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Abstract: Molecular chaperones such as Hsp70 and Hsp90 help fold and activate proteins in impor-
tant signal transduction pathways that include DNA damage response (DDR). Previous studies have
suggested that the levels of the mammalian APE2 exonuclease, a protein critical for DNA repair, may
be dependent on chaperone activity. In this study, we demonstrate that the budding yeast Apn2
exonuclease interacts with molecular chaperones Ssal and Hsp82 and the co-chaperone Ydjl. Al-
though Apn2 does not display a binding preference for any specific cytosolic Hsp70 or Hsp90 paralog,
Ssal is unable to support Apn2 stability when present as the sole Ssa in the cell. Demonstrating
conservation of this mechanism, the exonuclease APE2 also binds to Hsp70 and Hsp90 in mammalian
cells. Inhibition of chaperone function via specific small molecule inhibitors results in a rapid loss of
APE2 in a range of cancer cell lines. Taken together, these data identify APE2 and Apn2 as clients of
the chaperone system in yeast and mammalian cells and suggest that chaperone inhibition may form
the basis of novel anticancer therapies that target APE2-mediated processes.
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1. Introduction

The well-conserved Hsp70 and Hsp90 molecular chaperones are critical for the folding,
maturation and activity of a large number of “client” proteins [1]. Client proteins are found
in diverse cellular pathways, and consequently, chaperones support the maintenance of
apoptotic signaling, angiogenesis, autophagy, senescence [1-3]. Although prokaryotes
possess a single prototypical Hsp70 and Hsp90 (DnaK and HtpG, respectively), eukary-
otes possess several paralogs that differ in their subcellular localization and expression
profile [4-6]. In budding yeast, the main cytosolic forms of Hsp70 are Ssal—4, which arose
from multiple gene duplication events. Ssal and 2 are constitutively expressed at high
levels, whereas Ssa3 and 4 are highly heat inducible [7-9]. The Ssa paralogs are semi-
redundant, evidenced by the fact that yeast remain viable as long as they have one paralog
expressed at constitutively high levels [7-9]. Despite their relatedness, recent studies
suggest that the Ssa paralogs have slightly different client binding profiles [4]. Similarly, hu-
mans encode 13 isoforms of Hsp70s from a multigene family with major cytosolic paralogs
being Hsp A8 (constitutive) and HspA1A/HspA1lL (inducible) [10-12]. Hsp90 also exists
in various forms in cells. In mammalian cells, the inducible Hsp90a and constitutively
expressed Hsp90b are the major species in the cytosol, equivalent to yeast Hsp82 and Hsc82,
respectively [5,13]. A major stress that cells must deal with to survive are challenges to
genome integrity in the form of DNA damage [14]. The sensing of DNA damage and its
repair are mediated by an array of proteins that together form the DNA damage response
(DDR) pathway [15]. While chaperones support many key signal transduction pathways
in the cell, evidence is building to support a particularly critical role for chaperones in
the detection and repair of DNA damage. Hsp70 and Hsp90 support DDR by activating
and stabilizing a huge number of DDR proteins including p53, CHK1, FANCA, FANCD2,
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BRCA1/2, MRN and RNR complexes [16-18]. A common type of DNA damage is the loss
of a base from genomic DNA, known as apurinic/apyrimidinic (AP) sites. The repair of
such sites involves the recruitment of the related APE1 and APE2 exonucleases (Apnl and
Apn2 in yeast) [19-24]. Although APE1 and APE2 display functional overlap, APE2 pos-
sesses an extra C-terminal domain that is absent in APE1 and lacks any redox activity [22].
A recent study examined global protein abundance and epigenetic changes in response
to Hsp90 inhibition. Several DDR proteins were among those found to decrease upon
ganetespib and AUY922 treatment, including XRCC1, XPC and APE2 [25]. While APE1
becomes associated with Hsp70 during DNA repair to augment endonuclease activity, no
such mechanistic connection between chaperones and APE2 has been identified [26]. In
this study, we demonstrate a novel interaction between APE2/Apn? and the Hsp70-Hsp90
system in yeast and mammalian cells. Although there appears to be no preference for which
Hsp90 or Hsp70 paralog APE2/Apn2 bind, yeast Apn2 is destabilized in yeast lacking Ssa2,
3 and 4. Inhibition of Hsp90 via ganetespib or Hsp70 via JG-98 triggered a surprisingly
rapid reduction of APE2 in a range of cancer cell lines. Understanding the intricacies of
chaperone—endonuclease interactions could lead to more targeted and less toxic cancer
therapeutics that exploit the genomic instability often seen in tumor cells.

2. Materials and Methods
2.1. Yeast Strains and Growth Conditions

Yeast cultures were grown in either YPD (1% yeast extract) US Biological Life Sciences,
Swampscott, MA, USA, 2% glucose (VWR, Radnor, PA, USA), 2% peptone (Thermo Fisher
Scientific, Waltham, MA, USA) or in SD (0.67% yeast nitrogen base without amino acids
and carbohydrates (US Biological Life Sciences), 2% glucose), supplemented with the
appropriate nutrients to select for plasmids and tagged genes. Escherichia coli DH5x was
used to propagate all plasmids. E. coli cells were cultured in Luria broth medium (1% Bacto
tryptone, 0.5% Bacto yeast extract, 1% NaCl) and transformed to ampicillin resistance by
standard methods. Hsp70 isoform plasmids were transformed into yeast strain ssal—<4A [27]
using PEG/lithium acetate. After restreaking onto media lacking leucine, transformants
were streaked again onto media lacking leucine and containing 5-fluoro-orotic acid (5-FOA)
(US Biological Life Sciences), resulting in yeast that expressed Hsp70 paralogs as the sole
cytoplasmic Hsp70 in the cell. For a full description of yeast strains see Table 1 and for
plasmids see Table 2.

2.2. Purification of HA-Tagged Apn2 from Yeast

The protocol followed for HA-IP was taken from [28] with slight modifications. Cells
transformed with control pRS316 plasmid or the plasmid-expressing HA-tagged Apn2 [26]
were grown overnight in SD-URA media and then re-inoculated into a larger culture of
selectable media and grown to an ODggg of 0.800. Cells were harvested, and HA-tagged
proteins were isolated as follows. Protein was extracted via bead beating in 500 puL protein
extraction buffer (50 mM Na-phosphate pH 8.0, 300 mM NaCl, 0.01% Tween-20). Then,
1000 pg of protein extract was incubated with 25 uL anti-HA magnetic beads (Thermo
Fisher Scientific) at 30 °C for 30 min. Anti-HA beads were collected by magnet and then
washed 3 times with TBS-T and 2 times with protein extraction buffer. After the final wash,
the buffer was aspirated, and beads were incubated with 75 pL protein extraction buffer,
and 25 pL 5x SDS-PAGE sample buffer sample was denatured for 5 min at 95 °C and boiled
for 10-15 min. Next, the beads were collected via magnet, and the supernatant-containing
purified HA-Apn2 was transferred to a fresh tube. Then, 20 uL of each sample was analyzed
on SDS-PAGE.

2.3. Mammalian Cell Culture and Drug Treatment

The protocol used for transfection and drug treatment was taken from [22] with slight
modifications. HEK293T cells were cultured in Dulbecco’s modified Eagle’s minimal essen-
tial medium (DMEM,; Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine
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serum (FBS; Invitrogen), 100 U/mL penicillin (Invitrogen) and 100 pg/mL streptomycin
(Invitrogen). L-GlutaMAX nutrient mixture (Gibco, Waltham, MA, USA, Cat#31765-035)
(10% FBS, 100 units of penicillin and 100 units of streptomycin) was used to culture PC3,
RPMI 1640 based medium (10% FBS, 100 units of penicillin and 100 units of streptomycin,
1% L-GlutaMAX-I) for LNCaP and DMEM-based medium (10% FBS, 100 units of peni-
cillin and 100 units of streptomycin, 1% L-GlutaMAX-I) for MCF7. All cell lines were
incubated at 37 °C in a 5% CO,; containing atmosphere. Cells were seeded in 6-well plates
at 1 x 10°/2 mL per well one day prior to transfection. Cells were transfected by APE2
expression plasmid pcDNA-APE2-HA-BCP [29] with Lipofectamine3000 transfection kit
(Invitrogen, Cat#L.3000-015), and 2.5 pug of DNA and 7.5 uL of Lipofectamine3000 were used
for each well. Briefly, diluted Lipofectamine3000 and DNA plus P3000 with Opti-MEM
I (Gibco, Cat#31985-070) were mixed and incubated at room temperature for 15 min and
then added to cell culture dropwise. The cells were treated for 0, 2, 4, 8 and 16 h post 48 h
transfection with 10 uM JG-98, which is a Hsp70 inhibitor or 10 uM ganetespib (STA-9090,
Selleckchem, Houston, TX, USA, Cat#51159) for Hsp90 inhibition.

2.4. Transfections and Co-Immunoprecipitation in Mammalian Cells

The protocol used for transfection and drug treatment was adapted from [28] with
slight modifications. HEK293T cells or specific cancer cells such as PC3, LNCaP and MCF7
were either untransfected (mock) or transfected with plasmids for expression of HA-tagged
and/or V5-tagged proteins for constitutive HSPA8 and inducible HSPA1L and HSPA1A
using Lipofectamine 3000 (Thermo Fisher Scientific). After 48 h, the cells were washed with
1X PBS, and total cell extract was prepared from the cells using M-PER (Thermo Fisher
Scientific) containing EDTA-free protease and phosphatase inhibitor cocktail (Thermo
Fisher Scientific) according to the manufacturer’s recommended protocol. Protein was
quantitated using the Bradford Assay. HA-tagged proteins were purified as follows. First,
200 pg of protein extract was incubated with 25 uL anti-HA magnetic beads (Thermo Fisher
Scientific) at 30 °C for 30 min. Anti-HA beads were collected by magnet and then washed
3 times with TBS-T and 2 times with protein extraction buffer. After the final wash, the
buffer was aspirated, and beads were incubated with 75 uL protein extraction buffer, and
25 uL 5x SDS-PAGE sample buffer sample was denatured for 5 min at 95 °C and boiled
for 10-15 min. Next, the beads were collected via magnet, and the supernatant-containing
purified HA-APE2 was transferred to a fresh tube. Finally, 20 uL of each sample was
analyzed on SDS-PAGE.

2.5. Western Blotting

First, 20 ug of protein was separated by 4-12% NuPAGE SDS-PAGE (Thermo Fisher
Scientific). Proteins were detected using the following antibodies; anti-HA tag (Thermo
Fisher Scientific), Anti-FLAG tag (Sigma-Aldrich, St. Louis, MO, USA, USA #F1365),
anti-PGK (Thermo Fisher Scientific, #MA5-15738), anti-Ydj1 (Stressmarq Biosciences Inc.,
Victoria, BC, Canada, #SMC-166D), anti-HDJ2 (Thermo Fisher Scientific, #MA512748).
Blots were imaged on a ChemiDoc MP imaging system (Bio-Rad, Hercules, CA, USA).
After treatment with Super Signal West Pico Chemiluminescent Substrate (GE Healthcare,
Piscataway, NJ, USA). Blots were stripped and reprobed with the relevant antibodies using
Restore Western Blot Stripping Buffer (Thermo Fisher Scientific).

3. Results
3.1. Apn2 Interacts with Ydj1, Hsp82 and Ssal in Yeast

Previous studies suggested that inhibition of Hsp90 may lead to loss of APE2 in blad-
der cancer [25]. To determine whether there was a connection between yeast APE2 (Apn2)
and chaperones, we purified HA-tagged Apn2 from yeast and probed the complex with
anti-HA, anti-Hsp82, anti-Ssal, and anti-Ydj1 antibodies. We observed a clear association
with Ssal, Hsp82 and Ydjl (Figure 1A). There are four cytosolic Hsp70s in yeast, Ssal,
2, 3 and 4, which are highly similar to the amino acid sequence that arose from multiple



Biomolecules 2022, 12, 864

40f13

yeast gene duplication events [4]. While these paralogs have clear functional overlap, they
also display differential client preferences [4]. To determine whether all Ssa paralogs can
interact with Apn2, we performed co-immunoprecipitation experiments in WT BY4742
yeast cells (Table 1) expressing plasmids-HA-Apn2 and exogenous Flag-Ssal, 2, 3 or 4
(Figure 1B). In this context, Apn2 bound equally to all Ssa paralogs (Figure 1B). To query
whether all four Ssa paralogs could support Apn?2 stability, we examined the levels of
constitutively expressed HA-Apn2 in ssal—4A yeast, expressing only one of the four Ssa
proteins (Table 1). The levels of Apn2 were significantly decreased in yeast-expressing Ssal
as the sole Ssa paralog in the cell (Figure 1C,D). Co-chaperones of Hsp70 play an important
role in regulating chaperone activity and specificity [30]. We wondered whether Ydj1, a
major co-chaperone of Ssal-4, may support Apn2 levels in a similar way to its chaperoning
of the ribonucleotide complex [28]. To test this possibility, we compared the abundance of
Apn2 in WT yeast and those lacking Ydj1 (Table 1). In contrast to the regulation of RNR,
the lack of Ydj1 had minimal impact on Ape2 levels (Figure 1E,F).
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Figure 1. Apn2 interacts with Hsp82, Hsp70 and Ydjl in yeast. (A) Yeast cells expressing Apn-
HA were grown to mid-log phase at 30 °C. Lysate from these cells were analyzed by Western
blotting with an anti-HA, anti-Ssal, anti-Ydj1 and anti-Hsp82 antibody. Pgkl was used as a loading
control. Immunoprecipitation was performed using anti-HA magnetic beads, and the interaction
was studied. (B) WT cells were co-transformed with Apn2-HA and individual Ssa isoforms. Yeast
cells were grown to mid-log phase at 30 °C. Lysates were analyzed by Western blotting with HA and
FLAG specific antibody. Immunoprecipitation was performed using anti-HA magnetic beads, and
interaction between FLAG-Ssa and Apn2-HA was checked using anti-HA and anti-FLAG antibodies
on Western blot. (C) Yeast expressing the indicated FLAG-Ssa (on a constitutive promoter) in a
ssal-4A background transformed with Apn2-HA were grown to mid-log phase at 30 °C. Lysates
were analyzed by Western blotting with HA- and FLAG-specific antibodies. (D) Relative abundance
of Apn2-HA was quantitated by taking the ratio of Apn2-HA/PGKI1. Data are the mean and SD
of three replicate experiments and compared to Ssa2 (** p < 0.001) (E) WT BY4742 and Ydj1A cells,
were transformed with HA-Apn2 plasmid. Transformants were grown to mid-log phase at 30 °C.
Lysate from these cells was analyzed by Western blotting with an anti-HA and anti-Ydj1 antibody.
(F) Relative abundance of Apn2-HA was quantitated by taking the ratio of Apn2-HA /PGKI1. Data
are the mean and SD of three replicate experiments and compared to WT.
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3.2. Apn2 Interacts with Both Hsp82 and Is a Client of Hsp90 in Yeast

Our previous results suggested that Apn2 may also be a direct client of Hsp90. To test
this hypothesis, we examined Apn2 in yeast expressing a well-characterized temperature
sensitive point mutation in Hsp90 [31]. Cells expressing HA-Apn2 in either Hsp82©170P
(Table 1) or WT (Table 1) were grown at 25 °C until early mid-log phase and were split into
two flasks, one of which was shifted to 39 °C. Cells were lysed after 90 min, and HA-Apn2
levels were examined by Western blot. Incubation at 39 °C caused a significant decrease in
HA-Apn2 levels in Hsp82G17%P cells, while HA-Apn2 levels remained unchanged in WT
cells, confirming Apn?2 as a client of Hsp90 (Figure 2A). There are two Hsp90 paralogs in
yeast, the heat-inducible Hsp82 and constitutive Hsc82 (Table 1). To assess Apn2 binding
preferences for the two Hsp90s, we purified Apn2 from yeast expressing tagged versions of
Hsp82 or Hsc82 using anti-HA magnetic beads. Consistent with our results in Figure 1B
(above), the binding of Apn2 was equal to both heat-inducible Hsp82 and constitutive
Hsc82 (Figure 2C).
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Figure 2. Apn?2 interacts with Hsc82 and Hsp82. (A) Yeast G170D and P82a cells expressing Apn2-HA
were grown to mid-log phase at 30 °C. Cells were stressed at 39 °C, and lysates from unstressed
and heat shocked cells were analyzed for Apn2 levels using Western blot with anti-HA antibodies.
Pgkl was used as a loading control. (B) Relative abundance of Apn2-HA was quantitated by taking
the ratio of Apn2-HA /PGK. Data are the mean and SD of three replicate experiments, and further,
unstressed cells were compared to heat shocked cells (** p < 0.001). (C) Hsc82-Glu and Hsp82-His
yeast cells were transformed with Apn2-HA. Cells were grown to mid-log phase at 30 °C. Lysate from
these cells was analyzed by SDS-PAGE and Western blotting using anti-HA and yeast anti-Hsc82-
specific antibodies. Pgkl was used as a loading control. Immunoprecipitation was performed using
anti-HA magnetic beads, and the interaction was studied.

3.3. Mammalian APE2 Interacts with the Hsp90—-Hsp70 Chaperone System

Mammalian APE2 plays a variety of roles in key cellular processes involving the
response to a multitude of stressors, including DNA single- and double-strand breaks,
base excision repair, and oxidative stress, leading to the activation of DDR complexes
and pathways, including ATR and Chk1 [16,18]. The abundance of several DDR proteins,
including APE2, decreased in bladder cancer cells treated with Hsp90 inhibitors [25]. To
determine if there was a physical interaction between chaperones and APE2, we took a
similar approach to that of Figure 1. HEK293 cells were grown to mid-confluence and
were transfected with a construct expressing HA-APE2 (Table 2). After 48 h, cells were
lysed, and APE2 complexes were purified using anti-HA magnetic beads. SDS-PAGE
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analysis and Western blotting of APE2 complexes revealed the presence of Hsp70 and
Hsp90, which were not observed in the immunoprecipitation from cells lacking HA-APE2
(Figure 3A). Despite the robust interaction of APE2 with the chaperones, the major DNAJA1
co-chaperone was not observed in the APE2 complex (Figure 3A).
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Figure 3. Mammalian APE2 interacts with the Hsp90-Hsp70 chaperone system. (A) HEK293 cells
were grown to mid-confluence and were transfected with a construct expressing HA-APE2 from
a constitutive CMV promoter. After 48 h, cells were lysed, and APE2 complexes were purified
using anti-HA-magnetic beads. Lysates from these cells were analyzed by SDS-PAGE and Western
blotting using anti-HA, anti-Hsp70, anti-DNAJA1 and anti-Hsp90 specific antibodies. Beta-actin
was used as a loading control. Immunoprecipitation was performed using HA beads, and the
interaction was studied. (B) HEK293 cells were co-transfected with V5-tagged Hsp70 and APE2-HA.
Immunoprecipitation was performed using anti-HA-magnetic beads, and the interaction was studied
using anti-V5 and anti-HA antibody.

There are a variety of Hsp70 family members expressed in mammalian cells. Although
they are highly conserved, they vary in their client selectivity, cellular localization and
expression pattern in tissues [11,12,32]. Our previous results suggested that APE2 interacts
with HSPAS, the major constitutively expressed isoform of Hsp70 in cells. To determine
whether APE2 might be able to bind other HSPA family members, we co-transfected
HEK293 cells with plasmids (Table 2) expressing HA-APE2 and V5-tagged HSPA family
members that included inducible HSPA1A, HSPA1L and non-inducible HSPAS. After
48 h, we purified HA-APE2 from these cells and subjected the complex to analysis by SDS-
PAGE/Western blotting (Figure 3B). Consistent with our results in yeast, APE2 binding was
observed between both the constitutive and heat-inducible expressed HSPs in mammalian
cells (Figure 3B).

The stability of APE2 in epithelial cells is dependent on Hsp70 and Hsp90 func-
tion. Molecular chaperones regulate the folding, maturation and stability of their client
proteins [33]. Our previous results implied that APE2 may be a bona fide client of the
Hsp90-Hsp70 system. To examine this possibility, we assessed the impact of chaperone
inhibition on APE2 abundance. HEK293 cells expressing HA-APE2 were treated with
either an inhibitor of Hsp90 (ganetespib) or Hsp70 (JG-98). Cells were harvested at the
indicated time points, and APE2 abundance was determined by Western blotting. HEK293
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cells treated with ganetespib showed a decrease in APE2 abundance after only 8 h of
treatment (Figure 4A). Even more impressive was the rapid decrease in APE2 levels after
only 2 h of treatment of JG-98 (Figure 4B). We queried whether this dependence extended
to other cancer cell lines including breast cancer (MCF-7) as well as androgen-dependent
and androgen-independent prostate cancer (LNCaP and PC-3, respectively). As with our
previous experiments, these cell lines were treated with ganetespib, and APE2 levels were
assessed through Western blotting at 2 h intervals. In the case of PC-3, MCF7 and LNCaP,
the APE2 levels significantly decreased after 2 h of treatment of JG-98 (Figure 5A-F). To
similarly understand whether Hsp70 contributed toward APE2 stability, we treated MCEF-7,
LNCaP and PC-3 cells with the Hsp90 inhibitor and measured APE2 abundance via Western
blotting. APE2 levels started to decline significantly after 2 h of treatment with maximum
inhibition seen at 16 h (Figure 6A-F).
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Figure 4. Inhibition of Hsp90 or Hsp70 promote a rapid reduction in APE2 levels. (A) HEK293
cells expressing HA-APE2 were treated with either an inhibitor of Hsp90 (ganetespib) or (C) Hsp70
(JG-98). Cells were harvested at the indicated time points, and APE2 abundance was determined by
SDS-PAGE and Western blotting using anti-HA antibody. Beta-actin was used as a loading control.
(B,D) The relative abundance of APE2-HA was quantitated by taking the ratio of Apn2-HA /Beta-
actin from 3 replicate experiments and compared to untreated HEK293 cells. Data are the mean and
SD of three replicate experiments and are compared to untreated. Statistical significance is indicated
as (**p <0.001) (* p < 0.05).



Biomolecules 2022, 12, 864 8of 13

A C E
PC-3

JG98(h) 0 2 4 8

LnCAP
JG9s(h) 0 2 4 8

8 JG-98 (h)

APE2-HA u“ [ APE2-HA

APE2-HA

B D F
PC-3 MCF-7 LnCAP

£ 120 § 120 = % 120 C—

& | ol

; 100 g 100 % 100 |

§ 80 é 80 1 g 80 -

§ 60 'E 60 § 60

c s c

3 o 3

2 4 S 40 S 40 1

g 2 g

g 20 ;:u: 20 4 T 20

[ [

9 % o0l % o-

0o 2 4 8 0 2 4 8 0o 2 4 8
JG-98 treatment (h) JG-98 treatment (h) JG-98 treatment (h)
Figure 5. Stability of APE2 in a range of cancer cell lines is dependent on Hsp90 and Hsp70 function.
(A) PC3 (C) MCF7 and (E) LnCAP cells expressing HA-APE2 were treated with an inhibitor of Hsp70
(JG-98). Cells were harvested at the indicated time points, and APE2 abundance was determined by
SDS-PAGE and Western blotting using anti-HA antibody. Beta-actin was used as a loading control.
(B,D,F) The relative abundance of APE2-HA was quantitated by taking the ratio of APE2-HA /Beta-
actin. Data are the mean and SD of three replicate experiments and are compared to untreated
(** p <0.001).
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Figure 6. Stability of APE2 in a range of cancer cell lines is dependent on Hsp90 function.
(A) PC3 (C) MCF7 and (E) LnCAP cells expressing HA-APE2 were treated with an inhibitor of
Hsp90 (ganetespib). Cells were harvested at the indicated time points, and APE2 abundance
was determined by SDS-PAGE and Western blotting. Beta-actin was used as a loading control.
(B,D,F) The relative abundance of APE2-HA was quantitated by taking the ratio of APE2-HA /Beta-
actin. Data are the mean and SD of three replicate experiments and are compared to untreated
(** p <0.001).
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4. Discussion

The ability of cells to repair and maintain their genome is critical for their survival.
The response to DNA damage is highly complex and relies on several different signaling
cascades comprising multiple proteins [14,15]. The Hsp70-Hsp90 chaperone system binds
and regulates several important proteins in this process, including APE1 and P53. Recent ef-
forts in understanding the role of chaperones in DDR have included large-scale proteomics
analysis, such as that of Li et al., which examined the abundance of proteins in 5637 bladder
cancer cells after treatment with the Hsp90 inhibitors ganetespib (STA9090), or luminespib
(AUY-922) [25]. In that study, over 800 proteins were downregulated, including XRCCl,
XPC, RAD50, 53BP1 and notably, APE2 [25]. In this study, we have identified a role for the
Hsp70 and Hsp90 chaperones in regulating the activity of the APN2/Ape2 exonuclease in
yeast and mammalian cells.

4.1. APE2? and Apn?2 Display Binding Preferences for Chaperone and Co-Chaperone Paralogs

An unresolved question in chaperone biology is why cells express many highly similar
chaperone proteins. In yeast, the four Ssa proteins are highly conserved with over 80%
similarity in amino acids sequence [4]. Ssal and Ssa2 represent the major cytosolic Hsp70s
present under basal conditions, while Ssa3 and Ssa4 are highly heat induced. Several
studies have suggested that these chaperone paralogs have overlapping but unique inter-
actomes [34]. Recently, work using the model substrate ribonucleotide reductase (RNR)
showed a clear preference for this client in binding Ssal and Ssa2 [35]. Although Apn2
binds cytosolic Hsp70 and Hsp90 paralogs equally, cells expressing Ssal as their sole cytoso-
lic Ssal are unable to support WT levels of Ape2 as depicted by compromised stability in
Figure 1B,C. The difference in Apn2 abundance in Ssa2 vs. Ssal-expressing yeast is particu-
larly interesting considering how similar the two proteins are. However, previous studies
have shown that even a single divergent amino acid between Ssal and Ssa2 can produce
differences in their ability to modulate prion propagation and protein degradation [36]. A
recent study observed a parallel defect in septin levels in Ssal-expressing yeast [37]. Future
research, possibly involving a comparative interactome study of Ssa proteins, may shed
light on this issue [34].

Cells express a variety of co-chaperones that are critical for stimulation of chaperone
ATPase activity and for loading clients onto chaperones for folding [3,30,38]. We show here
that Apn2 co-purifies with Ydj1, a major Hsp70 co-chaperone (Figure 1A). In contrast to
ribonucleotide reductase whose stability depends on Ydjl function, loss of Ydj1 does not
impact Apn2 stability [28]. It is possible that Apn2 stability in yeast is additionally regulated
by other semi-redundant co-chaperones such as Sis1, which has similar yet distinct roles in
the cell as Ydj1 [39-42]. This may also explain why in our studies, DNAJA1 the mammalian
homologue of Ydj1 does not appear to interact with APE2 (Figure 3A). Going forward, it
would be interesting to identify and understand the major co-chaperones responsible for
regulating APE2 and Apn2 function in mammalian and yeast cells, respectively.

4.2. Novel Anticancer Strategies Based on Fine-Tuning Chaperone Function

Molecular chaperones are required for the stability and activity of many proteins,
including oncoproteins that are critical for cancer progression [43—-46]. Recently, APE2
has been revealed to be an important player in regulating genome integrity and cancer
progression [20,22,23,29,47,48]. Our study suggests that targeting APE2 activity through
inhibition of chaperone function may be a viable anticancer therapy. While in vitro studies
such as those presented here clearly show the value of manipulating chaperone function,
studies in vivo suggest that complete abolishment of Hsp70 or Hsp90 results in severe
toxicity for patients [25,49]. Several alternative approaches to bypass the toxicity issue
are currently being pursued [49-51]. The first has been to identify key co-chaperones
that regulate oncogenic clients and to develop drugs that inhibit them, such as 116-9e
and C-86 [52-54]. While DNAJA1 is not observed in complex with APE2, it is possible
that drugs such as 116-9e and C-86 may have a broad enough specificity to be target
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regulatory co-chaperones of APE2 in cancer. An alternative method for fine-tuning of
chaperones may be to manipulate their post-translational modifications (PTMs) [55-57].
Future studies examining the Hsp70/Hsp90-APE2 structure may allow for specific targeting
of this interaction via small molecules that bind the interaction interface or alter critical
PTMs required for chaperone—exonuclease interaction.

Table 1. Yeast strains used in this study.

Strain Genotype Reference/Source
Hsc82 (PP30-HSC82-GLU (MAT a, trp1-289, leu2-3112,
yAT 685 his3-200, ura3-52, ade2-101, lys2-801, hsc82::KANMX4, [51]
hsp82:KANMX4 LEU2-GPD-HSC82-GLU)
Hsp82 PP30-HSP82-HIS (MAT a, trp1-289, leu2-3112,
yAT 686 his3-200, ura3-52, ade2-101, lys2-801, hsc82::KANMX4, [51]
hsp82:KANMX4 LEU2-GPD-HSP82-HIS)
yATO01 P82a W303-1a hsc82::LEU2 hsp82::LEU2 HIS3-GPD-HSP82a [31]
G170D W303-1a hsc82::LEU2 hsp82::LEU2
yATO05 HIS3-GPD-hsp82(G170D)a [31]
yAT38 MAT« S288c (BY4742) his3A1 leu2A0 lys2A0 ura3A0 Euroscarf
MATa (MH272) ssalA::trpl ssa2::HisG ssa3::HisG
yAT414 ssa4::HisG (ssal—4) [YCPlac33 SSA1] [27]
yAT28 MAT o S288¢ (BY4742) ydjl1A:KanMX4 Euroscarf
Table 2. Plasmids used in this study.

Plasmids Description Reference
pNK229 GPD2-Apn2-HA [18]
pAT778 pRS315PSsa2-Flag-SSA1 (LEU2) Vector Builder
PAT779 PRS315PSsa2-Flag-SSA2 (LEU2) Vector Builder
pAT780 pRS315PSsa2-Flag-SSA3 (LEU2) Vector Builder
pAT781 pRS315PSsa2-Flag-SSA4 (LEU2) Vector Builder

APE2-HA [23]
pAT758 HSPA1A-V5 pcDNA5/ERT/TO Harm Kampinga
pAT759 HSPA1L-V5 pcDNA5/FRT/TO Harm Kampinga
pAT763 HSPA8-V5 pcDNA5/FRT/TO Harm Kampinga

Overall, this work identifies a new client of the Hsp70-Hsp90 axis, the Apn2/APE2
exonuclease. The rapid loss of APE2 in cancer cells upon inhibition of either Hsp90 or
Hsp70 provides a path forward for novel therapies that jointly target chaperones and the
DNA damage response.
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