in im-
mune regulation in HNSCC [38]. Collectively, these results suggest that PLAU may be an
independent biomarker for predicting the outcomes of HNSCC patients and potentially
contribute to tumour immunosuppression either in concert with or via TNFRSF12A [39].

The laminin C gene family is associated with the progression of diverse cancers
through epithelial-mesenchymal transition (EMT). LAMC2, which encodes the laminin
subtype LN-332 γ2 chain, is associated with poor prognosis, infiltrating immune cells
and higher levels of LAMC2 protein expression, particularly in tumour-budding areas in
HNSCC contributing to proliferation, migration, invasion and metastasis [41]. LAMC2, a
target gene of miR-134, activates the EGFR/MAPK pathway but is also downregulated
by miR-134, thereby inhibiting the migration and invasion of OSCC tumour stem cells by
suppressing the PI3K-Akt signalling pathway [42]. Not only is LAMC2 a good prognostic
biomarker candidate, but it also shows utility as an early diagnostic marker for OSCC [43].
Previously, we examined miRNA-mRNA interactions in this data and reported 100 putative
miRNA–mRNA interactions between 40 miRNA and 96 mRNA [14]. We did not find the
dysregulation of miR-134 in our data, suggesting that some other mechanism is responsible
for the overexpression of LAMC2 that we see here.

SLC16A1 encodes the monocarboxylate transporter MCT1, a member of a family
involved in transporting lactate into and out of tumour cells, serving as a key mediator
in maintaining tumour microenvironment homeostasis [44]. Recently, SLC16A1 has been
shown to be upregulated in HNSCC tumour tissues compared to adjacent normal marginal
tissues, emphasising its potential oncogenic role in cancer progression likely through
the NF-κB pathway [45]. Additionally, SLC16A1 expression was closely associated with
smoking and drinking behaviours in HNSCC patients. Interestingly, MMP1, LAMC2 and
SLC16A1 have been shown to be significantly upregulated in HNSCC but downregulated by
S100A8/A9 expression, contributing to increased proliferation, malignant transformation
and disease progression in HNSCC [46].

There has been limited investigation of the role of WDR66 (WD-repeat-containing
protein 66) in HNSCC. WD-repeat proteins are frequently upregulated in various cancers,
impacting upon transcription regulation, cell cycle control and apoptosis. WDR66 was
reported as upregulated in oesophageal SCC, associated with poor overall patient survival
and a driver of EMT, identifying WDR66 as a novel marker for risk stratification [47]. In sali-
vary adenoid cystic carcinoma, the knockdown of WDR66 decreases cellular proliferation,
migration and invasion [48].

The key test of such a model is its applicability across independent populations, and
we selected datasets from international populations to test the generalisability of this model.
While there are a number of studies that have reported gene expression data for tumour and
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matched normal tissues, the sampling sites for normal tissues are not always well-defined,
and studies that have reported tumour, peritumoral margins and more distant normal
tissues are limited. We were unable to find a comparable study to our own, which used NBI
to define the sampling zones; however, we used an independent cohort of Canadian OSCC
patients [20] with three similar sampling zones to benchmark our classifying models. The
authors of this study focussed their investigation upon gene expression in marginal tissues
associated with recurrence. Although there is some ambiguity in the definition of sample
zone locations, we found that our three-zone classifying model was highly accurate in the
prediction of T samples but classified all N and M samples as marginal. This may reflect
differences in the sampling of N tissues between the studies given the use of NBI in our
study or the relatively inferior prediction accuracy for N and M samples that we found in
our own dataset using this model. We speculated that the classification of marginal samples
using our binary classifier of (T vs. N) might have application in the prediction of recurrence.
In our own primary dataset, such an analysis was not possible, because recurrence was
extremely low due to the application of NBI for margin determination [15]. In the external
dataset for which recurrence data was available, we found that the margin classifying
tumour signature was not suitable for the prediction of recurrence in this cohort. It seems
possible that the identification of tumour signatures in marginal tissue is insufficiently
discriminating for the prediction of recurrence, and there may be distinct marginal gene
expression signatures predictive of this. Moving forward, refinement of these biomarker
panels will require testing in additional cohorts with the well-defined sampling of marginal
tissue and populations with different genetic backgrounds. Furthermore, in some Asian
populations, there are alternative risk factors such as betel nut chewing that have different
carcinogenic mechanisms and that may impact the relevance of some biomarkers. As much
as possible, these populations need to be included early in follow-up studies to ensure the
broad applicability of biomarker panels in clinical practice.

In conclusion, we investigated the performance of multivariate statistical methods
in the discovery of diagnostic biomarker panels for OSCC from transcriptomic data. The
novel classifying gene expression signatures derived here will contribute to the ongoing
development of diagnostic and prognostic biomarker panels for OSCC. In addition, many of
the classifying genes have not been previously reported for OSCC and represent promising
putative targets for further molecular analysis.
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