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Figure S1. Sequence clustering map of PS-positive sequences. Left and top: clustering 
dendrograms showing the pairwise similarity level (0 - 1.0) for all sequences. Middle: 
heatmap of similarity levels showing that inter-cluster sequences have pairwise 
similarity higher than 0.5 in general. 
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Figure S2. Final model performance via ROC curves, for 3 models. ROC curves on 
Evaluation set 1 (left) and Evaluation set 2 (right) for 3 different models: (a,d) PDB 
model, (b,e) Human model and (c,f) Human+PDB model. 
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Figure S3. Final model performance via boxplots, for 3 models. Predicted score 
boxplots of positive vs. negative sequences on Evaluation set 1 (left) and Evaluation set 
2 (right) for 3 different models: (a,d) PDB model, (b,e) Human model, and (c, f) 
Human+PDB model.  
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Figure S4. Final model performance via histograms, for 3 models. Distribution 
histograms of positive vs. negative sequences on Evaluation set 1 (left) and Evaluation 
set 2 (right) for 3 different models: (a,d) PDB model, (b,e) Human model, and (c,f) 
Human+PDB model. 
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Figure S5. Comparison of three training baselines and the final predictor models for 
validation, for the 3 models. Performance comparisons are shown for (a) PDB model, 
(b) Human model, and (c) Human+PDB model. Baseline 1 was created by providing 
random values from a normal distribution N(0, 1) in the weight training step instead of 
providing PDB-based physical feature values into the genetic algorithm. Baseline 2 was 
created by providing random values from the distribution of residue-specific physical 
feature values instead of providing sequence-based physical feature values. Baseline 3 
was created by optimizing 1 weight for 20 residue types for each physical feature 
(removing residue specificity) during training instead of optimizing 20 weights for 20 
residue types for each physical feature.  
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Figure S6. Comparison of performance via ROC curves of predictors trained on 8 
features vs. 1 feature, for 3 models: (a) PDB model, (b) Human model, and (c) 
Human+PDB model.   
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Figure S7. Comparison of performance via Venn diagrams of predictors trained on 8 
features vs. 1 feature for the 3 models. Venn diagrams showing the coverage overlaps 
of PS-positive sequences by 1-feature predictors vs. the 8-feature predictor at a 
confidence threshold that returns 2% of the PDB, for 3 models: (a) PDB model, (b) 
Human model, and (c) Human+PDB model.   
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Figure S8. Feature score-based clustering for PS-positive proteins for the 3 models. 
Plots of 2 abstracted dimensions for clustering based on feature z-scores, showing the 
separation of different types of phase-separating sequences, for 3 models: (a) PDB 
model, (b) Human model, and (c) Human+PDB model.  
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Figure S9. Feature score breakdown for example sequences from distinct clusters of 
PS-positive proteins for the 3 models. The score breakdown of 4 example sequences 
from 4 clusters in Fig S8 is shown for FUS (human), Nup98 (human), elastin-like 
peptide (ELP, VPGVG_30, 30 repeats of VPGVG) and MEG-3 (C. elegans) for 3 
models: (a) PDB model, (b) Human model, and (c) Human+PDB model. 
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Figure S10. Enrichment heatmap by GO functional annotations for different features for 
the PDB model. Heatmap showing the enrichment of proteins with a given functional 
annotation that fall under a 10% confidence threshold for each single feature score and 
8-feature sum score. The color gradient shows the natural logarithm of the enrichment 
percentage. 
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Figure S11. Enrichment heatmap by GO functional annotations for different features for 
the Human model. Heatmap showing the enrichment of proteins with a given functional 
annotation that fall under a 10% confidence threshold for each single feature score and 
8-feature sum score. The color gradient shows the natural logarithm of the enrichment 
percentage. 
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Figure S12. LLPhyScores for curated (CRAPome filtered) and uncurated human 
proteome sequences, demonstrating overall shift to negative scores for the curated 
sequences.  A Z-test to quantify the statistical significance of the difference between to 
the scores for these two sets yielded a highly significant P-value of 5E-60. 
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Supplementary Tables S4-S7 are included in this Supplementary Material document 
here. Supplementary Tables S1-S3 and S8-S11 are provided as separate files, 
described below.  
 
 
Table S4. Constructed Training/Test/Evaluation sets and number of sequences in each 
set. 
 

set type set name # positive samples # negative samples 

Training set 
Training set 1 305 1703, PDB 
Training set 2 305 1703, Human 
Training set 3 305 1703, PDB + Human 

Test set 
Test set 1 260 1703, PDB 
Test set 2 260 1703, Human 
Test set 3 260 1703, PDB + Human 

Evaluation set Evaluation set 1 565 16794, PDB 
Evaluation set 2 565 20380, Human 
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Table S5. 16 physical features with corresponding definitions. 
 

Physical Feature Definition 

pi-pi (short-range) Pi-Pi contacts were defined using the method in Vernon et al. [1], and 
then divided into short range and long range by sequence separation. 

Less than 5 residues apart is defined as short range, and greater 
than or equal to 5 is defined as long range. pi-pi (long-range) 

protein-water Water and carbon counts were calculated only for the subset of 
proteins in our training set that have a total number of water 

molecules greater than the number of protein residues. This captures 
almost all models with resolution <= 1.8 but removes lower resolution 

models. Counts are measured for residues in their crystallographic 
context (measurement includes atoms from symmetry partners). protein-carbon 

sec. structure (helices) DSSP letter code was used for secondary structure assignments, 
with H/G used for helix, E for strand, and all others binned to loop. 

sec. structure (strands) 

disorder (long) For identifying disordered residues, a DSSP assignment of “not 
G/H/E” over a span of at least 3 residues was used to classify 

residues as loops. These loop residues were then assigned as short 
disorder if they fall within 3 residues of G/H/E and as long disorder if 

they do not. disorder (short) 

electrostatic (short-range) 

Phenix.reduce [2] was used to complete PDB structures by adding 
hydrogen atoms and charge interactions were calculated using the 

following pseudocode, with partial charges taken from the 
Talaris2014 energy function [3]. 

 
Q1 = partial_charge for atom X of amino acid 1 
q2 = partial_charge for atom Y of amino acid 2 

 
absF = 330.0 * abs(q1*q2)/(distance**2) 

if q1*q2 < 0.0: absF *= -1.0 
 

if SequenceSeparation >= 10: add absF to electrostatic (long range) 
if SequenceSeparation < 10: add absF to electrostatic (short range) 

 
Final per-residue values were then binned as follows: 
bin = np.clip(int( round( residue_value / 16.0 ) ), -9, 9) 

electrostatic (long-range) 
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hydrogen bond (short-range) 

Structures probed for hydrogen OH-N hydrogen bonds using phenix 
[2], with the following commands used to extract hydrogen bond 

information. 
phenix.reduce -Quiet -FLIP [pdb file] > ./PHENIX_ALL/PHENIXL.pdb 

phenix.probe "NITROGEN,OXYGEN,HYDROGEN" -Quiet -
ONEDOTeach -NOCLASHOUT -SUMMARY -

NOVDWOUT ./PHENIX_ALL/PHENIXL.pdb | grep 
greentint > ./N17.PHENIX/HLIST.'+pdb 

 
Bonds were than classified as short range and long range by 

sequence separation (short range < 5, long range ≥ 5). 
hydrogen bond (long-range) 

cation-pi (short-range) 
We reran the electrostatic scores after adding arbitrary partial 
charges to the surfaces of aromatic rings, with a partial charge value 
of -0.05 added 0.85 Å above and below the plane of the ring for each 
atom, counterbalanced by a partial charge of 0.1 at the atom. 
 
The cation pi-score is then taken from the difference between this 
modified score and the unmodified electrostatic score. 

cation-pi (long-range) 

K-Beta similarity 
Superpositions to kinked beta fibrils were made for chain A in each of 

5 structures, PDB IDs 6bwz, 6bxv, 6bxx, 6bzm, and 6bzp. The full 
chain of each was superimposed to every overlapping window (same 

number of residues as the chain with none missing) in our PDB 
training set and kinked beta similarity was measured for each 

individual PDB residue by taking the minimum CA-RMSD over all 
measurements the residue was involved in. 

 
Residues were then classified as K-Beta similar if the minimum CA-
RMSD was under 1.0 Å and as K-Beta dissimilar if it was over 2.0 Å. 

K-Beta non-similarity 
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Table S6. The “signs” of 16 features determined by AUROC direction during individual 
feature training. Feature with a positive correlation to phase separation prediction are in 
black and those with a negative correlation to phase separation prediction are in red. 
 

feature name initial AUROC final AUROC feature sign 

pi-pi (short-range) 0.713 0.952 + 
pi-pi (long-range) 0.834 0.968 + 

protein-water 0.806 0.966 + 
protein-carbon 0.155 0.035 - 

sec. structure (helices) 0.240 0.054 - 
sec. structure (strands) 0.787 0.949 + 

disorder (long) 0.904 0.961 + 
disorder (short) 0.691 0.954 + 

electrostatic (short-range) 0.854 0.959 + 
electrostatic (long-range) 0.263 0.048 - 

hydrogen bond (short-range) 0.696 0.955 + 
hydrogen bond (long-range) 0.794 0.967 + 

cation-pi (short-range) 0.355 0.039 - 
cation-pi (long-range) 0.226 0.033 - 

K-Beta similarity 0.833 0.938 + 
K-Beta non-similarity 0.239 0.042 - 
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Table S7. The AUROC of different trained feature combinations. 
 

feature combination AUROC (training set) AUROC (test set) 

16 features 0.959 0.935 

12 features 0.962 0.933 

final model (8 features) 0.969 0.942 
final model (8 features) trained on 

training set 1+ test set 1 (“PDB 
model”), using Evaluation set 1 

0.978 

final model (8 features) trained on 
training set 1+ test set 1 (“PDB 
model”), using Evaluation set 2 

0.824 

final model (8 features) trained on 
training set 2 + test set 2 (“Human 

model”), using Evaluation set 1 
0.908 

final model (8 features) trained on 
training set 2 + test set 2 (“Human 

model”), using Evaluation set 2 
0.941 

final model (8 features) trained on 
training set 3+ test set 3 (“Human 
+ PDB model”), using Evaluation 

set 1 

0.947 

final model (8 features) trained on 
training set 3+ test set 3 (“Human 
+ PDB model”), using Evaluation 

set 2 

0.933 
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Separate Supplementary Files 
One attached Excel file contains, on separate tabs, Tables S1-S3 and S8-S11. Table 
S1. Detailed information of 565 PS-positive sequences with PMID of each sequence’s 
paper.  
Table S2. Uniprot IDs of 6102 sequences from human proteome that represent the 
negative training set using CRAPome as filtering method.  
Table S3. LLPhyScore and CRAPome scores for all human sequences, including both 
those within the curated negative training set and those not in the curated list. 
Table S8A. GO enrichment analysis for PDB+Human model.  
Table S8B. GO enrichment analysis for PDB model.  
Table S8C. GO enrichment analysis for Human model.  
Table S9. Uniprot IDs of 3406 sequences from PDB base.  
Table S10. Uniprot IDs of 3406 sequences randomly selected from Human base in 
Table S2.  
Table S11. Uniprot IDs of 6812 sequences from PDB+Human base.  

File S1. 565 PS-positive sequences (fasta file). 
File S2. Hierarchical clustering dendrogram of PS-positive sequences (jpeg file). 
File S3. 16794 PDB sequences (fasta file). 
File S4. 20380 Human sequences (fasta file). 
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