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Abstract: Obesity has become a serious public health epidemic because of its associations with
chronic conditions such as type 2 diabetes mellitus, hypertension, cardiovascular disease, and
cancer. Obesity triggers inflammation marked by the secretion of low-grade inflammatory cytokines
including interleukin-6, C-reactive protein, and tumor necrosis factor-«, leading to a condition known
as “meta-inflammation”. Currently, there is great interest in studying the treatment of obesity with food-
derived bioactive compounds, which have low toxicity and no severe adverse events compared with
pharmacotherapeutic agents. Here, we reviewed the beneficial effects of the bioactive compounds known
as anthocyanins on obesity-induced inflammation. Foods rich in anthocyanins include tart cherries, red
raspberries, black soybeans, blueberries, sweet cherries, strawberries and Queen Garnet plums. These
anthocyanin-rich foods have been evaluated in cell culture, animal, and clinical studies, and found to
be beneficial for health, reportedly reducing inflammatory markers. One factor in the development of
obesity-related inflammation may be dysbiosis of the gut microbiome. Therefore, we focused this review
on the in vitro and in vivo effects of anthocyanins on inflammation and the gut microbiota in obesity.
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1. Introduction

Obesity, which has been rising in prevalence worldwide over the past several decades,
is now considered a public health epidemic. Obesity for adults is defined as a body
mass index of >30 kg/m? in Western populations, while the current Asia-Pacific guidelines
recommend using a lower body mass index of >25 kg/m? [1]. Obesity is linked to metabolic
conditions such as hyperglycemia and dyslipidemia, which are well-known risk factors for
developing chronic noncommunicable diseases, including hypertension, type II diabetes
mellitus (T2DM), cancer, and cardiovascular disease (CVD) [2]. Individuals with obesity
exhibit chronic low-grade systemic inflammation, which is characterized by increased
secretion of pro-inflammatory cytokines from adipose tissue, made dysfunctional by the
excessive accumulation of fat into the circulation; these cytokines include interleukin-6
(IL-6), C-reactive protein (CRP) and tumor necrosis factor-o« (TNF-«) [3].

Generally, treatments for obesity include lifestyle modification and pharmacotherapy
aimed at reducing body weight and alleviating inflammation [4]. Clinical guidelines
suggest a combination of lifestyle modification and pharmacotherapy [5]. However, such
medicines are associated with severe adverse events such as mental disorders and stroke,
and they are quite expensive [6,7]. Currently, there are many studies aimed at treating
obesity through dietary lifestyle modifications. Bioactive chemicals, particularly those that
are plant or animal-based compounds, have the potential to diminish the prevalence of
chronic disorders [8]. Some bioactive compounds are also classified as phytochemicals.
Phytochemicals such as polyphenols have antioxidant, anti-inflammatory, anti-obesity, and
anti-aging properties [9,10].
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2. Human Obesity: Its Causes and Consequences

The World Health Organization reports that “obesity has almost tripled globally since
1975”, highlighting that obesity has become a global epidemic. In 2016, more than 1.9 billion
of the world’s population were overweight; of these, over 650 million individuals were
classified as obese [11]. More importantly, the obesity epidemic is increasingly affecting
children, with an estimated 38.2 million children under the age of 5 years suffering from
obesity in 2019 [12]. The cornerstone of the disease of obesity is an energy imbalance that
occurs when energy consumption, particularly excessive fat and sugar intake, exceeds
energy expenditure. Currently, many individuals with extreme obesity lead a sedentary
lifestyle and eventually become bedridden. In fact, the continuous increase in noncom-
municable diseases such as T2DM, CVD, hepatic steatosis, neurodegenerative diseases,
biliary diseases, and certain cancers are directly linked to the increased prevalence of
human obesity [13]. Importantly, these obesity-related diseases also result in a shorter life
expectancy and premature death.

3. Obesity-Induced Inflammation

Obesity is associated with inflammation through increased pro-inflammatory cy-
tokine secretion resulting from inflammatory responses and altered metabolic homeostasis.
“Meta-inflammation” is a term used to describe chronic low-grade inflammation as a
response to obesity [13]. In obesity, excessive accumulation of fat in adipocytes causes
adipose tissue dysfunction [14]. Compared with non-obese individuals, the dysfunctional
adipose tissues in rodent models of obesity and humans with obesity secrete lower amounts
of adiponectin, which exerts an anti-inflammatory effect on the liver, skeletal muscle, and
adipose tissue. These dysfunctional tissues simultaneously secrete increased levels of pro-
inflammatory cytokines such as CRP, IL-6 and TNF-« [15], which disrupt the metabolic state
required to maintain immune homeostasis. Innate immune cells secrete several cytokines
and acute-phase proteins to the sites of inflammation [3,16]. In people with obesity, there is
a phenotypic switching from M2 macrophages to M1 macrophages in the adipose tissues.
M2 macrophages, which are anti-inflammatory, play a role in the maintenance of tissue
and are typical in the adipose tissues of lean individuals. By contrast, M1 macrophages
produce pro-inflammatory cytokines and thus contribute to the development of insulin
resistance [17]. An increase in M1 macrophages, which form a structure around adipocytes
and release pro-inflammatory mediators such as IL-1, IL-6, IL-12, TNF-«, and chemokines,
is part of the alteration in immune cell profile that is characteristic of obesity (Figure 1).
As a result, tissue damage to the liver, colon, and arterial walls may occur. One possible
underlying mechanism of obesity-induced inflammation is the activation of toll-like re-
ceptors (TLRs) of the innate immune system in obese patients, particularly TLR4, which
involves the activation of transcription factors such as nuclear factor kappa B (NF-«B) and
the production of pro-inflammatory markers [18,19].

In patients with prolonged obesity, there may be a switch from the innate immune
response to the adaptive immune response, leading to the onset of obesity-associated
chronic diseases. Thus, obesity-related chronic diseases can be prevented or delayed by
preventing long-term obesity [16]. Below we review the nutraceutical and pharmaceutical
effects of anthocyanins that might be beneficial for treating obesity-related inflammation.
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Figure 1. Hallmark of meta-inflammation. The major cause of obesity is a positive energy balance
between energy intake and energy expenditure leading to meta-inflammation, a chronic low-grade
inflammatory condition.

4. Anthocyanins

Anthocyanins are water-soluble pigments within the phenol class of compounds. They
are abundant in nature, and can be found in vegetables, fruits, and flowers. Anthocyanin
pigments in plants occur in the form of glycosides. All anthocyanins play a significant role
in preventing chronic noncommunicable diseases.

4.1. Chemistry of Anthocyanins

Anthocyanins are considered to be flavonoids, although they have a positive charge at
the oxygen atom of the C-ring of the fundamental flavonoid structure. Such a compound is
also called the flavylium (2-phenylchromenylium) ion. The general molecular structure
of anthocyanins is shown in Figure 2. Anthocyanins are derived from flavanols, but with
a flavylium ion lacking a ketone oxygen at the 4-position (Figure 3) [20]. The empirical
formula for the flavylium ion of anthocyanin is Ci5H;10* with a molecular weight of
207.24724 g/mol [21].

Figure 2. Fundamental structure of anthocyanin. (Drawn using the tool ACD/ChemSketch, version
2021.2.1, Advanced Chemistry Development, Inc., Toronto, ON, Canada).
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Figure 3. Two-dimensional structure of a flavylium ion. (Drawn using the tool ACD/ChemSketch,
version 2021.2.1, Advanced Chemistry Development, Inc., Toronto, ON, Canada).

4.2. Bioavailability of Anthocyanins

The majority of bioactive compounds in functional foods have been linked to lower
risks of chronic conditions including CVD and T2DM [8]. Some bioactive compounds,
such as polyphenols, are also phytochemicals. Polyphenolic compounds have antioxidant,
anti-inflammatory, anti-obesity, and anti-aging properties [9,10]. Apart from the overall content
and biological functions of bioactive components, bioavailability is also an important factor. The
term “bioavailability” is defined by the US Food and Drug Administration as the rate and extent
to which an active ingredient is absorbed from a drug product and becomes available at the
site of action, and includes metabolism and excretion [22]. The anthocyanins have exhibited
low bioavailability in animal studies, as indicated by low systemic concentrations [23-25].
Examinations of plasma after intake of anthocyanin-rich foods such as blackcurrant juice,
red wine, and strawberries, have revealed that anthocyanins have limited bioavailability in
humans as well [26-28]. Previous research in both humans and animals has established that the
low bioavailability of anthocyanins is attributable to their limited absorption into the circulation
and significant elimination in urine and feces.

In contrast, a study on the phytochemical uptake following human consumption of the
Montmorency tart cherry, which is rich in anthocyanins, has shown that anthocyanin metabolites
are most bioavailable in the plasma at 1-2 h post consumption, indicating that anthocyanins
might be rapidly absorbed [29]. Moreover, a literature survey on the bioavailability of antho-
cyanins and anthocyanin-containing foods among humans by Manach et al. (2005), found that
the bioavailability of anthocyanins is generally poor, although they may be rapidly absorbed
at first. Multiple authors, as cited by Manach, et al. (2005), note that anthocyanins are absorbed
rapidly in a manner consistent with stomach absorption, but the absorption efficiencies
were very poor with plasma concentrations approximately six orders of magnitude lower
than the ingested dose. Furthermore this small absorbed fraction was rapidly eliminated via the
urine [30]. However, there are novel technologies that can be utilized to increase anthocyanin
bioavailability, as discussed below.

4.3. Stability of Anthocyanins

The stability of anthocyanin pigments are affected by pH, light, temperature, and
structure [20]. Anthocyanins change color in response to different pH levels. Under
acidic conditions, anthocyanins may appear as the red-colored flavylium ion, while under
alkaline conditions, they change to the blueish color of quinoidal bases [31]. Tempera-
ture also affects anthocyanin color. In higher solution temperatures, anthocyanins can
become less stable due to coupled oxidation reactions of peroxidase and hydrogen peroxide
(HxO») [32]. The food industry offers many different fruit and vegetable products that are
rich in anthocyanins, such as juices and supplements. However, industrial anthocyanin-
containing products are often subjected to thermal processing and other common food
processing methods that can decrease stability and total anthocyanin content [33]. In the
last decade, novel food-processing technologies such as high pressure processing (HPP),
high hydrostatic pressure (HHP), and pulsed electric fields (PEF) have been developed
that may help prevent the loss of color, total anthocyanin content, and potential health
benefits of anthocyanins [34]. To prevent the loss of potential health benefits specifically, we
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suggest the application of the following novel technologies in food processing: A previous
study reported that HPP treatment of blueberry juice led to minor changes in ascorbic
acid, total phenolics, anthocyanin stability, and total antioxidant capacity compared with
fresh blueberry juice because the pressure-time conditions were maximized at a maximum
temperature of 42 °C [35]. Encapsulation technology can also protect a bioactive molecule
such as anthocyanin from the effects of oxygen, light, or other factors. Spray-drying is a
common technique used for the encapsulation of compounds [36]. An extract of cultivated
purple flesh potato (PFPE) was encapsulated by spray-drying with maltodextrin (MD) as
the encapsulating agent. The constant degradation rate and bioavailability of anthocyanins
within an in vitro gastrointestinal digestion model are significantly higher in PFPE-MD
than in non-encapsulated PFPE because powder encapsulation protects the stable colorant
and health benefits of anthocyanins [37]. Kanokpanont et al. (2018) demonstrated that
anthocyanin-encapsulated alginate/chitosan beads derived from spray-dried mulberries
were stable under gastric conditions that simulated gastric fluid conditions or enhanced
the bioavailability of anthocyanins [38]. In conclusion, novel technologies such as microen-
capsulation and HPP treatment are an effective strategy to preserve the biological functions
and nutrient content of anthocyanins in food processing.

Anthocyanins comprise a subclass of phenolic phytochemicals. They are water-soluble
compounds with orange, red, purple, and blue colors, and are present in fruits and veg-
etables such as pomegranates, berries, red grapes, purple tomatoes, and red cabbage. The
most common types of anthocyanins are pelargonidin, cyanidin, peonidin, petunidin,
delphinidin, and malvidin (Table 1) [21,39,40]. Anthocyanins have been investigated as
bio-functional molecules possessing anti-inflammatory, antioxidant, and chemoprotective
properties, and they play significant preventive roles in chronic diseases [41].

Table 1. Colors and sources of the six most well-studied anthocyanins [21,39,40].

Main
Anthocyanins Color pH Ranges Sources
Pelareonidin Red, orange Low pH Radish, pomegranate, red
& . . (pH<3) potato, ripe raspberry
- Red, reddish-purple oy to neutral pH Blackberry, red sweet
Cyanidin potato, purple corn, tart
Y o o (PH3-7)
and sweet cherry
Peonidin Purplish-red Neutral pH Sweet potato, cranberry,
€0 . (pH 6-7) grape, purple corn
Petunidin Purple, dark red Low to high pH Blackcurrant, black bean,
. . (pH 3-8) red berry
Delohinidin Purple, blue-reddish Neutral to high pH Pomegranate, black bean,
P . . (pH 7-11) purple tomato
1 Purple Neutral pH Blueberry, red wine,
Malvidin . (pH 7-8) bilberry, mulberry

5. Effects of Anthocyanins in Obesity-Associated Inflammation

The abundant natural anthocyanins are well-characterized antioxidants that have
been shown to eliminate reactive oxygen species (ROS) in cells, animals, and clinical
studies [42-48].

In cell culture studies, strawberries were found to be rich in anthocyanins and contain
a high antioxidant capacity. Heo and Lee (2005) showed that strawberries, as compared
with bananas and oranges, dramatically reduced oxidative-stress-induced neurotoxicity in
PC12 cells treated with H,O, [42].

In animal studies, the purple sweet potato color (PSPC) protected against ROS pro-
duction and restored glutathione content in high-fat diet (HFD)-induced mice [43,44].
Blackberry and blueberry anthocyanin (BLA and BBA) supplementation reduced oxidative
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stress and inflammation by increasing first-line defense antioxidants such as superoxide
dismutase (SOD) and glutathione peroxidase (GPx). Furthermore, supplementation of
BLA and BBA for 12 weeks prevented weight gain in HFD-induced obesity in C57BL/6
mice [45]. Mulberry and cherry anthocyanins reduced body weight and improved SOD
and GPx activities in HFD-fed mice [46]. In clinical studies, healthy volunteers who sup-
plemented their daily diet with 500 g of strawberries rich in anthocyanins for 1 month
lowered their risk for developing CVD, as assessed by improvements in lipid profiles and
antioxidant activity [47]. Li et al. (2015) studied participants with T2DM who received
purified anthocyanin supplements for 24 weeks and found that anthocyanin improved
lipid profiles and enhanced antioxidant capacity, as well as insulin sensitivity [48].

In summary, anthocyanins play a role as antioxidants that can eliminate ROS and help
prevent chronic diseases including CVD and T2DM. Additionally, anthocyanins can reduce
pro-inflammatory markers associated with obesity, such as CRP, IL-6, and TNF-« (Table 2).

Table 2. Effects of anthocyanins on obesity-associated inflammation [49-63].

Pelargonidin 3-rutinoside

Food Source Bioactive of Anthocyanins Effects Study Group  Reference
Cyanidin-3-O-glucoside
) Cyanidin-3-O-glucosyl- Adipose stem
Tart cherries ruy’;in oside & y Reduced IL-6 level pcells [49]
Cyanidin-3-O-rutinoside
Reduced NO, COX-2, IL-13, IL-6 RAWZ647
Red raspberries Identified anthocyanins N/A expression h ) [50]
Suppressed NF-kB pathway macrophages
Cyanidin-3-O-glucoside Reduced TNF-« secretion
Black soybeans Pelargonidin 3-glucoside Increased adiponectin and 3T3-L1 cells [51]
Delphinidin-3-glucoside insulin sensitivity
Reduced NO level
Sweet cherry Cyanidin 3-O-rutinoside Decreased COX-2 and iNOS RAW 264.7 [52]
expression macrophages
Blueb Improved TNF-oc and IL-13 gene Male Wist "
lue er:yt. Phenolics and anthocyanin expression afe d E;}gra S [53]
Stupplementation Improved gut microbiota €
Cyanidin-3-O-glucoside
Cyanidin-3-O-glucosyl- . .
Tart cherry extract rutinoside Decreased IL-6 andleptin levels Obese mice [54]
Cyanidin-3-O-rutinoside
Tart cherry seed Reduced TNF-«, IL-1p and IL-6 .
o . . Male Wistar rats
powder and tart Identified anthocyanins N/A expression fed HFD [55]
cherry juice Suppressed NF-kB pathway €
Cye.mld.l n-3-O-glucosyl- Decreased body weight Male C57BL/6
rutinoside Decreased IL-6 and TNF-« gene i
Sweet cherry Cyanidin-3-O-rutinoside pression in WAT & mice [56]
Pelargonidin 3-rutinoside expressio fed HFD
Reduced COX-2 in the colon and
P : ! visceral adipose tissue Balb/c ob
omegranare pee Ellagitannins and anthocyanins Reduced mRNA levels of IL-1§3 aib/c obese [57]
extract in the visceral adipose tissue mice
Reduced IL-6 in the colon
Pelargonidin 3-glucoside
Pelargonidin Overweight
Strawberrybeverage 3-malonylglucoside Improved hs-CRPand IL-6 adul tsg [58]
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Table 2. Cont.

e Cyanidin-3-glucoside e  Improved visceral fat
Black soybean testa Delphinidin-3-glucoside e  Improved plasma Overweight and [59]
extracts e  Petunidin-3-elucoside e  Lipid profiles obese adults
& e  Reduced TNF-oc and MCP-1
Reduced LDL level, plasma glucose, hypl\e/zligjl};ive
Queen garnet plum Cyanidin 3-O-3-D-glucoside insulin, C-peptide, le}?tln and GLP-1 obese/overweight [60]
concentrations
adults
e  Cyanidin-3-2G-
. glucosylrutinoside )
Authent}c 'tart e  Cyanidin-3-glucoside Reduced TNF-a and MCP-1 Overweight and [61]
cherry juice -3 . obese adults
herry j Cyanidin-3-rutinoside b dult
e  Peonidin-3-rutinoside
. Obese healthy
o . No effect on inflammatory markers
Strawberry Identified anthocyanins N/A (e.g., IL-6, IL-1p, TNF-a) males [62]
and females
Commercially . Overweight
available red Identified anthocyanins N/A No effe(?t on body weight and plasma or obese [63]
orange juice inflammatory markers females

NO = nitric oxide; iNOS = inducible nitric oxide synthase; COX-2 = cyclooxygenase-2; IL = interleukin; NF-kB
= nuclear factor-kB; TNF = tumor necrosis factor; HFD = high-fat diet; N/A = not applicable; hs-CRP = high-
sensitivity C-reactive protein; MCP-1 = monocyte chemoattractant protein-1; LDL = low-density lipoprotein;
GLP-1 = glucagon-like peptide 1.

5.1. Anti-Inflammatory Effect

Obesity has been linked to chronic low-grade systemic inflammation. Secretion of inflam-
matory cytokines such as IL-6 and TNF-« by adipocytes and macrophages in adipose tissue
have been shown to activate the inflammatory response [64]. Alleviating inflammation can be
achieved by decreasing the release of pro-inflammatory cytokines. Several studies have been
conducted using cell cultures and animal models, as well as clinical trials in humans, to examine
the impact of anthocyanin-rich foods on obesity-induced inflammation.

In vitro studies have shown that anthocyanin-rich fruit extracts can moderate inflam-
matory cytokines associated with obesity. Tart cherries rich in anthocyanins significantly
reduced the expression of the IL-6 gene in lipopolysaccharide (LPS)-induced adipose stem
cells [49]. Consistent with other studies, RAW264.7 mouse macrophage cells that were
induced with both Escherichia coli LPS and recombinant interferon-c, and treated with
anthocyanin-rich fractions of red raspberries at concentrations of 150 and 200 pug/mL,
showed reduced nitric oxide (NO), cyclooxygenase-2 (COX-2), IL-1p3, and IL-6 expression,
as well as inhibition of the NF-kB inflammatory pathway [50]. Likewise, treatment with
black soybean extract decreased TNF-« production, but increased adiponectin secretion and
insulin sensitivity, in 3T3-L1 adipocytes [51]. In another study, sweet cherry phenolic-rich
extract significantly reduced NO levels and decreased COX-2 and inducible nitric oxide
synthase (iNOS) expression in LPS-induced adipose stem cells [52].

Among the animal studies, administration of a blueberry supplement containing
phenolics and anthocyanins also decreased the expression of the TNF-oc and IL-13 genes
in HFD-fed male rats [53]. Anthocyanin-rich tart cherry extract effectively improved
the pro-inflammatory cytokine profile by reducing IL-6 and leptin levels in an obese
mouse model [54]. Similarly, tart cherry reduced TNF-«, IL-1f3, and IL-6 expression
and suppressed NF-kB inflammatory expression in HFD-induced obese rats after a 17-
week intervention with tart cherry seed powder and tart cherry juice [55]. Therefore,
tart cherries have the potential to prevent obesity-induced inflammation. Purified sweet
cherry anthocyanins at 200 mg/kg in mice reduced body weight by approximately 11.2%
and decreased the expression of the IL-6 and TNF-o genes in white adipose tissue (WAT),
slowing down the progression of obesity in these mice [56]. In another study, a pomegranate
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peel extract (PPE) with high polyphenol content decreased COX-2 and IL-1 mRNA levels
in visceral adipose tissue [57].

Anthocyanins have been shown in animal studies and cell cultures to reduce obesity-
related inflammation. Therefore, many studies have aimed to evaluate the effect of an-
thocyanins on inflammation associated with obesity in humans. Strawberry antioxidants
containing 81.65 mg anthocyanins/10 g of freeze-dried powder in a beverage significantly
attenuated the postprandial inflammatory response by decreasing high-sensitivity CRP
and IL-6) in an overweight population, following the consumption of a high-carbohydrate,
moderate-fat meal (HCFM) [58]. Black soybean testa (BBT) extracts rich in three major
anthocyanins reduced visceral fat, and improved plasma lipid profiles and inflammatory
markers including TNF-a« and monocyte chemoattractant protein-1 in overweight/obese
adults [59]. Bhaswant et al. (2019) discovered that the high anthocyanin content in Queen
Garnet plum juice significantly reduced IL-2, IL-6, IL-13, and TNF-« levels in mildly hy-
pertensive overweight or obese people. Queen Garnet plum juice also reduced the levels
of low-density lipoprotein, plasma glucose, insulin, C-peptide, leptin, and glucagon-like
peptide-1 [60]. Authentic tart cherry juice (TCJ) at 240 mL of 100% TCJ (equivalent to 50 tart
cherries) reduced TNF-a and monocyte chemoattractant protein-1 (MCP-1) levels compared
to placebo after 4 weeks of consumption in overweight and obese individuals [61].

Both in vitro and in vivo studies have reported that foods rich in anthocyanins re-
duced inflammation associated with obesity, including tart cherries, PPE, and strawberry
beverages. By contrast, some clinical studies found no anti-inflammatory effect of antho-
cyanins in people with obesity [62,63]. Zunino et al. (2012) showed that people consuming
80 g/serving of freeze-dried strawberry powder mixed with food and drinks for 3 weeks
had no effect on inflammatory markers (IL-6, IL-13, TNF-«) [62]. Similarly, consumption of
commercially available red orange juice (250 mg anthocyanins/day) for 12 weeks did not
show any effect on body weight or plasma inflammatory markers [63]. Possible reasons
for the lack of beneficial effects of anthocyanins on obesity-induced inflammation in these
studies are the use of relatively low dosages and the short length of the intervention.

5.2. Regulating the Gut Microbiota

Microbes living in the gut play a role in the onset of obesity [65]. Obesity is associated
with changes in the gut microbiota that lead to gut dysbiosis. People with obesity have
lower proportions of bacteria from the phylum Bacteroidetes, such as Bacteroides spp., and
higher proportions from the phylum Firmicutes, such as Bacillus spp. and Clostridium.
Firmicutes bacteria are distinguished by higher endotoxic activity of membrane-bound LPS
compared with other gram-negative bacteria, thereby inducing more systemic inflammation.
Furthermore, obesity promotes the initiation of numerous pro-inflammatory pathways by
causing TLR4-mediated inflammatory responses that involve activation of the transcription
factor NF-«B and the production of pro-inflammatory mediators such as IL-6, IL-1, and
TNEF-o [65-68]. A previous study reported that pomegranate peel extract (PPE) is rich in
anthocyanins. Treatment with a PPE was shown to modulate the gut microbiota in obese
mice by lowering COX-2 levels in the colon and visceral adipose tissue, as well as mRNA
levels of IL-1 and IL-6 in the colon [57]. Another study in mice demonstrated that cranberry
extract at 200 mg/kg reduced the abundance of Firmicutes but enhanced that of Bacteroidetes,
and concluded that anthocyanin-rich cranberry extract protects dysbiosis of the microbiota
in mice with diet-induced obesity [69].

5.3. Molecular Pathway for Effects of Anthocyanin on Obesity-Associated Inflammation

NF-«kB is a family of inducible transcription factors that regulate genes involved in
inflammatory responses and includes NF-«B1 (p50), NF-kB2 (p52), RelA, RelB, and c-
Rel [70,71]. Under normal conditions, an NF-«B heterodimer (p50-RelA) is retained in an
active form through interaction with inhibitory kappa B (IxB). The NF-«B pathway can
be activated by extracellular stimuli such as ROS and a HFD. Upon stimulation, IkB is
phosphorylated by the IkB kinase complex, then subsequently ubiquitinated and degraded
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by the 265 proteasome, allowing the p50-RelA heterodimer to translocate into the nucleus,
where it promotes the expression of proinflammatory genes including TNF-«, IL-1x, and
IL-1f3. These genes are pathogenic in a variety of inflammatory disorders, such as obesity,
T2DM, and CVD [71-73]. Vendramea et al. (2013) reported that an 8-week freeze-dried
wild-blueberry-powder-enriched diet containing 1.5% w/w of total anthocyanin content
significantly reduced the expression of genes encoding the inflammatory mediators NF-«B,
TNF-«, IL-6, and CRP, both in the liver and abdominal adipose tissues, in obese Zucker
rats [74]. This study concluded that anthocyanins modulated the molecular pathway of the
inflammatory process, i.e., the expression of transcription factor NF-«B.

TLRs are a class of pattern recognition receptors that play a key role in the innate
immune system [75]. The binding of LPS to the TLR4 receptor promotes the activation of
M1 macrophages, which release pro-inflammatory cytokines [76]. Upon binding of TLR4
ligands, TLR4 recruits the adaptor molecule myeloid differentiation factor 88 (MyD88),
which then recruits IL-1 receptor-associated kinase-4 (IRAK-4). Subsequently, IRAK-4
recruits TNF receptor-associated factor 6 (TRNF®6) to the receptor complex. When IRAK-
4 is phosphorylated, the IRAK-4-TRAF6 complex separates from the receptor complex
to conjugate with transforming growth factor-f-activated kinase 1 (TAK1) [77]. Upon
activation, TAK1 causes IkB to be phosphorylated and ubiquitinated, leading to degradation
of IkB. As a result, the NF-kB signaling pathway is activated and inflammatory mediators
are released [78]. Karunarathne et al. (2020) studied anthocyanins isolated from Hibiscus
syriacus L. in RAW 264.7 macrophages and found that anthocyanin inhibits TLR4 in LPS-
induced cells. Consequently, phosphorylation of MyD88 and IRAK4 is decreased, leading
to the inhibition of the NF-«B signaling pathway [79]. Anthocyanins from black soybeans
were shown to inhibit IkB phosphorylation, thereby inhibiting NF-kB nuclear translocation
and activation in Helicobacter-pylori-induced inflammation in human gastric epithelial cells.
As a result, NO and COX-2 gene expression was significantly attenuated [80]. In pro-
inflammatory conditions, excess NO is converted to a pro-oxidative role, while COX-2
leads to the formation of pro-inflammatory mediators such as prostaglandin E2 [81]. These
mechanisms of NF-kB pathways act as a link between oxidative stress and inflammation.
Anthocyanins prevent NF-kB activation, thus suppressing the entire downstream cascade,
including proinflammatory cytokines, chemokines, adhesion molecules, NO, and COX-2.

SUMMARY POINTS

e  Obesity is associated with meta-inflammation, a newly coined term for chronic low-
grade inflammation as a response to obesity.

e  The state of inflammation in obesity is associated with adipose tissue dysfunction,
which increases the secretion of pro-inflammatory cytokines such as TNF-«, CRP, and
IL-6. Additionally, increased numbers of M1 macrophages in adipose tissue can release
pro-inflammatory cytokines.

e  Anthocyanins decrease the production of inflammatory cytokines in obese animal
models, in studies conducted both in vitro and in vivo.

e  Anthocyanins might have potential to be a treatment for obesity-related inflammation
and chronic diseases.

e  Be aware that the bioavailability, including metabolism and excretion, of anthocyanins
is low. Therefore, future research is needed to increase the bioavailability of antho-
cyanins to improve their beneficial anti-inflammatory effects in people with obesity.

6. Conclusions

We reviewed the benefits of anthocyanin-rich foods such as sweet cherries, black soy-
beans, and strawberries on obesity prevention, including antioxidant and anti-inflammatory
effects, and regulation of the gut microbiota in cell cultures, animal models, and human
clinical trials. As shown in Figure 4, dietary anthocyanins may have anti-obesity effects
and may reduce the risks of the most common chronic noncommunicable diseases.
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Figure 4. The anti-obesity effects of anthocyanins. (a) Anthocyanins are antioxidants that eliminate
reactive oxygen species (ROS) by increasing antioxidant enzymes such as superoxide dismutase
(SOD) and glutathione peroxidase (GPx). (b) Anthocyanins prevent nuclear factor kappa B (NF-«kB)
activation, thus decreasing the entire downstream cascade of pro-inflammatory mediators such as
C-reactive protein (CRP), interleukin (IL)-6, and tumor necrosis factor (TNF)-«. (c) Anthocyanins
also improve gut dysbiosis, restoring a balanced gut microbiota.
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