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Abstract: Protease inhibitors are widely studied since the unrestricted activity of proteases can cause
extensive organ lesions. In particular, elastase activity is involved in the pathophysiology of acute lung
injury, for example during SARS-CoV-2 infection, while serine proteases and thrombin-like proteases
are involved in the development and/or pathology of the nervous system. Natural protease inhibitors
have the advantage to be reversible and with few side effects and thus are increasingly considered as
new drugs. Kunitz-type protease inhibitors (KTPIs), reported in the venom of various organisms, such
as wasps, spiders, scorpions, and snakes, have been studied for their potent anticoagulant activity
and widespread protease inhibitor activity. Putative KTPI anticoagulants have been identified
in transcriptomic resources obtained for two blister beetle species, Lydus trimaculatus and Mylabris
variabilis. The KTPIs of L. trimaculatus and M. variabilis were characterized by combined transcriptomic
and bioinformatics methodologies. The full-length mRNA sequences were divided on the base of the
sequence of the active sites of the putative proteins. In silico protein structure analyses of each group
of translational products show the biochemical features of the active sites and the potential protease
targets. Validation of these genes is the first step for considering these molecules as new drugs for
use in medicine.

Keywords: Kunitz-type protease inhibitors; transcriptomic analysis; protein modelling; blister beetle

1. Introduction
1.1. Proteases’ Functions in Living Organisms

Proteases are a large group of enzymes divided, on the basis of the catalytic site,
into metallo-, serine-, cysteine, threonine, and aspartic acid proteases [1]. They play a
broad range of actions in all living organisms; thus, their dysregulation is potentially
very damaging. For example, thrombin and plasmin are involved in coagulopathies and
in bleeding disorders; matrix metalloproteases (MMPs) in inflammation, hypertension,
and cancer; and elastase in inflammation and tissue lesions [2–4]. In particular, elastase’s
unrestrained enzymatic activity leads to symptoms typical of the pathophysiology of acute
lung injury [5] that has been described, for example, during severe SARS-CoV-2 infection.
Furthermore, the inhibition of neutrophil elastase reduces the symptoms of acute lung
damage [6,7] and has been suggested as a potential prophylactic treatment option [8].
Moreover, SARS-CoV-2, as well as many other viruses, uses several different host and viral
proteases to complete its viral life cycle.
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Growing evidence suggests that members of the serine protease family, including
thrombin, chymotrypsin, plasminogen activators, urokinase, and kallikreine, play a role in
the development and/or pathology of the nervous system, i.e., serine proteases in neural
parenchyma and cerebrospinal fluid after the blood–brain barrier injury and thrombin-like
proteases in spinal motor neuron degeneration [9].

1.2. Protease Inhibitors as Drugs for Clinical Applications

Considering the multiple roles of proteases, protease inhibitors are considered ver-
satile tools in medicine, agriculture, and biotechnology. Natural or synthetic protease
inhibitors have been intensively studied by medical and agricultural researchers, given
their important physiological functions. For example, inhibitors of the human protease
angiotensin-converting enzyme (ACE) are used in the treatment of cardiovascular disor-
ders [10]. In addition, inhibitors of the HIV protease are widely used in the treatment of
HIV infection [11].

Natural protease inhibitors, as opposed to synthetic ones, have the strongest defensive
therapeutic roles with few side effects, and it has generally been accepted that reversible
inhibitors are preferred over irreversible ones, as the latter are more likely to have toxic
side effects [12]. Indeed, numerous examples of natural-derived protease inhibitors have
been described so far. For example, the thrombin inhibitor hirudin was initially isolated
from the medicinal leech [13], and the Escherichia coli protein ecotin has been engineered to
create a potent and selective inhibitor of plasma kallikrein [14].

1.3. Kunitz-Type Protease Inhibitors (KTPI)

The Kunitz domain is a class of serine protease inhibitors found in many living organ-
isms from animals to microbes. Kunitz-domain inhibitors are classified under the inhibitor
family I2, Clan IB according to the MEROPS database [1]. This motif was first identified
in the bovine pancreatic trypsin inhibitor (BPTI), which is a strong inhibitor of serine pro-
teases such as trypsin and chymotrypsin. In addition to inhibiting serine proteases, some
members of the Kunitz family are also able to inhibit cysteine and aspartic proteases [1].
Kunitz-type protease inhibitors (KTPI), reported in the venom of various organisms, such
as cnidarians, wasps, spiders, scorpions, and snakes [15], have been studied for their potent
anticoagulant activity and widespread protease inhibitor activity [16]. Moreover, KTPI does
not display only inhibitory activity. For example, dendrotoxins, isolated from snakes, block
Kv ion channels in neurons, thereby modulating the neuronal activity [17]. The amyloid
β-protein (APPI), which accumulates in the neuritic plaques and cerebrovascular deposits
of patients with Alzheimer’s disease, also contains a Kunitz-domain sequence [18,19].
Angiopeps, a family of KTPI, are used to deliver pharmacological agents to the brain and
Angiopep-2-conjugated molecules showed good tolerance in phase I clinical studies and
reached phase II for the treatment of recurrent-breast-cancer brain metastasis [20,21]. As
natural protease inhibitors, the Kunitz domain is contained in the protein ecallantide that
has recently been approved for the treatment of hereditary angioedema [22]. Derivatives
of a Kunitz protein from Schistosoma mansoni, identified by RNAseq analysis, have been
found very effective in protecting against Schistosomiasis in a mouse model [23].

1.4. Kunitz-Type Protease Inhibitors (KTPI) in Insects

In insects, serine protease inhibitors play a central role in the defence against microbial
invasion [24,25], for example by inhibiting the germination of conidia and the development
of the germ tube of Ascomycetes parasites [26]. The haemolymph coagulation cascade,
as occurs in human blood, involves various serine proteases and is strictly regulated by
different and specific inhibitors. Similar fine-tuned signalling cascades are present in all
insects, but only a few have been studied in detail. In particular, information is very
scant or absent in a group of insects in which reflex haemorrhage plays an important
evolutionary role. Blister beetles (Coleoptera: Meloidae), a widespread family that includes
almost 3000 species [27–30], if disturbed, naturally exude from the leg joints oily yellowish
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droplets of haemolymph containing cantharidin (CA), the so-called “reflex-bleeding”.
This physiological response has evolved as a defensive strategy against predators, with
cantharidin being a toxic terpenoid. Apparently, the release of blood is mediated by an
increase in hydrostatic pressure [31]. Easy bleeders exhibit spider-like microstructures on
the surface of the cuticles. It is suggested that these microstructures may facilitate fissure
of the integument and make it hydrophobic. This last property would allow keeping the
exuding haemolymph as a droplet on the integument surface [32], but it should also involve
a strict and reversible coagulation control to prevent the loss of too much haemolymph.

1.5. KTPI in the Subfamily Meloinae

Putative KTPI anticoagulants can be identified in transcriptomic resources obtained
for two blister beetle species, Lydus trimaculatus and Mylabris variabilis [33]. Both species
belong to the subfamily Meloinae. L. trimaculatus belongs to the tribe Lyttini [30] and has
an East Mediterranean distribution. It is likely a parasitoid of wild bees (Hymenoptera,
Apoidea) during its larval stages, while the adults are phytophagous, monophagous,
and feed on flowers. M. variabilis belongs to the tribe Mylabrini [34] and has a Western
Palaearctic distribution. Like all the members of Mylabrini, it is a parasitoid of grasshoppers
(Orthoptera, Acridoidea) during its larval stages, whereas the adults are phytophagous,
polyphagous, and feed on flowers (Figure 1). The validation of these genes is the first step
for considering these molecules as potential new drugs for medical use. In this work, the
KTPI of L. trimaculatus and M. variabilis were characterized by combined transcriptomic and
bioinformatics methodologies. On the base of the sequence of the active sites of the putative
proteins, transcripts were divided into three sets. In silico protein structure analyses of
each group of translational products confirmed their potential biochemical activity on the
targeted proteases.
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Figure 1. Habitus of the species Lydus trimaculatus, (left) and Mylabris variabilis (right).

Both species belong to the subfamily Meloinae. L. trimaculatus belongs to the tribe
Lyttini and M. variabilis belongs to the tribe Mylabrini. Adult specimens are depicted
feeding on flowers since both species are phytophagous and polyphagous.

2. Materials and Methods
2.1. BLAST Search for Kunitz-Containing Domain Protein in the Transcriptome of L. trimaculatus
and M. variabilis

The BPTI Kunitz protein (mRNA: NM_001001554.3; Protein: NP_001001554.2) and
Anaplophora glabripennis Kunitz protein (mRNA: XM_018715645.1; Protein: P_018571161.1)
have been utilized by BLAST analyses to retrieve Kunitz protein from the previous tran-
scriptome [33] carried out on the haemolymph, accessory glands, and total bodies of
L. trimaculatus and M. variabilis. The analyses revealed 33 homolog transcripts, among
them 15 sequences were selected containing only one Kunitz-type domain. The selected
sequences were classified into groups based on their FPKM (fragments per Kb of tran-
script per million mapped fragments) values: very low expression (bottom 20th percentile;
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FPKM ≤ 0.06), low expression (bottom 50th percentile; FPKM ≤ 0.12), medium expression
(70th percentile; 0.13 < FPKM ≤ 2.62, and 80th percentile; 2.95 < FPKM ≤ 8.59), and high
expression (95th percentile; 9.22 < FPKM ≤ 104.62, and 100th percentile > 110.8). Then,
we further selected 9 sequences for cloning, discarding the sequences coding for poorly
expressed proteins and those that were redundant between the two species.

2.2. Molecular Cloning

RNA was extracted from the whole body with Trizol reagent (Invitrogen, Waltham,
MA, USA) as performed previously [33]. Total RNA (2 µg), purified from the whole
body of L. trimaculatus and M. variabilis, and primer random hexamers were utilized in
20 µL reaction volume, according to the manufacturer’s procedures (Super-ScriptIII First-
Strand Synthesis System for RT-PCR, Invitrogen). A set of specific forward and reverse
primers were designed (Table 1) to amplify the selected sequences with Platinum Taq DNA
polymerase High Fidelity (Invitrogen) according to the manufacturer’s instructions. RT-
PCR conditions were calculated according to the various primer pairs. PCR products were
run on 1.8% agarose gel to confirm the molecular weight. Full-length cDNAs were cloned
in pCR2.1 vector (The original TA Cloning Kit, Invitrogen) according to the manufacturer’s
procedures. Plasmidic DNA was extracted with GenElute Plasmid Miniprep Kit (Sigma,
Tokyo, Japan) and 1 µg digested with EcoRI (Thermoscientific, Waltham, MA, USA) to
assess the correct molecular weight. For each transformation, 5 clones were selected and
double-strand sequenced by the Microsynth AG (Balgach, Switzerland).

Table 1. Table list of the primers used for each specific gene.

Transcript Primers Primer Name Fragment Length

Kunitz_Myl_DN17096 5′-TAATAAGAGTTGAACCCCAGC-3′ Kunitz_Myl_DN17096 for 302 bp
5′-ATCGATCAAAGTACAAATTGCG-3′ Kunitz_Myl_DN17096 rev

Kunitz_Lyd_DN46461 5′-CTCATCGGTGTATATAAACATC-3′ Kunitz_Lyd_DN46461 for 633 bp
5′-TTGAGAAAGTTTATTTAATTTTTTTG-3′ Kunitz_Lyd_DN46461 rev

Kunitz_Lyd_DN34901 5′-CTCATCGGTGTATATAAACATC-3′ Kunitz_Lyd_DN34901 for 380 bp
5′-TTGAGAAAGTTTATTTAATTTTTTTG-3′ Kunitz_Lyd_DN34901 rev

Kunitz_Myl_DN35212i2 5′-AAAAGTTGCTTATAAGTAACCAAA-3′ Kunitz_Myl_DN35212i2 for 324 bp
5′-AACAATTTGGTAAGTTTTTATTATG-3′ Kunitz_Myl_DN35212i2 rev

Kunitz_Lyd_DN39749 5′-TAATTACACAGCAATAATGTTTAC-3′ Kunitz_Lyd_DN39749 for 301 bp
5′-GTACTCTACTTTGCTTACCAAAA-3′ Kunitz_Lyd_DN39749 rev

Kunitz_Myl_DN35212i1 5′-AATCGTAATTATTGTTGTGTATTG-3′ Kunitz_Myl_DN35212i1 for 469 bp
5′-GACAATTGGTGGGTTATAGTTG-3′ Kunitz_Myl_DN35212i1 rev

Kunitz_Lyd_DN37798 5′-CATCATAAGATTTTTACATATTGC-3′ Kunitz_Lyd_DN37798 for 320 bp
5′-GTGAAAATTCAAAATTCCCTCAA-3′ Kunitz_Lyd_DN37798 rev

Kunitz_ Myl_DN37778 5′-ATTCTAATATCAACAACAATAGCA-3′ Kunitz_Myl_DN37778 for 319 bp
5′-GTAAAATTTGAATTTATCAATGCTA-3′ Kunitz_Myl_DN37778 rev

Kunitz_Myl_DN21619 5′-TAATAACACAGCAATAATGTTTAC-3′ Kunitz_Myl_DN21619 for 301 bp
5′-TTTTGGTAAGCAAAGTAGAGTAC-3′ Kunitz_Myl_DN21619 rev

2.3. In Silico Analyses of the Identified Sequences

For each different protein of L. trimaculatus and M. variabilis, the following analyses
were conducted. The cloned cDNAs were analysed using the ExPASy Translate tool (https:
//web.expasy.org/translate/ (accessed on 11 January 2021 and 10 June 2022) to assign their
open reading frames and predict the amino acid sequences’ products. Protein sequences
were analysed using SignalP 6.0 (https://services.healthtech.dtu.dk/service.php?SignalP
(accessed on 11 January 2021 and 10 June 2022) and Phobius (https://phobius.sbc.su.se/
(accessed on 11 January 2021 and 10 June 2022) servers to predict the presence of sig-

https://web.expasy.org/translate/
https://web.expasy.org/translate/
https://services.healthtech.dtu.dk/service.php?SignalP
https://phobius.sbc.su.se/
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nal peptides and the location of their cleavage sites. The analyses of the signal peptides
and the Kunitz peptide signature sequences were performed by aligning the sequences
with MUSCLE (MUSCLE < multiple sequence alignment < EMBL-EBI) and the alignment
outputs were used for sequence logo generation using WEBLOGO [35]. To define the
signal peptide and Kunitz signature consensus sequences we used EMBOSScons (EMBOSS
Cons < Multiple Sequence Alignment < EMBL-EBI) setting a conservative substitution
matrix (BLOSUM80). Representative sequences were chosen, according to a probable
consensus, identifying isoforms when possible. For those sequences, BLASTp analyses
were carried out to retrieve homologous proteins and conserved domains [36]. In the
BLAST analysis, default algorithm parameters and the nonredundant protein sequences
database were used. The results obtained were cross-validated using other online resources
including InterPro (https://www.ebi.ac.uk/interpro/ (accessed on 15–29 January 2021)
and HHpred (https://toolkit.tuebingen.mpg.de/tools/hhpred (accessed on 15–29 Jan-
uary 2021). Among the results, the matches with the best max score and E-value were
selected to produce multiple sequence alignments between the target sequences and their
respective matches using MUSCLE (http://www.ebi.ac.uk/Tools/msa/muscle/ (accessed
on 1 February 2021 and 9 June 2022), yielding an output file in ClustalW format and a
pairwise identity matrix [37]. The main aim of the alignment was to identify conserved
residues and domains, probably involved in the related function. The structure–function
relationships of each group of proteins were deduced by modelling the corresponding 3D
structure using SWISS-MODEL (https://swissmodel.expasy.org/ (accessed on 9 September
2021) [38–41]. Each protein of L. trimaculatus and M. variabilis was submitted to SWISS-
MODEL for homology modelling. Among the templates, those with the best identity and
coverage were chosen to build the 3D protein models. Among these, the one showing the
highest reliability in both Local Quality and Comparison plots was selected. Finally, the
structural models in the PDB format were displayed and analysed with CHIMERA v. 1.11.2,
highlighting conserved\functional domains and residues [42]. The superimposition of
Kunitz structures wsa obtained using the MatchMaker function of Chimera performing a
fit through comparison of similar secondary structure and residues.

3. Results
3.1. Identification of Translational KTPI Products from Lydus trimaculatus and Mylabris variabilis

In a previous paper, NGS-based transcriptome analyses of adult samples of L. trimaculatus
and M. variabilis performed by Fratini et al. [33] revealed several proteins involved in
the regulation of coagulation from the whole body, accessory gland, and haemolymph.
The gene and protein sequences codifying for Bovine Pancreatic Trypsin Inhibitor (BPTI,
mRNA: NM_001001554.3; Protein: NP_001001554.2) and Kunitz-Type protease inhibitors of
A. glabripennis (mRNA: XM_018715645.1; Protein: P_018571161.1) were blasted against the
transcriptome of L. trimaculatus and M. variabilis to identify homologous sequences in these
species. A number of 33 transcripts were identified; among them, 15 sequences containing
only one Kunitz-Type domain were selected. In Figure 2 the workflow of this study is
reported. From those 15 sequences, we selected 9 for cloning (Kunitz_Myl_DN17096, Ku-
nitz_Lyd_DN46461, Kunitz_Lyd_DN34901, Kunitz_Myl_DN35212i2, Kunitz_Lyd_DN39749,
Kunitz_Myl_DN35212i1, Kunitz_Lyd_DN37798, Kunitz_Myl_DN37778, Kunitz_Myl_DN21619_g1).
We excluded less-expressed sequences (Kunitz_Lyd_DN45256, Kunitz_Lyd_DN17769, Ku-
nitz_Lyd_DN14221_g1, and Kunitz_Lyd_DN14221_g2). Kunitz_Myl_DN21619_g2 was
excluded because it was highly homologous (98%) to Kunitz_Myl_DN21619_g1. Ku-
nitz_Myl_DN_36275 was excluded because it was missing the initial Met (Figure 3).

https://www.ebi.ac.uk/interpro/
https://toolkit.tuebingen.mpg.de/tools/hhpred
http://www.ebi.ac.uk/Tools/msa/muscle/
https://swissmodel.expasy.org/
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3.2. Validation and Cloning of Kunitz Sequences from Lydus trimaculatus and Mylabris variabilis

Through PCR, using as a template the cDNA retro-transcribed from the total-body
RNA of M. variabilis and L. trimaculatus and primer sets specifically designed for each
kunitz-containing transcript (Table 1), nine PCR fragments were isolated, showing the
expected molecular weights (Figure 4A). Once amplified, the transcripts were cloned
individually within the pCR2.1 vector (Figure 4B) and sequenced to confirm their nature
as coding sequences for Kunitz proteins. Then, the sequences obtained were translated
with the ExPASy Translate tool [43]. The cDNA cloning confirmed several isoforms of
KTPI, with a broad variation in the P1-P1′ sites, as exemplified in Figure 5. The typical
residue sequence Lys-Ala in the P1-P1′ position, present in several Kunitz-like serine
protease inhibitors such as BPTI (Bovine Pancreatic Trypsin Inhibitor) is present only
in the sequence Kun_Myl-17096 of the M. variabilis transcript (Figure 5A). Most of the
sequences show a hydrophobic side chain at the P1 site: the sequence Kun_Myl-35212_i1
of the M. variabilis transcript shows Leu-Ala residues in the P1-P1′ positions, respectively;
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the sequence Kun_Myl-35212_i2 shows Phe -Ala residues; Ala-Ala residues in the P1-P1′

positions are present in the Kun_Myl-21619 sequence; Ile-Ala residues can be found in the
P1-P1′ position of the sequence Kun_Lyd-39749 of the L. trimaculatus transcript (Figure 5B
and Figure S1). The sequence Kun_Lyd-37798 of the L. trimaculatus transcript differs from
all the others showing a negatively charged Asp residue in P1 position (Figure 5C).
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3.3. In Silico Analysis of Translational KTPI Products from Lydus trimaculatus and
Mylabris variabilis

The experimental approach described in the previous section allowed recovering
the full-length sequence of 15 plausible mRNA-sequence-encoding proteins character-
ized by a single KTPI domain, 8 sequences in the transcriptome of L. trimaculatus, and
7 sequences in the M. variabilis one. Overall, virtually translated KTPI sequences ranged
from 85 (L. trimaculatus KTPI- DN39749; M. variabilis KTPI- DN17096) to 101 (L. trimacula-
tus KTPI-DN17769; M. variabilis KTPI-DN35212) amino acids in length and displayed an
N-terminal signal peptide. This region, comprising 16–22 residues, displays the consensus
sequence MVKIXXXXXLLLLXTISXXTIA, where X is any amino acid, of the leader peptide
obtained as described in Materials and Methods (Figure 6A). The overall structure of the
Kunitz domain is highly conserved between the two species examined as highlighted in
Figure 7 in comparison with the Kunitz domain from the insect Anoplophora glabripennis and
with the well-characterized Kunitz proteins (BPTI and SHPI-1). The strong conservation
between the insect Kunitz domains is shown in Figure S2, derived from a more extensive
sequence alignment. All the proteins analysed show the presence of six cysteine residues
involved in the characteristic disulphide-bonding pattern of C1–C6, C2–C4, and C3–C5,
and the characteristic signature sequence YGGCHXTNNNFXTXEQC (Figures 6B and 7).
However, despite the remarkable conservation of the structure, KTPI displayed a highly
variable pairwise sequence similarity, ranging from a maximum of 100% identity in the
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highest-scoring pair (L. trimaculatus KTPI- DN14221 vs. M. variabilis KTPI- DN21619) to a
minimum of 31% (L. trimaculatus KTPI-DN39749 vs. M. variabilis KTPI-DN35212_c0_g1_i2)
(Figure 6C). Moreover, the primary determinant of the specificity for protease inhibition
(P1 reactive loop residue) is highly variable, showing different residues possibly capable
of inhibiting not only Ser-proteases, but also Cys-proteases (Figure 6). Indeed, for the
inhibition of serine proteases, positively charged residues (Lysine and Arginine) have been
found at P1 of KTPI-inhibiting trypsin-like enzymes, small hydrophobic residues (Alanine
and Valine) in KTPI-inhibiting elastase-like enzymes, and large hydrophobic residues
(Phenylalanine, Tyrosine, and Leucine) in KTPI-inhibiting chymotrypsin-like enzymes [44].
Moreover, Leucine residue at the P1 site could also form strong interactions with cysteine
proteases such as Cathepsin L [45]. In few cases, acidic residues (Aspartate and Glutamate)
have been found at the P1 site of KTPI-inhibiting trypsin [46–48]. Finally, there are still few
studies on Asp- protease inhibition by KTPI, but it has been proposed that a Lys residue
can occupy the P1 site [49,50].
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Figure 6. Analyses of the identified translational KTPI products from Lydus trimaculatus and Mylabris
variabilis. (A) Leader peptide consensus sequence using the program WEBLOGO. (B) Kunitz fam-
ily signature sequence (amino acids’ colour code: blue, polar positive; red, polar negative; green,
polar neutral; grey, nonpolar aliphatic; purple, nonpolar aromatic; brown, proline, glycine; yellow,
cysteine. (C) Pairwise sequence similarity with percent identity highlighted as percentile. Orthol-
ogous sequences from L. trimaculatus and M. variabilis are highlighted with the same colour of the
left-hand column.
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Figure 7. Alignment of Kunitz protein sequences (B_taurus_NP00100554.2, Bovine Pancreatic
Trypsin Inhibitor; S_heliantus_SHPI-1_3UOU_B, Chain B, Kunitz-type protease inhibitor SHPI-1;
A_glabripennis_XP01857161.1, Kunitz-type serine protease inhibitor 2-like of Anoplophora glabripennis.
Upper panel: yellow, leader sequence. Lower panel: green, Kunitz family signature sequence; Red
asterisks, any aminoacids in the signature sequence; blue, P1 site; blue asterisk, basic P1; green square,
hydrophobic P1; orange circle, hydrophilic P1; red triangle, acidic P1; crosslinks, disulphide bridges.

3.4. Alignment and Comparison of Kunitz 3D Structures

Despite a highly conserved structure with the characteristic disulphide-bonding pat-
tern and signature sequence, the different isoforms of Kunitz from L. trimaculatus and
M. variabilis most probably have different specificity and ability to inhibit different serine
proteases due to their high P1-P1′ site variability. The sequences and structures of the
nine Kunitz proteins found in L. trimaculatus and M. variabilis were compared to other
Kunitz domains using Swiss-Model [51], and the resulting structural models were aligned
to the most similar inhibitor to confirm the potential ability to inhibit the same protease.
Kun_Myl_17096 has a Lys residue at the P1 site, and Swiss-Model analysis shows a 41%
of sequence homology with BPTI. Aligning the Kun_Myl_17096 structural model with
the structure of the Trypsin-BPTI complex (PBD 4Y0Y), the same interactions of the two
inhibitors with the catalytic site of Trypsin can be observed (Figure 8). Most Kunitz isoforms
of L. trimaculatus and M. variabilis are characterized by a hydrophobic side chain at the
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P1 site; in particular, a Leu residue can be found in Kun_Myl-35212_i1, Kun_Myl_37778,
Kun_Lyd-46461, and Kun_Lyd-34901. The Kun_Myl-35212_i1 displays 37% sequence simi-
larity with the Kunitz-type Protease Inhibitor (ShPI-1) from the sea anemone Stichodactyla
helianthus (Hexacorallia and Stichodactylidae). This inhibitor acts on serine peptidases and
voltage-gated potassium channels [16,52].
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Figure 8. Alignment between Kun_Myl_17096 and Trypsin/BPTI (PBD Code 4Y0Y) [53] structures.
Light blue, Trypsin; red, BPTI; green, Kun_Myl_17096. Stick representation has only been shown for
Lys20 (P1) and Asp191 residues.

The superimposition of the Kun_Myl-35212_i1 structural model with the crystal struc-
ture of the Kunitz-type protease inhibitor ShPI-1 K13L mutant in the complex with pan-
creatic elastase evidences the same interacting site for the Kun_Myl-35212_i1 Leu residue
(Figure 9). The Kunitz domain with a hydrophobic side chain in the P1 site is believed to
be able to interact with chymotrypsin too. The best interaction should be observed with
Trp (Ka 5.6 × 109 M−1), Tyr (Ka 7.6 × 109 M−1), or Phe (Ka 2.5 × 109 M−1) residues at the
P1 position [54]. The alignment of Kun_Myl-35212_i2, harbouring a Phe residue in P1, with
the crystal structure of the P1 Trp BPTI mutant-Bovine Chymotrypsin complex, confirms a
similar interaction (Figure 10). The Kun_Lyd-37798 sequence with a negatively charged
side chain (Asp residue at the P1 position) corresponds to an unusual Kunitz domain.

Although it displays 41% sequence similarity with the TFPI (Tissue Factor Pathway
Inhibitor), it seems far from being a canonical serine protease inhibitor, given the presence
of a negatively charged residue at the P1 position.
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Figure 9. Alignment between Kun_Myl-35212_i1 and ShPI-1 K13L mutant/pancreatic elastase
structures (PBD Code 3UOU) [52]. Blue, Elastase with catalytic residues (His57, Asp102, Ser189,
and Ser195) in cyan stick representation; red, ShPI-1; green, Kun_Myl-35212_i1 with P1 (Leu13,
green) and P3 (Arg11 for ShPI-1 and H11 for Kun_Myl-35212_i1 red and green, respectively) in stick
representation.
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Kun_Myl-35212_i2 with P1 (Phe24) in stick representation.
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4. Discussion
4.1. Meloidae KTPI Identification by Transcriptome Analysis

The transcriptomic analysis conducted on two species of blister beetle [33] allowed
broadening the knowledge about the transcripts expressed in L. trimaculatus and M. variabilis,
also opening the possibility to isolate new proteins with potential biotechnological and
biomedical functions.

Among these, Kunitz proteins are of particular interest, given their activity as ser-
ine, aspartate, and cysteine protease inhibitors [56]. The analysis of transcriptomic data
produced an interesting panel of sequences coding for Kunitz proteins. Of the 33 puta-
tive sequences displaying a variable degree of homology with the BPTI and Kunitz-Type
protease inhibitors of A. glabripennis, we decided to focus on 15 sequences codifying for
a single Kunitz domain. This selection was made considering that small peptides will be
preferable for future biotechnological and pharmacological approaches.

The presence of multiple transcripts in the two species could be possibly due to gene
duplication and successive base substitution to give different amino acids at P and P’
sites. This interesting evolutionary aspect could reflect the necessity of insects to widen
the panel of protease inhibitors directed at multiple targets. The careful analysis of the
sequences allowed us to identify hydrophobic N-terminal signal peptides for all proteins,
with the exception of Lydus_DN46461, cleaved during the maturation of the proteins and
characteristic of secreted proteins and of many KTPI.

4.2. P1 Residue Characteristic and Target Protease Specificities

Despite the remarkable conservation of the structure, KTPI displayed a highly variable
pairwise sequence similarity, also in the P1 reactive loop residue, suggesting the possibility
to inhibit not only Ser-proteases, but also Asp- and Cys-proteases. In particular, according
to the aminoacidic residue in the P1 site, we described three sets of sequences.

4.3. Basic and Nonpolar P1 Residue

The first group, that includes only the Kun_Myl_17096, displays the typical P1-P1′ site
Lys-Ala that fills the S1 primary specificity subsite of trypsin(ogen)-like serine (pro)enzymes,
forming polar interactions with the invariant negatively charged Asp189 residue [57]. The
second group has hydrophobic side chains at the P1 site. The presence of a Leu residue at
the P1 site gives a higher affinity for elastases depending on stronger pairwise van der Waals
interactions and less unfavourable polar-desolvation drawback compared to inhibitors
with Lys residues at P1 [58]. Moreover, the carbonyl oxygen atom of Leu13 occupies the
oxyanion hole, establishing three hydrogen bonds with the backbone nitrogen atoms of
Elastase residues Gly193, Asp194, and Ser195, together with an H-bond with Ser214 via
its nitrogen atom. Additionally, the His11 residue in P3 of Kun_Myl-35212_i1 maintains
the same basic properties and position of Arg in S_heliantus_SHPI-1_3UOU_B [52]. As
with Leu residue in P1, the large hydrophobic Phe residue is well accepted in both the
chymotrypsin and trypsin S1 pockets due to the favourable interactions of the Phe ring
with the peptide planes of residues in the pocket walls (191–192 and 215–216), with the
Chymotrypsin S1 pocket being more suitable to recognize large hydrophobic residues [55].
Indeed, a Phe residue in P1 has been shown to be correlated to a strong interaction with
Chymotrypsin with an association constant value of 2.5 × 109 M−1 [59]. These Kunitz-
Type proteins could be promising inhibitors of Elastase-like enzymes that are involved in
important diseases such as acute pancreatitis, chronic inflammatory lung diseases, and
cancer [60–62].

4.4. Acidic P1 Residue

The third type of Kunitz protein has a negatively charged residue (Asp) in P1. The
interaction between the Asp residue and the S1 pocket of serine proteases is strongly un-
favourable as suggested by the lowest association constants versus four proteases (Bovine
Chymotrypsin, Trypsin, Humane neutrophil elastase, and Salmon Anionic Trypsin) com-
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pared to other P1 mutations in BPTI [63]. Nevertheless, acidic residues (Asp and Glu)
were found in a Kunitz plant protein, Sporamine, able to inhibit trypsin activity [47], and
mutagenesis site-direct experiments demonstrated that Asp and Glu were critical for the
inhibitory function. Accordingly, BPTI mutation with an acidic residue at the P1 residue
was able to bind trypsin [48]. This amino acid substitution confers the strongest trypsin in-
hibition at low pH, suggesting a new mechanism in the control of trypsin-like enzymes [48].
In conclusion, even if a good correlation between the P1 residues and the specificity of the
target proteases was found, it has to be noticed that the P1 site alone cannot drive protease
specificity and that many other aspects need to be considered such as the three-dimensional
structure of the protein and of its target, the pH of the solution, the presence of other
residues that can modify the context of the P1 residue, and the binding orientation of the
P1 residue. In fact, biochemical investigations of a KTPI of F. hepatica, FhKT1.3, with an
Arg at the P1 position, showed the ability of this protein to inhibit cysteine protease as
well as serine proteases. This result could be explained by the binding orientation of Arg
residue in the two proteases’ active sites, mediated by the hydrophobic portion of the Arg
side chain in the first case or by the guanidine polar group in the second case [45]. We
are aware that our data derive from in silico modelling and, even if rigorous, need to be
verified by biochemical studies with purified proteins. Nevertheless, they will drive future
studies to identify new pharmacological targets. Moreover, it will be interesting to analyse,
in the KTPI from L. trimaculatus and M. variabilis, the occurrence of post-translational
modifications as glycosylation, phosphorylation, or presence of pyroglutamate that can
modify their biochemical and pharmacological features.

4.5. Natural-KTPI Pharmacological Application

The need for finding new protease inhibitors, more effective if taken from natural
sources, arises from their growing use in the prevention of adverse effects of acute respira-
tory distress syndrome, and in the treatment of coagulopathies [8,64–66]. The search for
effective protease inhibitors has been conducted for at least 50 years and indeed, several
of them are already commercialized [2,67]. The interest in using the protein repertoire
of Meloidae for this therapeutic purpose is corroborated by a large amount of evidence
indicating that protease inhibitors of natural origin, even if with some limitation [67,68],
have a greater therapeutic potential (with fewer side effects) than synthetic ones. Fur-
thermore, for the development of therapeutically useful serine protease inhibitors with
good pharmacological characteristics, it is generally accepted that reversible inhibitors are
preferred to irreversible ones [12].

5. Conclusions

In conclusion, the in silico and bioinformatics analyses conducted in this study high-
lighted the presence of new potential Kunitz-Type proteins derived from Meloidae insects.
Even if the data obtained in the present study will need to be confirmed by more extensive
studies, we believe our findings could be of interest for future pharmacological applications.
Moreover, the description of potential KTPI in two species of Blister beetles increases our
knowledge on a group of insects in which reflex haemorrhage plays an important evolu-
tionary role. Thus, this study improves our comprehension of their ecology and adaptation
mechanisms. Finally, the study of KTPI from insects expands the understanding on the
evolution of this heterogeneous and widespread class of proteins.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12070988/s1, Figure S1: Transcript and protein sequence
from three sequenced clones with Leu at P1 site; Figure S2: Alignment of Kunitz domain sequences
from insects.
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