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Abstract: Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication of anti-
neoplastic drugs, particularly paclitaxel (PTX). It can affect the quality of patients’ lives and increase
the risk of developing mood disorders. Although several drugs are recommended, they yielded
inconclusive results in clinical trials. The aim of the present work is to investigate whether the
palmitoylethanolamide (PEA) would reduce PTX-induced CIPN and associated mood disorders.
Moreover, the role PPAR-α and the endocannabinoid system will also be investigated. CIPN was
induced by intraperitoneally injection of PTX (8 mg/kg) every other day for a week. PEA, 30 mg/kg,
was orally administrated in a bioavailable form (i.e., ultramicronized PEA, um-PEA) one hour after
the last PTX injection, for 7 days. In the antagonism experiments, AM281 (1 mg/kg) and GW6471
(2 mg/kg) were administrated 30 min before um-PEA. Our results demonstrated that um-PEA re-
duced the development of hypersensitivity with the effect being associated with the reduction in
spinal and hippocampal pro-inflammatory cytokines, as well as antidepressive and anxiolytic effects.
Moreover, the PPAR-α and CB1 receptor antagonists blocked the behavioral and antinociceptive
effects of um-PEA. Our findings suggest that um-PEA is a promising adjunct in CIPN and associated
mood disorders through the activation of PPAR-α, which influences the endocannabinoid system.

Keywords: paclitaxel; um-PEA; inflammation; neuropathic pain; behavior; cannabinoids; PPAR-α

1. Introduction

Cancer is one of the leading causes of death worldwide. In the last few years, the
survival rates for most cancers have been increasing, probably due, at least in part, to new
and improved treatments [1]. Despite the large interest in new drugs to fight cancer, old
drugs still have an important use due to their high efficacy, despite their marked toxicity.

Paclitaxel (PTX) is a taxane chemotherapeutic agent used in the treatment of several
cancer types. Although it shows beneficial antitumoral effects, it also produces impor-
tant secondary effects both in the central and peripheral nervous system, resulting in
emotional deficits and peripheral neuropathy, respectively [1–3]. Specifically, PTX causes
chemotherapy-induced neuropathic pain (CIPN), a condition characterized by thermal
and mechanical allodynia and hyperalgesia, which often persists for a long time [4,5]. In
this case, the severity of symptoms can greatly increase the risk of developing mood disor-
ders, including anxiety and depression, reinforcing the conception of CIPN as a chronic
disease [6–8].

Unfortunately, there are currently no clinically effective interventions for CIPN, the
efficacy of the existing therapies being only moderate [9].

PTX-induced neuropathy is initially characterized by oxidative stress followed by
mitochondrial dysfunction [1,10–13]. Moreover, chemotherapeutical agents such as PTX
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have been shown to act similarly to LPS, i.e., increasing the production and release of
pro-inflammatory interleukin (IL)-6 and IL-8 [14,15]. Notably, PTX-induced inflamma-
tion often interferes with its typical clinical efficacy, increasing tumor proliferation or
chemoresistance [16–18] and contributing to the development of toxicity. Indeed, inflam-
mation and neuroinflammation are a prominent characteristic of pain [19], as well as mood
disorders [20]. Although acute inflammation can be considered a protective mechanism,
chronic inflammation creates an array of detrimental effects. Despite the increasing under-
stating of these mechanisms, novel analgesic strategies for treating PTX-induced toxicity
are still lacking, and very few studies have investigated new possible effective treatments
for CIPN and associated emotional components.

Palmitoylethanolamide (PEA) is a bioactive lipid mediator [21,22] belonging to the
N-acyl-ethanolamine (NAE) family [23]. Although it is recognized that PEA primarily
targets the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-α),
other receptors have been shown to mediate, at least in part, the effects of PEA, including
G protein-coupled receptor 55 (GPR55), G protein-coupled receptor 119 (GPR119), and the
transient receptor potential vanilloid receptor 1 (TRPV1) channels. Additionally, PEA indi-
rectly activates cannabinoid receptors through the increase in the level of endocannabinoid
mediators, such as anandamide (AEA), and 2-arachidonoylglycerol (2-AG) through the
so-called called ‘entourage effect’ [24]. The well-known anti-inflammatory and antinoci-
ceptive effects exerted by PEA are considered to be an important non-pharmacological
strategy in the management of neuropathic pain conditions, shown by several studies
performed in preclinical models of inflammatory [25] and neuropathic pain [26–31], as
well as clinical studies on human patients affected by osteoarthritis [32,33], neuropathic
pain [34–36], fibromyalgia [37], and endometriosis [38]. Importantly, pain insensitivity
in a human patient has been recently shown to be associated to a genetic deficiency in
PEA-degrading enzymes, resulting in significantly higher PEA plasma levels compared to
age-matched control patients [39].

In fact, PEA efficacy in chemotherapy-induced neuropathy has already been evaluated
by previous studies via the oxaliplatin- [40] and PTX-induced CIPN model [41]. In par-
ticular, the last study has shown the effect to be mediated by PPAR-α, whose antagonism
(i.e., through fenofibrate) is indeed known to reduce neuroinflammation in PTX-induced
neuropathy [42].

PEA and its receptors are present in the central nervous system (CNS) [43,44], and
exogenously administrated PEA is known to cross the blood–brain barrier [45], thereby ex-
erting neuroprotective actions and promoting the resolution of neuroinflammation [46], and
the regulation of behavior, mood, and cognition [47]. The therapeutic use of PEA in CNS dis-
orders has produced promising results in several conditions, ranging from depression [48]
to post-traumatic stress disorder [49] and autism spectrum disorders [50]. The ability of
PEA to modulate neuroinflammation and associated symptoms (i.e., pain, depression, and
anxiety) makes it a valid therapeutic tool in the treatment of several disorders.

The goal of our study was to investigate the activity of PEA on two PTX-induced
side effects, i.e., mood disorders and peripheral neuropathy (CIPN), and to understand
whether PPAR-α and the endocannabinoid system play a role. Moreover, we evaluated
central and peripheral inflammatory modulation processes using this bioactive lipid. For
our study, the ultramicronized formulation (um-PEA) was used, due to its higher solubility
and bioavailability after systemic administration [51].

2. Materials and Methods
2.1. Animals

CD1 male mice (3 months old, 25–30 g, Charles Rivers, Calco, Lecco, Italy) were placed
in a controlled area (room maintained at 22 ± 1 ◦C with 12 h light/dark cycle) and supplied
with water and food ad libitum, in the animal care facility at the Department of Pharmacy
of the University of Naples Federico II, Italy.
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2.2. Drug Treatment

Paclitaxel (PTX, Cat#S1150 Selleckchem, Houston, TX, USA) at the dose of 8 mg/kg
was dissolved in a solution made up of 5% DMSO, 40% PEG 300, 5% Tween 80, and ddH2O
according to the manufacture’s guidelines. Ultramicronized palmitoylethanolamide (um-
PEA), kindly provided by Epitech Group SpA (Saccolongo, Italy), was dissolved in 1%
carboxymethylcellulose. The CB1 antagonist, AM281, and the PPAR- α antagonist GW6471,
obtained from Tocris Cookson (Bristol, UK), were dissolved in 4% DMSO and saline.

2.3. Experimental Groups and Procedures

Mice were divided into five groups of n = 8 mice each, as follows:

• Vehicle: mice receiving saline intraperitoneally (IP).
• PTX: mice receiving PTX (8 mg/kg, 100 µL/mouse) IP at day 1, 3, 5, and 7.
• PTX + um - PEA: mice receiving PTX and then um-PEA (30 mg/kg for 7 days) by

oral gavage.
• PTX + um - PEA+AM281: mice receiving PTX, then um-PEA, and on the last day

AM281 (1 mg/kg) IP.
• PTX+um-PEA+GW6471: mice receiving PTX, then um-PEA, and on the last day

GW6471 (2 mg/kg) IP.

Briefly, animals received PTX or vehicle treatments every other day for a week (days 1,
3, 5, and 7), as described previously [42,52]. One hour after the last day of PTX injection,
mice started to receive oral um-PEA administration for 7 days. For antagonism experiments,
on the last day of um-PEA injection, a different set of mice received AM281 or GW6471 IP
1 h before the um-PEA injection. The doses of AM281 and GW6471 selected in this study
were based on the results of published data [41]. On the last day, mice were subjected to
behavioral tests 1 h after um-PEA administration, and after euthanasia, the hippocampus
and spinal cord were collected for ex vivo analysis.

2.4. Behavioral Tests
2.4.1. Depressive-like Behavior

Tail suspension test (TST). Mice were individually suspended by the tail 30–40 cm above
the floor, using adhesive tape. The duration of immobility, recorded in seconds using a timer,
was recorded during the 6-min test. Mice were considered immobile when they did not show
any body movement, hung passively, with the absence of escape-oriented behavior.

Forced swimming test (FST). Mice were gently placed into individual glass cylinders
(30 cm × 45 cm) filled with water maintained at 27 ◦C for 10 min, and their immobility times
were recorded using a timer. Mice were considered immobile when floating in an upright
position and only making small movements to keep their head above water, but without
displacement. After the test, mice were allowed to dry and return to their home cage.

2.4.2. Anxiety-like Behavior

Elevated plus-maze (EPM). The maze was composed of a central square, two open
arms and two closed arms enclosed by vertical walls, placed 50 cm above the floor. Mice
were individually placed on the central area of one of the open arms and allowed to move
freely. The number of entries into the open arms during a 5-min exploration period were
recorded and analyzed by video tracking software (Any-maze, Stoelting, Wood Dale, IL,
USA). An entry was counted only if all four paws were inside the arm. At the end of the
test, the apparatus was wiped with 70% ethanol.

Open field (OF) test. Mice were placed in an OF arena (25 cm × 25 cm), and locomotor
activity (total distance travelled in meters) was recorded for 30 min and analyzed by video
tracking software (Any-maze, Stoelting, Wood Dale, IL, USA). The apparatus was cleaned
before and after each behavioral session with a solution of 70% ethanol.
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2.4.3. Pain Behavior

Mechanical allodynia (von Frey test). To assess changes in sensation or in the devel-
opment of mechanical allodynia, sensitivity to tactile stimulation was measured using
a dynamic plantar aesthesiometer (DPA, Ugo Basile, Italy). Animals were placed in a
chamber with a mesh metal floor covered by a plastic dome that enabled the animals to
walk freely, but not to jump. The mechanical stimulus (paw withdrawal threshold) was
then delivered to the mid-plantar skin of the hind paw. The cutoff was fixed at 5 g, while
the increasing force rate (ramp duration) was settled at 20 s. The DPA automatically records
the force at which the foot is withdrawn and the withdrawal latency. Each paw was tested
twice per session. This test did not require any special pretraining, just an acclimation
period to the environment and testing procedure.

Mechanical hyperalgesia (Randall–Selitto test). Mechanical hyperalgesia was assessed
using a Randall–Selitto algesimeter (Ugo Basile). Before the test, each animal received 5 min
of handling to get used to manipulation; then it was placed into a soft cotton cloth and
carefully immobilized with the same hand used to hold the tested paw. The test consisted of
the application of an increasing mechanical force, in which the tip of the device was applied
onto the medial portion of the plantar surfaces until a withdrawal response resulted. The
maximum force applied was limited to 200 g to avoid skin damage.

Thermal allodynia (cold test). Cold sensitivity was measured as the number of foot
withdrawal responses after application of acetone to the dorsal surface of the paw. A drop
of acetone was applied to the dorsal surface of the paw with a syringe connected to a thin
polyethylene tube while the mice were standing on a metal mesh. A brisk foot withdrawal
response after the spread of acetone over the dorsal surface of the paw was considered as a
sign of cold allodynia (n◦ paw withdrawal).

Thermal hyperalgesia (plantar test). Heat hypersensitivity was assessed using the
mice plantar test apparatus (Ugo Basile, Italy). The plantar test consisted of three Perspex
boxes (22 × 19 × 25 cm) on an elevated glass table. Mice were housed in each box and
left to acclimatize for at least 10 min. A mobile infrared heat source was applied to the
plantar surface of the hind paws. The paw withdrawal latency was defined as the time
(expressed in seconds) taken by the mice to remove its hind paw from the heat source.
The heat source was calibrated to 15 IR intensity, and a cutoff point of 60 s was applied to
prevent tissue damage.

2.5. Ex Vivo Experiments
2.5.1. Determination of Brain and Spinal Cord Markers of Inflammation

The hippocampus and spinal cord samples were collected and TNF-α, IL-1β, IL-6, and
IL-10, COX-2, and iNOS levels were measured using real time (RT)-PCR. For RT-PCR, total
RNA was extracted from brain areas using TRIzol Reagent (Bio-Rad Laboratories, Hercules,
California, USA) according to the manufacturer’s instructions. cDNA from 4 µg total RNA
was retrotranscribed using a reverse transcription kit (NucleoSpin®, MACHEREY-NAGEL
GmbH & Co, Düren, Germany). RT-PCR reactions were performed using Bio-Rad CFX96
PCR System and relative software (Bio-Rad Laboratories). Mouse primers for TNF-α,
IL-1β, IL-6, IL-10, COX-2, and iNOS were purchased from Qiagen (Hilden, Germany).
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a housekeeping gene
for normalization. Data are expressed using the ∆∆CT method.

2.5.2. Western Blotting

Spinal cord samples were homogenized on ice-cold lysis buffer (20 mM Tris–HCl
(pH 7.5), 10 mM NaF, 150 mM NaCl, 1% Nonidet P-40, 1 mM phenylmethylsulfonyl fluoride,
1 mM Na3VO4, leupeptin and trypsin inhibitor 10 µg/mL; 0.25/50 mg tissue). After 1 h,
tissue lysates were obtained by centrifugation at 2.0 × 104 g for 15 min at 4 ◦C. Protein
concentrations were estimated with the Bio-Rad protein assay (Bio-Rad Laboratories, Milan,
Italy) using bovine serum albumin as standard. Lysate proteins were dissolved in Laemmli
sample buffer, boiled for 5 min, and separated by SDS-polyacrylamide gel electrophoresis
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and transferred to a nitrocellulose membrane (240 mA for 40 min at room temperature). The
filter was then blocked with 1×phosphate buffer saline (PBS) and 3% non-fat dried milk
for 40 min at room temperature and probed with anti-peroxisome proliferator-activated
receptor (PPAR)-α (dilution 1:1000, cat. no. P0369, Sigma-Aldrich, Milan, Italy), or anti-
cannabinoid (CB) receptor 1 (dilution 1:1000, cat. no. NB120-23703, Novus Biologicals,
Cambridge, UK) in 1×PBS, 3% non-fat dried milk, and 0.1% Tween 20 at 4 ◦C overnight.
The secondary antibodies were incubated for 1 h at room temperature. Subsequently, the
blots were extensively washed with PBS, developed using enhanced chemiluminescence
detection reagents (Amersham Pharmacia Biotech, Piscataway, NJ, USA) according to
the manufacturer’s instructions. The immune complex was visualized by the ChemiDoc
Imaging System (Bio-Rad Laboratories). These blots were loaded with equal amounts of
protein lysates, they were also incubated in the presence of the antibody against β-actin
(cat. no. A5441, Sigma-Aldrich).

2.6. Statistical Analysis

Statistical analyses were performed using Prism 9 GraphPad software (GraphPad
Software Inc., San Diego, CA, USA). All in vivo data are presented as mean ± SEM. For
all experimental data, the significances of the differences between groups were deter-
mined by one-way repeated measures ANOVA, followed by post hoc Bonferroni’s multiple
comparison test. A value of p < 0.05 was considered statistically significant for all tests.

3. Results
3.1. Effect of um-PEA on PTX-Induced Depressive- and Anxiety-like Behaviors

We investigated the possible effect of um-PEA in reducing PTX-induced depressive-
like behaviors as assessed in the TST and FST. As expected, both tests showed that PTX
increased immobility time compared to vehicle-treated mice (** p < 0.01; Figure 1A,B).
Um-PEA administration for 7 days after the last PTX injection significantly reduced the
time of immobility compared to vehicle-treated mice (◦ p < 0.05; Figure 1A,B).
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Figure 1. Effect of um-PEA on depressive- and anxiety-like behavior. (A) Time (in seconds) spent
immobile in the TST; (B) time (in seconds) spent immobile in the FST test; (C) number of entries in
the open arms of EPM test; (D) distance travelled (in cm) in the OF test; ** p < 0.01 versus vehicle
group; ◦ p < 0.05 versus PTX group. Data are presented as mean ± SEM (n = 8). Differences were
evaluated by ANOVA followed by Bonferroni’s post hoc test for multiple comparisons.
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The anxiety-like behavior was assessed in the EPM test. PTX-treated mice showed
a significant decrease in the time spent in the open arms of the apparatus (** p < 0.001;
Figure 1C) compared to vehicle-treated mice, which was significantly counteracted by
repeated oral administration of um-PEA (◦ p < 0.05: Figure 1C). On the contrary, neither
PTX nor- um-PEA had any effect on motor activity in the OF test (Figure 1D).

3.2. CB1 and PPAR-α Are Involved in um-PEA Central Activity

Since it was reported that um-PEA acts as both a CB1 and a PPAR-α receptor
agonist [24], and these receptors are localized in the brain [53,54], we further charac-
terized um-PEA anxiolytic and antidepressant effects by performing behavioral tests in the
presence of CB1 and PPAR-α antagonists, AM281 and GW6471, respectively. Both of the
receptor antagonists significantly inhibited the antidepressant effect of um-PEA (# p < 0.05,
## p < 0.01; Figure 2A–B). Similar results were observed for the um-PEA anxiolytic effect
compared to um-PEA+PTX-treated mice (# p < 0.05, ## p < 0.01; Figure 2C). Additionally, in
this case, neither AM281 nor GW6471 changed the motor activity of the mice (Figure 2D).
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Figure 2. Effect of um-PEA on depressive- and anxiety-like behavior in presence of CB1 or PPAR-α
antagonists. (A) Time (in seconds) spent immobile in the tail suspension test; (B) time (in seconds)
spent immobile in the forced swim test; (C) number of entries in the open arms of elevated plus-maze
test; (D) distance travelled (in cm) in the open field test; ◦ p < 0.05 and ◦◦ p < 0.01 versus PTX group;
# p < 0.05 and ## p < 0.01 versus PTX+ um-PEA. Data are presented as mean ± SEM (n = 8). Differences
were evaluated by ANOVA followed by Bonferroni’s post hoc test for multiple comparisons.

3.3. Effect of um-PEA on Spinal and Sovraspinal Inflammatory Mediators in PTX Mice

The mRNA levels of pro-inflammatory cytokines in hippocampus and spinal cord tis-
sues were analyzed using RT-PCR. A significant (* p < 0.05, ** p < 0.01, and
*** p < 0.001 versus vehicle) induction in the expression of these cytokines was observed in
the PTX-treated group at both the central (Figure 3A–D) and the spinal level (Figure 4A,B).
Um-PEA treatment significantly decreased all of the pro-inflammatory cytokine gene levels
analyzed (TNF-α, IL-1β, and IL-6), while increasing the levels of IL-10 (* p < 0.05 versus
PTX; Figure 3A–D). In the spinal cord, um-PEA treatment significantly decreased pro-
inflammatory cytokine gene levels of TNF-α and IL-1β (◦ p < 0.05 and ◦◦ p < 0.01 versus
PTX; Figure 4A-B). To further determine the inhibitory effect of um-PEA on inflammatory
mediators in the spinal cord, we also evaluated the mRNA expression level of iNOS and
COX-2. There was an upregulation of iNOS and COX-2 mRNA expression after PTX



Biomolecules 2022, 12, 1155 7 of 16

treatment, which was significantly (* p < 0.05 and *** p < 0.001 versus vehicle) reduced by
um-PEA treatment (◦ p < 0.05 and ◦◦ p < 0.01 versus PTX; Figure 4C, D).
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Figure 4. Pro-inflammatory cytokine levels in the spinal cords of vehicle- or um-PEA-treated mice
injected with PTX. (A) Fold expression of mRNA for pro-inflammatory TNF-α; (B) fold expression
of mRNA for pro-inflammatory IL-1β; (C) fold expression of mRNA for pro-inflammatory COX-2;
(D) fold expression of mRNA for anti-inflammatory iNOS; * p < 0.05 and *** p < 0.001 versus vehicle
group; ◦ p < 0.05 and ◦◦ p < 0.01 versus PTX group. Results are shown as mean ± SEM. Differences
were analyzed using ANOVA followed by Bonferroni’s post hoc test for multiple comparisons.
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3.4. Effect of um-PEA on PTX-Induced Peripheral Neuropathy

PTX treatment induced neuropathic pain; indeed, PTX-treated mice showed a sig-
nificant reduction in mechanical allodynia (** p < 0.01) and hyperalgesia (*** p < 0.001)
compared to the vehicle group (Figure 5A–B). Um-PEA treatment significantly counter-
acted the effect of PTX in both tests (◦ p < 0.05; Figure 5A-B). PTX treatment also induced
marked cold allodynia and thermal hyperalgesia, resulting in a significant increase in
cold responses (*** p < 0.001) and significant decrease in thermal nociceptive thresholds
(** p < 0.01) compared to vehicle group (Figure 5C,D). In contrast, um-PEA administration
produced a significant reduction in the number of paw withdrawals in the acetone test, and
enhanced the thermal withdrawal thresholds in the Hargreaves test (◦ p < 0.05) compared
to PTX animals (Figure 5C,D).
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mechanical allodynia; (B) Randall–Selitto test to assess mechanical hyperalgesia; (C) acetone evap-
oration test to evaluate thermal allodynia; (D) Hargreaves test to evaluate thermal hyperalgesia;
** p < 0.01; *** p < 0.001 versus vehicle group; ◦ p < 0.05 versus PTX group. Data are presented as
mean ± SEM (n = 8). Differences were evaluated by ANOVA followed by Bonferroni’s post hoc test
for multiple comparisons.

3.5. Effect of um-PEA in PTX-Treated Mice Is PPAR-α and CB1 Mediated

The antinociceptive action of um-PEA was investigated in the presence of a selective
CB1 receptor antagonist (AM281) and a selective PPAR-α antagonist (GW6471). As ex-
pected, the increase in paw withdrawal threshold of um-PEA-treated mice was reversed
to a significant extent by AM281 in the Randall–Selitto, von Frey, and Hargreaves tests,
compared to um-PEA-treated mice (## p < 0.01, Figure 6A–C). Additionally, we found
that the analgesic effect of um-PEA was also significantly counteracted in mice treated
with the selective PPAR-α antagonist (GW6471). Indeed, GW6471 administration in the
um-PEA-treated group resulted in significant hyperalgesic and allodynic effects (## p < 0.01,
Figure 6A–C).

Finally, in order to evaluate the roles of CB1 and PPAR-α receptors in PTX-induced
neuropathy, ex vivo experiments were conducted. By Western blot analysis, we confirmed
that PTX was involved in the maintenance of pain hypersensitivity by mechanical stimuli,
since it was able to reduce CB1 receptor expression in the spinal cord compared to the
vehicle group (Figure 7A–B, * p < 0.05). Um-PEA administration increased significantly CB1
receptor expression (Figure 7A,

◦◦
p < 0.01). No significant differences between vehicle and

PTX+um-PEA groups were observed. Moreover, we also evaluated PPAR-α expression in
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the spinal cord, since this receptor has an important and well-known role in inflammation
control. PTX reduced its expression (Figure 7B, * p < 0.05), while um-PEA was able to
restore it by a significant degree (# p < 0.05).

Biomolecules 2022, 12, x  10 of 18 
 

 
Figure 6. Effect of um-PEA on peripheral neuropathy in presence of CB1 or PPAR-α antagonists. 
Results of the (A) von Frey test to evaluate mechanical allodynia; (B) Randall–Selitto test to assess 
mechanical hyperalgesia; (C) Hargreaves test to evaluate thermal hyperalgesia; #p < 0.05 and ##p < 
0.01 versus PTX+um-PEA; °p < 0.05 versus PTX-vehicle group. Data are presented as mean ± SEM 
(n = 8). Differences were evaluated by ANOVA followed by Bonferroni’s post hoc test for multiple 
comparisons. 

Finally, in order to evaluate the roles of CB1 and PPAR-α receptors in PTX-induced 
neuropathy, ex vivo experiments were conducted. By Western blot analysis, we confirmed 
that PTX was involved in the maintenance of pain hypersensitivity by mechanical stimuli, 
since it was able to reduce CB1 receptor expression in the spinal cord compared to the 
vehicle group (Figure 7A–B, *p < 0.05). Um-PEA administration increased significantly 
CB1 receptor expression (Figure 7A, °°p < 0.01). No significant differences between vehicle 
and PTX+um-PEA groups were observed. Moreover, we also evaluated PPAR-α expres-
sion in the spinal cord, since this receptor has an important and well-known role in in-
flammation control. PTX reduced its expression (Figure 7B, *p < 0.05), while um-PEA was 
able to restore it by a significant degree (#p < 0.05). 

Figure 6. Effect of um-PEA on peripheral neuropathy in presence of CB1 or PPAR-α antagonists.
Results of the (A) von Frey test to evaluate mechanical allodynia; (B) Randall–Selitto test to assess
mechanical hyperalgesia; (C) Hargreaves test to evaluate thermal hyperalgesia; # p < 0.05 and
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4. Discussion

The use of PTX as a chemotherapeutic agent has become a broadly accepted option in
the treatment of patients with ovarian, breast, non-small-cell lung cancers, malignant brain
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tumors, and a variety of other solid tumors [1]. Significant toxicities in both the brain and
periphery limit the effectiveness of PTX-based treatment regimens; this is a crucial limiting
factor that can lead to a change or reduction in therapy or, in severe cases, to its total
cessation [1]. In this study, we evaluated the efficacy of um-PEA in reducing PTX-related
side effects, i.e., peripheral neuropathy and mood alteration, and we also investigated the
possible mechanisms of action of um-PEA.

It is known that after the first cycle of PTX, it is already possible to observe the
development of neuropathic pain and emotional disorders [55]. Accordingly, here we show
that PTX-treated mice manifested anxiety-like behaviors in the EPM and OF tests, and
depressive-like behaviors in the FST and TST. The possible mechanisms underlying these
behavioral symptoms can be attributed to the development of neuroinflammation through
glial cell activation [52] and/or the induction of central neurotoxicity. It is also possible
that PTX sensitized the immune responses. Indeed, hypersensitivity to stimuli, not only in
neuropathic pain, but also in inflammatory pain, can be explained by both peripheral and
central sensitization of sensory nerve fibers [56].

It has been reported that during chronic inflammation, tissue levels of endogenous
PEA are decreased, either due to reduced production or increased degradation [57] (or
both). We thus hypothesized that treatment with a bioavailable form of PEA (i.e., um-
PEA) could prevent or treat PTX-induced side effects. Our data show that 7 days of
oral administration of um-PEA inhibited affective disorders in PTX mice. In detail, um-
PEA reduced depressive- and anxiety-like behaviors, as shown in the TST, FST, and EPM
test, respectively, while the OF test was not sensitive to PTX-induced changes. This result
suggests that locomotion alterations did not influence the behavioral results. Several studies
have indicated that PPAR signaling is involved in the regulation of anxiety responses.
Indeed, Domi et al. [58] demonstrated that PPAR-γ antagonism induces an anxiogenic effect
in mice, as detected both in the OF and EPM tests. Regarding the depressive-like behaviors
associated with PTX administration, um-PEA treatment normalized the increase in the
immobility time in the TST and FST. Several studies have already reported the potential
antidepressant effects of PEA (either alone or in combination with antidepressants) [59,60],
even in depressive-like behavior associated with neuropathic pain or traumatic injury [61].
Moreover, pharmacological inhibition of PEA degradation, as well as the upregulation of
its biosynthesis, also resulted in antidepressant effects [62,63].

Although several molecular mechanisms have been suggested to explain PEA effects,
its activity is mainly mediated by PPAR-α [59,64,65]. The activation of PPAR-α receptor
initiates a cascade of events that causes the suppression of pain and inflammation, in-
cluding decreases in pro-inflammatory cytokines such as IL-1β and IL-6, and TNF-α [57].
Moreover, low levels of PPAR-α are also responsible of several pathological conditions,
neurodegenerative diseases, and stress-related disorders [66].

Here we found decreased levels of PPAR-α in the spinal cord of PTX mice, which was
normalized by um-PEA. Although PPARs are not canonical endocannabinoid receptors,
they are activated by several endocannabinoid mediators, and thus are considered as
part of the enlarged endocannabinoid system, currently referred to as the endocannabi-
noidome [67]. Interestingly, evidence has shown that PEA, either by reducing anandamide
(AEA) metabolism or binding to PPAR-α, upregulated the expression of CB receptors
and increased TRPV1 activation, suggesting that PEA is able to interact both with the
endocannabinoid and endovanilloid systems [68,69]. The CB1 receptor, which is highly ex-
pressed in the CNS, plays an important role in the regulation of stress and emotions [70,71].
Indeed, several studies have shown that CB1 agonists reduce neuroinflammation and have
anxiolytic as well as antidepressant effects [72,73].

Therefore, one of the objectives of the study was to evaluate the protein expression of
two main receptors involved in the beneficial effects of PEA, PPAR-α, and CB1 receptors.
For instance, PEA exhibits analgesic effects via two different and distinct pathways, direct
activation of PPAR-α or indirect activation of CB1 receptors, both of which relieve pain
in different ways. Our results show that um-PEA counteracts the PTX-induced decrease
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in the expression not only of PPAR-α, but also CB1. Moreover, here we found that the
effects of um-PEA were significantly inhibited by the administration of either AM281 (CB1
antagonist) or GW6471 (PPAR-α antagonist). As already mentioned, the reduction in or the
absence of CB1 and PPAR-α could lead to neuroinflammation [66,74–77].

It is well documented that chronic administration of PEA is able to significantly re-
duce neuroinflammation [23,34,78], protect neurons from death [79,80], reduce oxygen
radicals, and improve behavioral, motor, and cognitive deficits [81,82]. Neuroinflammation
is a localized inflammation occurring in the PNS and CNS in response to trauma, bacte-
rial/viral infection, autoimmunity, and/or toxins [83,84]. In particular, neuroinflammation
is a common feature across different conditions, including neurodegenerative diseases,
fibromyalgia, and chronic pain [83,85,86]. Different studies have reported the effect of PEA
in the management of pain and inflammatory conditions [87–89]. The relationship between
inflammation and pain is bidirectional, since the activation of pain circuits can also regulate
neuroinflammation in the CNS [84]. Although acute neuroinflammation plays a protective
role [90], its chronicization (i.e., non-resolving neuroinflammation) is detrimental, since
the over-release of pro-inflammatory factors and cytokines can alter brain structure and
function [91,92]. Non-resolving neuroinflammation is a key factor in the pathogenesis
of CIPN, as shown by the significant increase in plasma levels of pro-inflammatory cy-
tokines and chemokines involved in hypersensitivity and pain (e.g., IL-1β and TNF-α) in
PTX-treated mice [93].

The decreased hippocampal gene expression of pro-inflammatory cytokines, which
was here observed following 7-day oral administration of um-PEA, clearly shows the
protective role of PEA-um against PTX-induced neuroinflammation. This central protective
effect was also observed at the spinal cord level, since um-PEA treatment significantly
decreased COX-2, iNOS, TNF-α, and IL-1β compared to the vehicle group.

Based on these findings, we also evaluated the efficacy um-PEA in PTX-induced
peripheral neuropathy. In fact, Donvito et al. [41] had already found that PEA reversed PTX-
induced neuropathy in a dose dependent manner. In their study, a single administration of
PEA was able to reverse mechanical allodynia through a PPAR-α-mediated mechanism.
In our study, mice receiving um-PEA treatment beginning at the last PTX injection show
a reduction not only in allodynia signs but also hyperalgesia. In agreement with our
data, Di Cesare Mannelli and coworkers reported analgesic proprieties of um-PEA in
oxaliplatin-induced neuropathy, and showed that this acylethanolamine prevented the
development of mechanical hypersensitivity, with a significant anti-inflammatory effect
also being observed [40]. Recently, we have confirmed that um-PEA exerts its analgesic
and anti-inflammatory effects primarily through direct activation of the transcription factor
PPAR-α [50]. In particular, PEA has been found to switch off the nuclear factor kB signaling
pathway, a crucial element in the transcription of genes, leading to the synthesis of pro-
inflammatory and pro-analgesic mediators [64,94].

Moreover, in a chronic constriction injury model of neuropathic pain, PEA not only
reduced edema and macrophage infiltration, but also counteracted the decrease in axon
diameter and myelin thickness, the effects being lost in PPAR-α-null mice [95]. Recently, it
has also been reported that the activation of PPARs may interfere with the production of
pro-inflammatory cytokines in CIPN, potentially attenuating and preventing the symptoms
of neuropathy [96]. In agreement with all these studies, we here demonstrate that um-PEA
reduces pro-inflammatory cytokines by PPAR-α activation. In fact, repeated um-PEA
administration increased the spinal cord expression of the nuclear receptor, and the PPAR-α
antagonist GW6471 reversed um-PEA analgesic effects.

In addition, it is also interesting to note that the restoration of CB1 receptor levels in
the spinal cord, following um-PEA treatment, seem to be important for pain control and
inflammation reduction. We have also confirmed the correlation between PEA and the en-
docannabinoid system via both in vivo and ex vivo experiments, using AM281, a CB1 antag-
onist able to reverse um-PEA analgesic effects; moreover, repeated um-PEA administration
preserves CB1 receptor expression in the spinal cord. Accordingly, a recent study reported
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that the administration of an analog of PEA, N-(4-methoxy-2-nitrophenyl)hexadecanamide
(HD), produced a dose-dependent antinociceptive effect in rats, which was significantly
counteracted by AM281 administration [97]. Taken together, these findings provide an
overview of the crosstalk between PPARs and cannabinoids, and the importance of their
reciprocal regulation in the control of major physiological and pathophysiological functions.

5. Conclusions

In summary, our results demonstrate that 7-day oral administration of um-PEA signifi-
cantly reduced PTX side effects. Due to its anti-inflammatory activity and marked analgesic
proprieties, as well as its ability to activate PPAR-α and influence the endocannabinoid
system, um-PEA is a good candidate for the management of neuropathic pain and mood
disorders produced by chemotherapy.
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