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Abstract: ALIAmides are a family of fatty acid amides whose name comes from their mechanism of
action, i.e., the Autacoid Local Injury Antagonism (ALIA). Actually, the ALIAmide parent molecule,
palmitoylethanolamide (PEA), is locally produced on demand from a cell membrane precursor in
order to control immune-inflammatory cell responses, avert chronic non-resolving inflammation,
and limit the resulting clinical signs. ALIAmide sister compounds, such as Adelmidrol and palmi-
toylglucosamine, share mechanisms of action with PEA and may also increase endogenous levels of
PEA. Provided that their respective bioavailability is properly addressed (e.g., through decreasing the
particle size through micronization), exogenously administered ALIAmides thus mimic or sustain
the prohomeostatic functions of endogenous PEA. The aim of the present paper is to review the
main findings on the use of ALIAmides in small animals as a tribute to the man of vision who
first believed in this “according-to-nature” approach, namely Francesco della Valle. After briefly
presenting some key issues on the molecular targets, metabolism, and pharmacokinetics of PEA and
related ALIAmides, here we will focus on the preclinical and clinical studies performed in dogs
and cats. Although more data are still needed, ALIAmides may represent a novel and promising
approach to small animal health.

Keywords: ALIAmides; dogs; cats; atopic dermatitis; osteoarthritis; mast cells; palmitoylethanolamide;
Adelmidrol; palmitoylglucosamine

1. Introduction

ALIAmides are a family of fatty acid amides sharing a common mechanism of action,
i.e., the autacoid local injury antagonism (ALIA), originally proposed in the mid-1990s by
the late Nobel prize winner Rita Levi Montalcini [1]. The term “autacoid” comes from the
Greek “autos” (self) and “acos” (healing or remedy) and refers to cell-produced factors
that act locally near their site of synthesis [2]. In particular, the autacoid mechanism of
ALIAmides serves auto-protective purposes through the down-modulation of cell hy-
peractivity (mainly immune cells), thus controlling inflammatory responses and limiting
tissue damage [3]. It was originally observed that the ALIAmide parent molecule, palmi-
toylethanolamide (PEA), down-modulates rat mast cell behavior after challenge [1,4], as
later confirmed in companion animals [5–7]. Different cell populations were also shown
to be targets of PEA, with macrophages, keratinocytes, T and B cells, and glial cells being
negatively controlled by PEA once overactivated [8–18].

Palmitoylethanolamide is a body’s own (endogenous) N-acylethanolamine, produced
“on demand” by several cell types, including mast cells, astrocytes, and microglia [19–21].
Interestingly, the autoprotective function of PEA was first suggested in dogs. It was indeed
found that (i) the canine myocardium produces PEA in response to ischemic injury [22,23],
and (ii) the canine brain possesses the biosynthetic and degradative machinery for PEA [24].
Since the 1980s, knowledge has advanced considerably in the field of ALIAmides, mainly
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due to the renewed interest in these molecules driven by the discovery of the PEA congener
and the endocannabinoid mediator anandamide arachidonoylethanolamide (AEA) [25].

In those days, an enlightened man, Francesco della Valle (to whom the present special
issue is dedicated), was launching his own science-driven entrepreneurial activity in the
field of human and animal health, focused on innovation and networking [26]. During his
previous experience in managing a pharmaceutical firm, he had been actively cooperating
with two eminent scientists, Rita Levi Montalcini [27] and Erminio Costa [28,29] (Figure 1).

Biomolecules 2022, 12, x FOR PEER REVIEW 2 of 15 
 

machinery for PEA [24]. Since the 1980s, knowledge has advanced considerably in the 

field of ALIAmides, mainly due to the renewed interest in these molecules driven by the 

discovery of the PEA congener and the endocannabinoid mediator anandamide arachi-

donoylethanolamide (AEA) [25]. 

In those days, an enlightened man, Francesco della Valle (to whom the present spe-

cial issue is dedicated), was launching his own science-driven entrepreneurial activity in 

the field of human and animal health, focused on innovation and networking [26]. During 

his previous experience in managing a pharmaceutical firm, he had been actively cooper-

ating with two eminent scientists, Rita Levi Montalcini [27] and Erminio Costa [28,29] 

(Figure 1). 

 

Figure 1. Francesco della Valle in the 1990s during brainstorming with his main scientific mentors, 

namely Rita Levi Montalcini (left) and Erminio Costa (right). 

Both of them repeatedly invited della Valle to orientate the focus and efforts toward 

biological modulation mechanisms while learning from nature how to design a strategy 

of modulation [30,31]. Accordingly, della Valle based his strategic business plan on a “hy-

pothetical-deductive” approach to inflammation and pain, according to regulatory path-

ways laid down by nature and intended to maintain a homeostatic balance in the body 

when challenged by stress or injury. This was the ALIAmide project. Although the histor-

ical view of ALIAmides is beyond the scope of the present review, it must be acknowl-

edged that the ALIAmide story began in this particular framework, and most of the re-

search data that will be reviewed here were born within it. 

Besides PEA, ALIAmides currently comprise several lipid compounds, ranging from 

Adelmidrol (the diethanolamide derivative of azelaic acid) to palmitoylglucosamine 

(PGA), oleoylethanolamide, and many others (Figure 2). 

Figure 1. Francesco della Valle in the 1990s during brainstorming with his main scientific mentors,
namely Rita Levi Montalcini (left) and Erminio Costa (right).

Both of them repeatedly invited della Valle to orientate the focus and efforts toward
biological modulation mechanisms while learning from nature how to design a strat-
egy of modulation [30,31]. Accordingly, della Valle based his strategic business plan on
a “hypothetical-deductive” approach to inflammation and pain, according to regulatory
pathways laid down by nature and intended to maintain a homeostatic balance in the
body when challenged by stress or injury. This was the ALIAmide project. Although
the historical view of ALIAmides is beyond the scope of the present review, it must be
acknowledged that the ALIAmide story began in this particular framework, and most of
the research data that will be reviewed here were born within it.

Besides PEA, ALIAmides currently comprise several lipid compounds, ranging from
Adelmidrol (the diethanolamide derivative of azelaic acid) to palmitoylglucosamine (PGA),
oleoylethanolamide, and many others (Figure 2).

Their respective mechanisms of action have been (and still are being) investigated and
appear to be profoundly interconnected to the parent compound PEA, which is by far the
most studied ALIAmide [3,32,33]. A brief overview of their molecular mechanisms will be
given in the following paragraphs.

A large body of evidence has been accumulating on the prohomeostatic functions
of ALIAmides in several diseases sustained by non-resolving inflammatory and neuroin-
flammatory responses. The findings have been reviewed by several excellent papers, to
which the reader is encouraged to refer [3,32–37]. After addressing a few general key
points on ALIAmides, here we will focus exclusively on the main studies performed on
small animals.
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2. Mimicking and Supporting the Healing Power of Nature

Palmitoylethanolamide is produced starting from a glycerophospholipid precursor
in the cell membrane and degraded by two amidases located in the cell membrane and
lysosome, respectively, i.e., the fatty acid amide amidase (FAAH) and N-acylethanolamine
acid amidase (NAAA) [38–41]. Although the endogenous levels of PEA are strictly reg-
ulated by these biosynthetic and degradative metabolic pathways [38], great deals of
evidence suggest that PEA metabolism may be disturbed under certain conditions, such as
chronic inflammatory disorders [42]. Indeed, the local levels of PEA change during disease
states, and decreased levels are considered to contribute to disease development [8,43,44].
For example, a significant decrease in the local level of PEA has been found in different
chronic pain models [45–47] as well as in human patients affected by visceral and somatic
pain [48–50]. Interestingly, it was also shown that normalizing PEA levels through the
inhibition of PEA degradative pathways resulted in reduced inflammation and pain relief
in a rat model of osteoarthritis pain [47].

On the other side, PEA levels may increase in response to cell damage, as shown
in epidermal cells subjected to UV irradiation [51] and the lesional skin of privately-
owned dogs affected with atopic dermatitis [52] as well as the colons of dogs with chronic
enteropathy [53].

It is currently accepted that changes in PEA levels are either suggestive of a loss of
protection against inflammation/pain (i.e., decreased levels) or a compensatory synthesis
in the attempt to limit disease severity (i.e., increased levels). Accordingly, the exoge-
nous administration of PEA to effectively ‘top up’ the body’s own supply is regarded as
a promising approach [54]. Interestingly, other ALIAmides, such as Adelmidrol and PGA,
have recently been found to increase the endogenous levels of PEA [55–57].
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3. A Brief Insight into PEA Metabolism and Molecular Targets

As mentioned above, the biosynthesis of PEA occurs “on demand” in the cell mem-
brane through the enzymatic hydrolysis of its glycerophospholipid precursor N-acyl-
phosphatidylethanolamine [39,40]. Although early studies suggested the existence of
a facilitated membrane transport [19,58], PEA can flip between the inner and outer leaflets
of the plasma membrane thanks to its lipophilic nature [59]. Indeed intracellular binding
proteins (i.e., fatty acid binding proteins and heat-shock proteins) are required for PEA
trafficking within the cytosol [60]. Binding proteins transport PEA to catabolic enzymes
(e.g., FAAH and NAAA) [41] and effector proteins [61–63].

Among the latter, the nuclear peroxisome proliferator-activated receptor alpha
(PPARα) is of particular interest because it negatively interferes with inflammatory
gene expression by regulating the IκBα/NF-κB pathway [64]. PPARα is not the only
molecular target responsible for the prohomeostatic properties of PEA [65–69], as many
other receptors are being increasingly recognized as mediating PEA functions, such as the
GPR55 (G-protein-coupled receptor 55) [70,71], cannabinoid receptors type 1 and 2 (CB1
and CB2) [33,57,72,73] as well as the so-called “pain receptor” [74], i.e., the transient
receptor potential vanilloid 1 (TRPV1) [75–78].

Interestingly, this heterogeneous family of PEA molecular targets is being extensively
studied in companion animals, with their distribution being confirmed in several canine
and feline cell types [79–92], as recently reviewed [3,32,93].

Notably, while PEA is a direct agonist of PPARα [66], its action on CB1, CB2, and
even TRPV1 is indirect [73,76–78]. In particular, PEA can activate these latter three re-
ceptors thanks to its ability to (i) elevate their levels, (ii) reduce their degradation, or
(iii) increase the receptor affinity of endocannabinoids, like AEA and 2-arachidonoylglycerol
(2-AG) [35,57,72,73,76,78]. The mechanism has been termed the “entourage effect” [73,76,78]
(Figure 3) and has been specifically shown in dogs [72]. In Beagle dogs, orally administered
bioavailable micro-PEA (i.e., ultra-micronized, see below) resulted in a significant and up
to ~20-fold increase in the plasma levels of 2-AG [72] (Figure 3B).
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entourage effect of bioavailable formulations of PEA (i.e., micro-PEA, please see next paragraph for
further details) through increasing the levels of the endocannabinoid 2-AG. (A) Indirect agonism
of micro-PEA on CB2 underlies the inhibitory effects on SP-induced mast cell degranulation, medi-
ated by the stimulation of 2-AG biosynthesis [57]. (B) Following a single dietary supplementation
with micro-PEA to hypersensitive Beagle dogs, not only plasma levels of PEA but also plasma
levels of 2-AG significantly increase (* p < 0.05 and ** p < 0.001 versus the basal levels, time 0) [3].
(B) is slightly modified from [3]. 2-AG = 2-arachidonoylglycerol, CB2 = cannabinoid receptor type 2,
micro-PEA = micronized or ultramicronized palmitoylethanolamide, SP = substance P.

To date, the molecular mechanisms of other ALIAmides are much less investigated
than PEA’s. Besides increasing PEA levels, as previously mentioned, these fatty acid amides
are suggested to interact with different receptors. PGA, for example, is considered to exert
its protective function through a toll-like receptor 4 antagonism [94], while the precise
molecular targets of Adelmidrol are still debated [55,95].

4. Key Pharmacokinetic Issues

A key aspect that has to be taken into account when dealing with the use of ALIAmides
for health purposes is their respective physicochemical features. Some ALIAmides are
more appropriate for oral use, while others are particularly suitable for topical applications
thanks to their amphipathic nature (e.g., Adelmidrol) [95,96].

PEA and PGA are both highly lipophilic compounds (log p > 5) [97,98], with their
oral use being limited by their intrinsic low dissolution rate, absorption, and bioavailabil-
ity [98,99]. Particle size reduction is one of the most compelling and practical strategies for
improving pharmacokinetics and boosting functional properties following oral administra-
tion [100,101]. Provided the route of administration is oral, most of the studies presented
below investigated “micro-PEA” and “micro-PGA” accordingly. Micro-ALIAmides result
from micro-grinding a particular ALIAmide—either alone or together with adjuvants
(typically antioxidants)—in order to downsize the particles to diameters in the range of
0.6–10 µm. Indeed, after the administration of micro-PEA, the plasma concentration of PEA
was significantly higher compared to unprocessed (naïve) PEA [98]. Accordingly, superior
effects have been shown for micro-PEA and micro -PGA compared to naïve PEA and PGA,
respectively, in different inflammatory disease models [97,102,103].

Specifically, in dogs, a single oral administration of micro-PEA resulted in a five-fold
increase in PEA plasma levels, with a peak between 1 and 2 h [72,104]. Interestingly, plasma
levels correlated well with the clinical effects at different timepoints, although the latter
lasted longer than the plasma elevation of PEA [104]. This was considered to depend on
the ability of PEA to up-regulate the levels or enhance the action of other related bioactive
endocannabinoids [104], according to the so-called “entourage hypothesis” briefly outlined
in Figure 3.

5. Preclinical and Clinical Results in Small Animals
5.1. Dermatological Field

So far, most of the veterinary research on ALIAmides has been focused on the derma-
tological field [105]. Ex vivo and in vitro studies, performed on feline and canine skin mast
cells, respectively, have confirmed that micro-PEA down-modulates allergic hyperactivity,
prominently decreasing mediator release (i.e., degranulation) [5,7]. The ability of micro-
PEA to down-modulate mast cell degranulation was also recently shown in canine skin
organ cultures challenged with different concentrations of compound 48/80 (a well-known
secretagogue which triggers mast cell degranulation) [6]. Not only did micro-PEA signifi-
cantly counteract the increase of degranulating mast cells, but it also lowered the histamine
content within the culture medium and the diameter of epidermal blood capillaries [6].

Moreover, down-modulation of skin mast cell releasability was observed in canine
skin wounds (punch biopsies) topically treated with the ALIAmide Adelmidrol (2%) [106],
with a parallel improvement in wound healing being detected [107].



Biomolecules 2022, 12, 1186 6 of 14

Moving to in vivo studies, a growing body of evidence confirms that ALIAmides
can efficiently benefit veterinary patients with hypersensitive skin disorders. In a double-
blinded placebo-controlled cross-over study performed on dogs with experimental allergic
dermatitis, the dietetic supplementation with micro-PEA at 15 mg/kg/day for 7 days
delayed the development of clinical signs (i.e., pruritus and skin lesions) compared to the
placebo-treated group [108]. Moreover, in a canine model of skin allergy, a single oral ad-
ministration of micro-PEA (3, 10, and 30 mg/kg) significantly reduced the antigen-induced
wheal area, with a maximum inhibitory effect at a 10 mg/kg dose [104]. Interestingly,
topical application of Adelmidrol (2%) for 3 and 6 consecutive days gave similar results in
terms of allergic wheal inhibition [96].

On the clinical side, two studies were performed on allergic cats. The first one investi-
gated feline patients with eosinophilic plaques and eosinophilic granuloma, orally given
micro-PEA (10 mg/kg daily) for 1 month as the sole intervention. Clinical improvement of
pruritus, erythema, alopecia, and eosinophilic lesions was observed in 67% of them, with no
side effects or adverse reactions being reported [7]. The second was conducted in 60 allergic
cats with the aim of evaluating whether micro-PEA (15 mg/kg) could delay the relapse
of clinical signs after steroid withdrawal [109]. A significant difference in the mean time-
to-flare between the treated and placebo group was observed (40.5 days in the micro-PEA
group vs. 22.2 days in the placebo group), suggesting that the ALIAmide exerts an excellent
proactive function in preventing feline allergic flares after steroid withdrawal [109].

Some interesting clinical trials were also performed on allergic dogs. A double-
blinded randomized placebo-controlled cross-over study in privately-owned dogs with
either food-induced or non-food-induced atopic dermatitis showed that dietary integration
with micro-PEA (15 mg/kg daily for 45 days) significantly decreased the severity of clinical
signs (as assessed by the Canine Atopic Dermatitis Extension and Severity Index) [110].

An open multicentric study performed in 160 client-owned dogs with non-seasonal
atopic dermatitis orally administered micro-PEA (10 mg/kg daily for 56 days) confirmed
the ability of the ALIAmide to benefit allergic patients [111]. Pruritus (as measured on
a Visual Analogue Scale) and clinically assessed skin lesions (Canine Atopic Dermatitis
Lesion Index) were significantly reduced by the study end. Moreover, 45% of dogs reached
the quality of life values described for healthy animals [111].

Finally, an open-label observational study was performed in privately-owned dogs
with atopic dermatitis and pruritus lasting longer than 4 weeks, topically treated with
Adelmidrol (2%) twice daily for 30 days. Not only a significant decrease in pruritus and
erythema (both on owner and veterinarian assessment) was observed, but body odor and
quality of life markedly improved by the study’s end [112].

5.2. Other Health Needs

Although studies in small animals are still scarce, there is growing evidence that
endocannabinoid-like ALIAmides play key roles in the health of different body organs,
such as the gastrointestinal tract [113,114] and the nervous system [32,34,37], as well as the
upper and lower urinary tract [115–118] and the musculoskeletal system [97,119,120]. In
addition, the deep involvement of ALIAmides in obesity-induced metainflammation is
becoming increasingly evident [69,113,121–123].

Actually, a preliminary study in dogs affected with chronic diarrhea demonstrated
that dietetic supplementation with micro-PEA (10 mg/kg for 30 days) reduced the Canine
Inflammatory Bowel Disease Activity Index (CIBDAI) score [53], in line with recent findings
from animals with experimentally-induced colitis [124]. According to the experimental
studies, the enteroprotective effect of PEA may depend upon the direct and indirect activa-
tion of PPAR-α and CB2 receptors [124–130], whose expression has been recently confirmed
in the canine and feline gastrointestinal tract [86,87].

Interestingly, a dietetic supplement containing micro-PEA was also described to
benefit a Syrian hamster with urolithiasis and diminish the disease recurrence after surgical
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treatment [131]. Moreover, micro-PGA has recently been shown to decrease inflammation
and pain in a murine model of feline interstitial cystitis [132].

In the musculoskeletal field, an open-field trial on client-owned adult dogs with
chronic osteoarthritis and persistent lameness has recently been performed. Dogs were
supplemented for 4 weeks with a complementary feed containing PEA co-ultramicronized
with the natural antioxidant quercetin (i.e., PEA-q, 24 mg/kg body weight). The severity of
chronic pain and its interference with the dog’s normal functioning significantly decreased
as assessed with the Canine Brief Pain Inventory (CBPI) questionnaire. Moreover, lameness
(either assessed on a 0–4 clinical scale or through a dynamic gait analysis) significantly
improved [133].

Dogs with osteoarthritis also benefited from a long-term dietary integration with the
ALIAmide PGA co-micronized with curcumin, administered as an add-on to conservative
measures. One trial has been performed [134], where micro-PGA was added for 2 months
to the individual management plan of 181 dogs with osteoarthritis. A significant decrease
in lameness and pain as assessed by the veterinarian was observed. Moreover, owner-
evaluated mobility impairment and pain behaviors also improved [134].

It is finally noteworthy that the topical administration of an Adelmidrol (2%) mucoad-
hesive gel in combination with dental prophylaxis resulted in less gingival inflammation
and longer duration of dental scaling benefits in treated dogs compared to match untreated
group [135].

Taken together, the data from preclinical and clinical trials point towards the promising
role of ALIAmides in small animal health (Figure 4). Moreover, the presence of PEA
and OEA, as well as other ALIAmides in food sources [136], in addition to their robust
safety profile [36,97,137], are the foundation for their dietary use. Accordingly, several
complementary feeds for dogs and cats have been developed and are being marketed in
Europe and North America.
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Figure 4. ALIAmides for small animal health—a global view. Upon prolonged stimulation, immune-
inflammatory cells may become overactivated. If uncontrolled, their beneficial protective responses
may instead turn harmful, leading to local dyshomeostasis and health disorders. In order to control
the risk, autoprotective mechanisms are activated. The local production of PEA starting from
a glycerophospholipid precursor (dark green circle) represents one of them. Once produced, PEA
(light green circle) serves as a signaling molecule through its direct and indirect interactions with
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multiple receptor targets resulting in cell down-modulation. Local homeostasis and body health are
maintained accordingly. Exogenously administered ALIAmides mimic or sustain the autoprotective
mechanism described above, mainly through restoring endogenous PEA levels. The main organs and
body tissues purportedly benefiting from the aforementioned mechanism are listed in the colored
circles on the bottom. GI = gastrointestinal, MS = musculoskeletal, PEA-um = ultramicronized
palmitoylethanolamide, PGA-m = micronized palmitoylglucosamine.

6. Conclusions

Although the field is still in its infancy, the studies presented in this review highlight
the promise that ALIAmides might play a broad role in small animal health. Their phys-
iological prohomeostatic functions represent a key rationale for their use in promoting
animals’ health through an “according-to-nature” approach, i.e., mimicking or supporting
the physiological mechanisms to maintain homeostasis.

Although further clinical studies are needed, ALIAmide-based products—either used
as a sole intervention or associated with standard drugs—are emerging as a new and
promising approach to veterinary patients.
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