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Abstract: The human (h) transporter hZIP4 is the primary Zn2+ importer in the intestine. hZIP4 is also
expressed in a variety of organs such as the pancreas and brain. Dysfunction of hZIP4 can result in
the Zn2+ deficiency disease acrodermatitis enteropathica (AE). AE can disrupt digestive and immune
system homeostasis. A limited number of hZIP4 expression strategies have hindered increasing
knowledge about this essential transmembrane protein. Here, we report the heterologous expression
of hZIP4 in Saccharomyces cerevisiae. Both a wild-type and a mutant S. cerevisiae strain, in which the
endogenous Zn2+ transporters were deleted, were used to test the expression and localization of
an hZIP4–GFP fusion protein. A full-length hZIP4–GFP and a truncated membrane-domain-only
(mhZIP4–GFP) protein were observed to be present in the plasma membrane in yeast.

Keywords: human zinc transporter; membrane protein; heterologous expression in yeast; GFP
fusion protein

1. Introduction

Zn2+ is an essential nutrient for human health. For example, Zn2+ functions as a
catalytic and structural cofactor for Zn2+-dependent enzymes and transcription factors.
Zn2+ also contributes to cell signaling [1–3]. Befitting its central importance to human
health, Zn2+ deficiency can lead to immune system dysfunction, growth retardation, and
neurological disorders [4]. While Zn2+ deficiency is primarily caused by inadequate dietary
intake of Zn2+ [5], genetic factors can also influence human Zn2+ levels.

Two classes of Zn2+ transporters regulate intracellular Zn2+ levels. ZIP (for Zrt-,
Irt-like Protein) transporters comprise the solute-linked carrier (SLC)39 family and function to
increase cytosolic Zn2+ levels. The SLC30 family ZnT (for Zn2+ Transporter) proteins function
to decrease cyosolic Zn2+ levels [6]. hZIP4 is expressed in a variety of cell types including the
intestine, the primary location of Zn2+ uptake, as well as the pancreas [7,8]. Overexpression
of hZIP4 has been shown to increase the expression of proteins that can initiate or progress
pancreatic cancer [9]. Mutations in hZIP4 can lead to the Zn2+ deficiency disease acrodermatitis
enteropathica (AE) [10,11]. AE is an autosomal recessive genetic disorder that can lead to
death if left untreated. Important for the rationale of the work described here, previous studies
have shown that the N-termini of the mouse (m) ZIP4 protein is removed during prolonged
Zn2+ deficiency growth condition [12]. hZIP4 protein lacking the N-terminal extracellular
domain was also observed in response to Zn2+ deficiency in epithelial CaCo-2 and Hepa
cells [13,14]. This provides further evidence that the N-terminus of hZIP4 is physiologically
relevant when cells are Zn2+ deficient.

Previously, expression systems used to overexpress human ZIP proteins include mam-
malian cultured cells and Xenopus laevis oocytes. For example, hZIP1 and hZIP2 were
shown to be functionally expressed in PC-3 cells and K562 cells, respectively [15,16]. In
addition, previous studies examined the functionality of hZIP4 following expression in
Xenopus laevis oocyte and HEK293 cells [17–19]. Moreover, the impact of ZIP4 overexpres-
sion on cancer cell formation was studied using human pancreatic cancer cell lines [7].

Biomolecules 2022, 12, 726. https://doi.org/10.3390/biom12050726 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12050726
https://doi.org/10.3390/biom12050726
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://doi.org/10.3390/biom12050726
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12050726?type=check_update&version=2


Biomolecules 2022, 12, 726 2 of 11

However, using cultured human cells or Xenopus laevis oocytes has limited utility due to
high cost when compared to yeast expression systems. While the sole soluble domain of
hZIP4 has been purified following overexpression in E. coli, this is not a reliable strategy
for the full-length mammalian transporter [20]. In addition, yeast offers a rapid cloning
mechanism, and its genome has been well studied for years. Furthermore, different strains
encode metal transporter deletions or are knocked out and provide an alternative platform
for heterologous protein expression. This could be of importance, as no structure has been
elucidated for hZIP proteins.

Our current understanding of the mechanism of hZIP4 comes from functional studies
in human cultured cells, mice, and computational approaches [11,17,21–23]. Functional
studies indicate that hZIP4 can translocate Zn2+, Cu2+, Ni2+, and Fe2+ [17,23]. Studies in
mice showed that expression of mouse (m) ZIP4, which shares 75% sequence similarity to
hZIP4, is regulated by dietary Zn2+ levels [8]. When cellular Zn2+ levels are high, mZIP4
is endocytosed in cultured cells [24]. In hZIP4, the sole significant intracellular domain
encodes a histidine-rich region. It was shown that these histidines sense intracellular Zn2+

levels. When Zn2+ levels are high, hZIP4 is ubiquitinated and targeted for degradation [22].
This domain is disordered and coordinates 2 Zn2+ sequentially [20,25]. An ab initio mod-
elling study provided the first structural insight into the transmembrane helices of hZIP4
(Figure 1) [17]. Direct structural information on the transmembrane domains of hZIP4 is
not yet available; however, elucidation of the crystal structure of a bacterial ZIP homology
has provided a template for modeling efforts [26]. Both the ab initio model and bacterial
ZIP homolog structure illustrate eight transmembrane helices, with conserved histidine
and aspartate residues lining the putative metal transport pathway (Figure 1).
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Figure 1. hZIP4 transmembrane homodimer view. Computational hZIP4 structure generated by
Rosetta ab initio structure with co-evolution contact prediction [17]. The predicted locations of the
transmembrane histidine residues are displayed in red. The putative Zn2+ translocation pore is
highlighted in yellow. TM domains are numbered.
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Saccharomyces cerevisiae is a robust, single-cell eukaryotic model system that can be
used for heterologously expressed transmembrane proteins. The advantages of S. cerevisiae
include a fully sequenced genome, genetic tractability using classical genetic approaches,
and the ability to grow on chemically defined media [27]. As a model organism for
transition metal expression, the genes involved in S. cerevisiae metal transport have been
identified, many of which are homologous to metal transporter genes from other organisms
including humans [27]. A variety of yeast-transition–metal-transport-deficient strains have
been generated and used to characterize heterologously expressed metal transporters,
including Fe2+ [28], Cu+/2+ [29], and Zn2+ [30].

As it is often difficult to heterologously express eukaryotic membrane proteins for
high-resolution biochemical and structural studies, S. cerevisiae has been explored as a
host organism to overexpress membrane proteins using GFP-based fusion technology. As
the C-terminal GFP folds and becomes fluorescent only when the upstream membrane
protein integrates into the membrane, the resultant fluorescence is a fast and accurate
measure of membrane-integrated expression [31]. Our approach here takes advantage
of a reliable, high-throughput protocol for overexpression and screening of eukaryotic
membrane proteins in S. cerevisiae [32]. Confocal microscopy analysis of several eukaryotic
membrane protein–GFP fusions under overexpression conditions demonstrated targeting
of the overexpressed membrane proteins to the correct organelle in S. cerevisiae. Through
the adjustment of the protein-inducing conditions, maximal target protein levels can be
obtained for further purification studies, and the membrane protein–GFP fusion can be
screened by fluorescence size-exclusion chromatography [33]. While the human ZIP1 full-
length transporter has been expressed, our objective within the work described here was
to express a full-length and truncated version of hZIP4, as this protein is expressed in the
plasma membrane of the intestine, the main location of Zn2+ update [34]. In this study, we
successfully expressed hZIP4 tagged with green fluorescent protein (GFP) in S. cerevisiae
and show that the hZIP4–GFP fusion protein is targeted to the yeast plasma membrane.

2. Materials and Methods
2.1. Yeast Strains, Plasmids, Media, and Reagents

The S. cerevisiae strains used in this study were kindly provided by the Eide Lab (Uni-
versity of Wisconsin-Madison, Madison, WI, USA): wild-type strain DY1457 (MATα, ade6,
can1, ura3, leu2, his3, trp1) and Zn2+-transport-deficient strain ZHY3 ∆zrt1/∆zrt2 (MATα,
ade6, can1, his3, leu2, trp1, ura3, zrt1::LEU2, zrt2::HIS3). The plasmid pDDGFP-LEU2D was
a gift from Simon Newstead (Addgene plasmid # 58352). The plasmid pPICZ was used to
obtain the yeast α-factor secretion signal sequence and was obtained from ThermoFisher
Scientific (Waltham, MA, USA). For the culture media, Yeast Peptone Dextrose (YPD)
contained 1% (w/v) yeast extract, 2% (w/v) peptone, and 2% (w/v) glucose, which were
purchased from BactoTM, HIMEDIA, and Sigma, respectively. Synthetic Defined Culture
(SDC) medium was made with 1.7% (w/v) Zn2+-free Yeast Nitrogen Base (YNB-ZnSO4)
(Sunrise Science Products), 5% (w/v) (NH4)2SO4 (VWR), amino acid supplements with-
out uracil (-URA) (US Biological Life Sciences), and 2% (w/v) glucose (non-inducing) or
galactose (inducing) (Sigma), and then the media were adjusted to pH 4.2 with 10 mM
citric-Na3Citrate buffer (Fisher Scientific). Trace metal supplements, MnCl2 and FeCl3, were
purchased from Alfa Aesar, and EDTA was obtained from Fisher Scientific. For confocal
microscopy, Yeast Suspension Buffer (YSB) was used to slow the cells mobility; YSB was
made of 5 mM EDTA, 50 mM Tris-HCl pH 7.6, and 10% (v/v) glycerol.

2.2. Plasmid Construction

Two hZIP4 gene constructs were inserted into the yeast vector pDDGFP-LEU2D [35]:
the full-length hZIP4 gene (residues 1–647) and a truncated construct (mhZIP4) encoding
only the eight transmembrane segments (residues 328–647). The hZIP4 genes were preceded
by the yeast α-factor secretion signal sequence (Table 1) to enhance processing of the gene
product to the plasma membrane. The genes were cloned into the pDDGFP-LEU2D vector,
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which encodes a C-terminal GFP, by homologous recombination in yeast cells that were
transformed with the DNA insert and plasmid using the lithium acetate procedure [36].
Following insertion into the pDDGFP-LEU2D plasmid, the hZIP4 and mhZIP4 genes
encoded a fusion protein with an N-terminal α-factor secretion signal and a C-terminal
GFP under the control of a gal1 promoter [36]. As a result, protein induction was triggered
by replaced the liquid media to 2% galactose SDC media. Yeast colonies were selected on
SDC plates incubated at 30 for 3 days. Plasmid sequences were confirmed by sequencing
the entire gene.

Table 1. Primer sequences. Full-length and truncated hZIP4 primer sequences. Primers of hZIP4 and
mhZIP4 S. cere signal sequence.

Sequences Primer Sequence (5′-3′)

hZIP4 S. cere signal sequence forward ACCCCGGATTCTAGAACTAGTGGATCCCCCATGAGATTT
CCTTCAATTTTTACTGC

hZIP4 full-length overlap extension forward GAGAGGCTGAAGCTTACGTAGCGTCCCTGGTCTCGCTGGAGC

hZIP4 full-length overlap extension reverse GCTCCAGCGAGACCAGGGACGCTACGTAAGCTTCAGCCTCTC

hZIP4 S. cere signal sequence reverse AAATTGACCTTGAAAATATAAATTTTCCCCAGAACCACCGA
AGGTGATGTCATCCTCGTAC

Truncated hZIP4 S. cere signal sequence forward ACCCCGGATTCTAGAACTAGTGGATCCCCCATGAGATTTCC
TTCAATTTTTACTGC

Truncated hZIP4 full-length overlap extension forward GAGAGGCTGAAGCTTACGTACTGTACGGCTCCCTGGCCACGC

Truncated hZIP4 full-length overlap extension reverse GCGTGGCCAGGGAGCCGTACAGTACGTAAGCTTCAGCCTCTC

Truncated hZIP4 S. cere signal sequence reverse AAATTGACCTTGAAAATATAAATTTTCCCCAGAACCACCGA
AGGTGATGTCATCCTCGTAC

2.3. S. cerevisiae hZIP4 Protein Expression and Localization

The expression of hZIP4 or mhZIP4 protein in S. cerevisiae wild type and Zn2+-deficient
strains was assessed by quantifying the amount of GFP fluorescence after hZIP4 or mhZIP4
expression was induced by 2% (w/v) galactose as previously described [36]. Yeast cells
transformed with the empty vector were used as the control. After induction for 22–24 h,
cells were harvested at 3000× g for 5 min, washed, and resuspended in YSB to an OD600
of 6. GFP fluorescence was measured using a PerkinElmer VICTOR3 Multilabel Counter
using an excitation wavelength of 488 nm and an emission wavelength of 512 nm with
the microplate set to bottom read [36]. For confocal microscopy, induced cells were resus-
pended in YSB, and a drop of cell culture was spotted on a 1% agar pad (made with SDC
medium) on a glass slide. The agar pad was sealed with VALAP (1:1:1 parts of Vaseline,
lanoline, and paraffin) by cover slip [37]. Samples were focused with transmitted light at
10× magnification, then switched to blue light to estimate the gross localization of GFP.
Laser scanning confocal microscopy was performed on a Leica TCS SP5 confocal micro-
scope. Laser beams with 488 nm excitation and 503–530 nm emission wavelengths were
used for GFP. Single confocal sections and z-stack images were processed in ImageJ [36,38].

2.4. Measurement of Growth Curves

Yeast cells were transformed, grown, and harvested as above, then switched to 2%
(w/v) glucose or 2% (w/v) galactose SDC for measuring the growth under non-inducing
condition or inducing condition, respectively. Two Zn2+ concentrations (2 mM and 0.5 mM)
were applied to each condition. The liquid culture was incubated at 30 ◦C with 220 rpm
shaking for 30 h or 120 h starting at an initial OD600 of 0.1. Cell growth was monitored by
measuring OD600 as a function of time.
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3. Results
3.1. hZIP4 Was Heterologously Expressed in S. cerevisiae and Localized to the Plasma Membrane

GFP fused to the C-terminus of hZIP4 was used as a reporter to monitor expression and
localization of hZIP4 or the truncated mhZIP4 (hZIP4 membrane domain only) (Figure 2).
hZIP4–GFP (or mhZIP4–GFP) protein expression was induced upon addition of 2% (w/v)
galactose. GFP fluorescence was measured in wild type (DY1457) and ZHY3 (Zn2+ transport
deficient strain, ∆zrt1/∆zrt2). Background fluorescence values were taken using the
same conditions, except that cells were transformed with an empty vector as described
here [36]. In both wild-type and ZHY3 cells, hZIP4-GFP and mhZIP4-GFP were expressed
as indicated by the increase in fluorescence compared to the background empty vector
controls (Figure 3a). Expression levels in the Zn2+-transporter-deficient ZHY3 strain were
twice as high as in the wild-type DY1457 strain. Additionally, the truncated, membrane
domain hZIP4–GFP fusion expression was twofold higher than the full-length hZIP4–GFP,
regardless of the strain.

The cellular localization of hZIP4–GFP and mhZIP4–GFP was assessed using confocal
microscopy (Figure 3b). As expected, the fluorescence levels were low for both yeast
strains when transformed with the empty vector. In contrast, congruent with the total
fluorescence levels observed (Figure 3a), an increase in fluorescence was observed for
hZIP4–GFP and mhZIP4–GFP in both strains. Here, fluorescent rings on the periphery of
the cells indicated localization of the proteins to the plasma membrane of the yeast cells. In
cells expressing higher protein levels, some fluorescent protein accumulated in subregions
of the plasma membrane. This punctuated distribution pattern has been observed for other
proteins that localize in microdomains within the plasma membrane [39]. Considering that
fluorescence originating from the C-terminal GFP will only be observed if the full-length
protein is folded and that the protein is accumulated in the plasma membrane region, this
is supportive of the idea that the full-length proteins have been expressed. Together, these
results demonstrate that hZIP4–GFP and mhZIP4–GFP can be heterologously expressed
and then relocate to the surface of S. cerevisiae.

3.2. Role of hZIP4 in Growth Rate Control

To assess the impact of hZIP4–GFP and mhZIP4–GFP expressed in S. cerevisiae,
growth curves were measured with ZHY3 and wild-type strains. Both strains were trans-
formed with the yeast empty vector (EV), hZIP4–GFP, or mhZIP4–GFP. Growth curves
were obtained in liquid media under non-inducing (glucose) or inducing (galactose) con-
ditions with high (2 mM) or low (0.5 mM) Zn2+ (media was chelex-treated by adding
1 mM EDTA). Under the non-inducing condition, with high Zn2+ levels, growth curves for
ZHY3 or wild type transformed with the empty vector, and hZIP4–GFP and mhZIP4–GFP
plasmids were indistinguishable (Figure 4a). For both cell types, the lag phases were identi-
cal, and, during exponential growth, the doubling times (TD) were less than two hours. The
cells under these conditions looked healthy, while increases in fluorescence were observed.
When the same cells were grown under Zn2+-limiting conditions, differences between the
wild-type and Zn2+-transport-deficient mutant ZHY3 strains were observed (Figure 4b).
In Zn2+-deficient media, the growth curves of wild-type strain transformed with the
empty vector, and hZIP4–GFP and mhZIP4–GFP plasmids were similar to those seen in
Zn2+ replete media. However, for the ZHY3 strain transformed with the empty vector,
hZIP4–GFP or mhZIP4–GFP plasmids, the exponential growth rate in Zn2+-deficient me-
dia was significantly slower compared to the wild-type strain (Figure 4b). This result
was expected as the ZHY3 strain is missing both Zn2+ importers and grows slowly in
Zn2+-deficient media [40]. Quantitatively, TD for each of the transformed wild-type cells
remained at two hours, whereas TD for each of the transformed ZHY3 cells was more than
six hours in Zn2+-limiting media.
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Figure 2. (Top) hZIP4-GFP and mhZIP4-GFP plasmid construction. GFP was fused to C-terminal
of hZIP4 and mhZIP4 plasmids, respectively. hZIP4 or mhZIP4 was amplified and inserted into
pDDGFP-LEU2D vector with C-terminal fusion GFP as indicator. The expression of hZIP4 or mhZIP4
was induced by galactose. (Bottom) Plasmid maps of hZIP4 and mhZIP4. The full length of hZIP4
and mhZIP4 was cloned into pDDGFP-LEU2D vector with GFP at C-terminal. GAL1 promoter
allowed protein expression induced by galactose.
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Figure 3. hZIP4 and mhZIP4 expression in Saccharomyces cerevisiae wild-type strain (WT) DY1457
and Zn2+-transport-deficient strain (ZHY3). (a) Fluorescence measurements following 12-hour
protein induction. GFP fluorescent levels are indicated by fluorescence in arbitrary units (a.u.).
The background fluorescence was measured using cells transformed with the yeast empty vector
(EV) pDDGFP-LEU2D. Data represent the average ± SD (n = 9). * indicates statistically signifi-
cant increase in fluorescence for hZIP4 or mhZIP4 when compared to empty vector (EV) control.
** indicates statistically significant difference in fluorescence for mhZIP4 when compared to hZIP4
(t test: p-value < 0.05). (b) Cellular localization of hZIP4 and mhZIP4 expressed in WT and ZHY3.
All the transformed cells were 22-hour induced with galactose before visualization by confocal
microscopy. Cells transformed with the empty vector (EV) are shown as the control.

In contrast to non-inducing conditions where growth curves were similar for all vari-
ants, significant differences in growth curves were observed for ZHY3 and wild-type cells
upon hZIP4 or mhZIP4 protein expression when compared to the empty vector control,
under inducing (galactose) conditions (Figure 4c–f). In the presence of high levels of Zn2+

(Figure 4d,f), growth curves for the ZHY3 and wild type expressed with empty vector
were similar to those seen in non-inducing conditions. In contrast, induction of hZIP4
or mhZIP4–GFP for both strains resulted in cell growth that was significantly slower,
and it did not reach the exponential phase, compared to the cells transformed with the
empty vector. Expression of hZIP4–GFP in both wild-type and ZHY3 resulted in an even
slower lag phase than mhZIP4–GFP-expressing cells in inducing conditions and in Zn2+

replete media. In the presence of protein-inducing conditions and Zn2+-limited media
(0.5 mM Zn2+), wild-type cells transformed with the empty vector and grew significantly
faster than the ZHY3 strain (Figure 4c,e). Again, it was observed that heterologous ex-
pression of mhZIP4–GFP resulted in a significantly slower growth rate for both wild-type
(DY1457) and ZHY3 cells when compared to the empty vector (Figure 4c,e). In addition,
heterologous expression of hZIP4–GFP resulted in a larger decrease in cell growth when
compared to cells transformed with mhZIP4–GFP.
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Figure 4. Growth curve of ZHY3 and WT transformed with hZIP4 and mhZIP4. All cells were
cultured in synthetic defined culture (SDC) with glucose overnight. Cells were diluted to OD600
0.1 in SDC with glucose (non-inducing) or galactose (inducing) under Zn2+-deficient (0.5 mM) and
Zn2+-replete (2 mM) conditions. (a,b) ZHY3 and WT with hZIP4, mhZIP4, and EV in glucose.
(c,d) ZHY3 with hZIP4, mhZIP4, and EV in galactose. (e,f) WT with hZIP4, mhZIP4, and EV in
galactose. Experiments were measured twice independently.
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4. Discussion

hZIP4 is a plasma membrane protein expressed in various cell types including the
intestine and pancreas [7,8]. Mutations in hZIP4 lead to the lethal genetic disorder acro-
dermatitis enteropathica [41]. Therefore, maintenance of Zn2+ homeostasis is essential
for human health. Studies of ZIP4 expressed in mice, cultured cells, and X. laevis oocytes
have provided useful insights into the regulation of hZIP4, its metal substrate specificity,
and predicted metal transport pathway [8,17,23,24]. S. cerevisiae provides an attractive
alternative for heterologous expression of metal transporters because the metal homeostatic
mechanisms are well defined in yeast [27]. We report here the first yeast-based heterol-
ogous expression system for full-length and truncated hZIP4. Two hZIP4–GFP fusions,
one for the full-length transporter and one for the membrane domain only (mhZIP4),
were expressed in wild-type (DY1457) and Zn2+-transport-deficient (ZHY3) S. cerevisiae
strains. GFP fluorescence levels and confocal microscopy confirmed the successful heterol-
ogous expression and plasma membrane localization of the hZIP4–GFP and mhZIP4–GFP
fusion proteins.

The ZIP family of metal transporters has been shown to increase cytosolic Zn2+ levels
in vivo. Deletion of the two ZIP genes, zrt1 and zrt2, in S. cerevisiae produces a growth
phenotype sensitive to Zn2+-limited conditions. Thus, functional expression of hZIP4 in
the zrt1/zrt2 deletion strain S. cerevisiae ZHY3 was expected to restore its Zn2+-dependent
growth rate, as has been shown for a number of plant and fungal ZIP homologues that
have been expressed in ZHY3 [42–44]. Surprisingly, under our experimental conditions,
growth of ZHY3 expressing either full-length hZIP4 or the hZIP4 membrane domain was
initially similar, but later in the time course repressed in Zn2+-limited growth conditions.
Similarly, growth of the wild-type strain S. cerevisiae DY1457, which has normal growth on
both Zn2+-replete and Zn2+-deficient media, was repressed upon induction of hZIP4–GFP
or mhZIP4–GFP protein expression. The repressed growth rates observed upon expression
of hZIP4–GFP or mhZIP4–GFP could have been due to an increased metabolic burden
associated with heterologous membrane protein overexpression or toxicity of the expressed
protein in yeast.

Another interesting result derived from our yeast-based hZIP4 expression system
is that the truncated, membrane domain of hZIP4 was expressed and targeted to the
yeast plasma membrane and had the same effect on cell growth rate compared to the full-
length hZIP4. The large N-terminal ectodomain is cleaved under extended Zn2+ deficiency,
and mutations in the N-terminus have been identified in acrodermatitis enteropathica
cases [14]. The study by Kambe and Andrews demonstrated that the processed mouse
ZIP4, consisting of the membrane domain after ectodomain cleavage, was functional for
Zn2+ uptake in mouse and human cells [14]. However, a more recent study in HEK293T
cells showed that the truncated hZIP4 was significantly impaired for Zn2+ uptake [45]. Our
heterologous, yeast-based expression system is advantageous over mammalian cell lines
because the yeast system provides a well-defined metal transport background. S. cerevisiae
encodes two Zn2+ transporters, Zrt1 and Zrt2. Both of these transporters are deleted in
the ZHY3 strain. In addition, the yeast-based system has the advantage of overexpressing
heterologous membrane protein in large scale and can be easily monitored using GFP
levels and confocal microscopy, since the C-terminal GFP folds and becomes fluorescent
only if the upstream membrane protein integrates into the membrane. The yeast-based
hZIP4 expression system developed here could be a valuable platform to heterologously
overexpress integral membrane metal transporter proteins.

Among the advantages of using a yeast model system for membrane protein expres-
sion, recent studies have shown that S. cerevisiae is flexible in high-throughput fluorescent-
based eukaryotic membrane protein overexpression [32], and yeast is considered to be a
facile platform for high-throughput screening of protein inhibitors or activators [46]. Al-
though yeast-based screening may not be as accurate as mammalian cells due to differences
in post-translational modification and other physiological differences, yeast-based assays
are more facile for high-throughput screening by simply monitoring cell growth. Currently,
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there are no known drugs that target the hZIP4 transporter, and the yeast-based expression
for hZIP4 described here may provide a useful tool for screening molecules that activate or
inhibit the target hZIP4 protein.
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