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Abstract: Cucurbitacins constitute a group of cucumber-derived dietary lipids, highly oxidized
tetracyclic triterpenoids, with potential medical uses. These compounds are known to interact with a
variety of recognized cellular targets to impede the growth of cancer cells. Accumulating evidence
has suggested that inhibition of tumor cell growth via induction of apoptosis, cell-cycle arrest, anti-
metastasis and anti-angiogenesis are major promising chemo-preventive actions of cucurbitacins.
Cucurbitacins may be a potential choice for investigations of synergism with other drugs to reverse
cancer cells’ treatment resistance. The detailed molecular mechanisms underlying these effects
include interactions between cucurbitacins and numerous cellular targets (Bcl-2/Bax, caspases,
STAT3, cyclins, NF-κB, COX-2, MMP-9, VEGF/R, etc.) as well as control of a variety of intracellular
signal transduction pathways. The current study is focused on the efforts undertaken to find
possible molecular targets for cucurbitacins in suppressing diverse malignant processes. The review
is distinctive since it presents all potential molecular targets of cucurbitacins in cancer on one
common podium.

Keywords: cucurbitacins; anti-proliferation; apoptotic; anti-angiogenic; anti-metastatic; synergism

1. Introduction

Cancer is a huge global threat, representing a heavy burden to social systems and
health care sectors all over the world. Moreover, over the past decades, both the incidence as
well as mortality rates of malignant disorders have been increased, with a continuous sharp
rise expected for further years [1]. This situation clearly indicates that current therapeutic
tools for combating cancer are insufficient, inducing often also a wide range of adverse
effects to the patients with already weakened health status [2–4]. Therefore, novel, safe and
more efficient treatment modalities are highly needed and must be developed, whereas
one possibility for this is to focus more on the natural plant-derived agents [5].

In ethnomedicine, natural products have been used for the management of both
benign as well as malignant neoplasms already for centuries [6–9]. This approach has led to

Biomolecules 2023, 13, 57. https://doi.org/10.3390/biom13010057 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13010057
https://doi.org/10.3390/biom13010057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-6764-1625
https://orcid.org/0000-0001-6475-1266
https://orcid.org/0000-0003-2592-9716
https://orcid.org/0000-0002-4899-4687
https://orcid.org/0000-0003-0736-2525
https://orcid.org/0000-0001-6920-4341
https://orcid.org/0000-0002-2062-9602
https://orcid.org/0000-0001-7469-4752
https://orcid.org/0000-0001-6759-1712
https://orcid.org/0000-0002-3754-5712
https://doi.org/10.3390/biom13010057
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13010057?type=check_update&version=2


Biomolecules 2023, 13, 57 2 of 18

launching the screening program of plant-derived compounds in the US National Cancer
Institute in the middle of the 20th century, resulting in the isolation and development
of several anticancer drugs such as vincristine, vinblastine, and paclitaxel among others,
currently approved for clinical use against different cancer types [10–13]. This success
clearly demonstrates that nature is an important resource for anticancer agents, encouraging
to continue such efforts.

Cucurbitacins (designated by the letters A, B, C, D, E, F, G, H, I, J, K, L, O, P, Q,
R, S) constitute a class of natural triterpenoids [14]. These compounds can be found in
many plants from the genera Bryonia, Cucurbita, Cucumis, Echinocystis, Luffa, Citrullus and
Lagenaria, conferring a bitter taste in cucumber [14,15]. Several recent preclinical studies
have demonstrated that this group of phytochemicals can exert antitumor activities in
a variety of experimental models of different malignancies, including lung cancer [16],
gastric cancer [17], colorectal cancer [18], liver cancer [19], pancreatic cancer [20], ovarian
cancer [21], cervical cancer [22] and melanoma [23]. Such anticancer effects are achieved
via interaction of cucurbitacins with multiple molecular targets and intervening in diverse
cellular signaling cascades, suggesting that a high potential of this compound should be
developed as a therapeutic tool.

To appreciate and draw more attention to these ancient molecules, this review article is
focused on the different anticancer activities of cucurbitacins in diverse experimental model
systems, describing anti-inflammatory, cell-cycle arresting, proapoptotic, antiangiogenic
and antimetastatic effects of these triterpenoids. Moreover, co-effects of cucurbitacins with
conventional cancer drugs are considered, presenting the most potent combinations for
further studies. In addition, the possibilities to overcome the low bioavailability issues
characteristic for natural compounds by modern nanotechnological methods are also
discussed. In this way, the present review provides a strong basis for moving on with
in vivo animal studies and human clinical trials, hopefully to apply cucurbitacins in the
clinical settings in the future.

2. Chemistry of Cucurbitacins

Plants of the Cucurbitaceae family produce a class of biological substances that are
known as cucurbitacins. Cucurbitacins are created by these plants to protect them from
herbivores. Cucurbitacin A, B, C, D, E, F, I, L, 23, 24 dihydrocucurbitacin F, and hex-
anorcucurbitacin F, as well as the three acetylated derivatives, are the naturally occurring
cucurbitacins [24]. Cucurbitacins are tetracyclic terpenes with steroidal structures in their
chemical configuration. Cucurbitacins’ basic chemical structure is cucurbit-5-ene with
a ring skeleton of 19(109)-abeo-10-lanost-5-ene (Figure 1). For instance, in the structure
of cucurbitacin I (9,10,14-trimethyl-4,9-cyclo-9,10-secocholesta-2,5,23-triene) triene are re-
placed by hydroxy groups at positions 2, 16, 20 and 25 and oxo groups at positions 1, 11
and 22. This distinguishes the cucurbitacins from most other tetracyclic triterpenes. In all
chemical structures of cucurbitacins, the presence of a 5,(6)-double bond is observed as
a common characteristic. Cucurbitacins differ from steroidal nuclei in that their methyl
group is located at carbon 9 instead of carbon 10 [14].
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Figure 1. Basic skeleton of cucurbitacins. (A) (8R,9R,10S,13R,14R,17R)-4,4,8,9,10,13,14,17-octamethyl-
17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]
phenanthrene (Cucurbitacin). (B) (8S,9R,10R, 13R,14S, 16R, 17R)-17-((R,E)-2,6-dihydroxy-6-methyl-
3-oxohept-4-en-2-yl)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-7,8,9,10,12,13,14,15,16,17-decahydro-
3H-cyclopenta[a]phenanthrene-3,11(4H)-dione (Cucurbitacin I).

3. Absorption and Metabolism of Cucurbitacins

The presence of cucurbitacins is observed mainly in plant roots and fruits. They
are a highly diverse group and divided into 12 categories, cucurbitacins A–T [25]. Less
research has been conducted on cucurbitacins’ absorption, distribution, metabolism, and
excretion; this is a topic that should be investigated considering the compound’s potential
toxicity to mammals. [14]. Oral administration of cucurbitacin B (CuB) has been studied
and shown to be slowly absorbed and metabolized in the gut [26]. CuE at a concentration
of 100–200 µg/kg treatment had a plasma half-life of about 58–72% [27]. Similarly, oral
bioavailability of CuB has been studied to be ~10% with plasma concentration ranging
from 4.85 to 7.81µg/L after 30 mins of oral dosing. After intravenous administration, it is
distributed in large volume ~51.65 l/kg and exhibits a high tissue to plasma concentration
ratios of ~60–280-folds in many organs. A negligible amount (~1%) of CuB was detected
in urine and feces, and it was suggested that it probably undergoes biotransformation
prior to excretion [28]. Studies have shown that they reach highest plasma concentration
within 1.75 h and an elimination half-life of ~2.5 h. As oral delivery and absorption of
cucurbitacins remain a great challenge, recent focus has been on the use of nano-micelles
co-modified with cucurbitacins, which enhances the relative bioavailability of CuB by
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~2.14–3.43 times [29]. However, further pharmacokinetic studies comprising metabolism
and distribution of cucurbitacins are still required.

4. Anti-Cancer Mechanisms of Cucurbitacins
4.1. Apoptotic and Cell-Cycle Arrest

Apoptotic cell death can be triggered in cancer through internal and extrinsic processes,
which converge on the control of caspase-dependent proteolysis of cellular proteins and
DNA fragmentation [30–32]. Similarly, all tumor types have abnormal cell-cycle progres-
sion activity, which acts as a catalyst for carcinogenesis [33]. Recent research has shown that
a variety of biological processes are regulated by cell-cycle proteins [34–36]. Therefore, nu-
merous chemo-preventive FDA-drugs have been shown to mediate antitumor effects either
via activation of apoptotic or cell-cycle arrest (Figure 2) signaling pathways [37–39]. For
instance, results from Li et al. (2018) revealed that cucurbitacin I caused lung cancer (A549)
cells to undergo excessive ERS, CHOP-Bax and caspase-12-dependent ERS-associated
apoptosis [40]. In colorectal cancer (SW480 and Caco-2) cells, treatment with cucurbitacin
B resulted in cell-cycle arrest at the G1 phase as well as decreased Cyclin D1 and Cyclin
E1 levels. Both CRC cell lines underwent in vitro cell death when exposed to CuB, which
was accompanied by caspase-3 and cleaved PARP [41]. Using triple negative breast cancer
(TNBC), cucurbitacin E strongly boosted JNK activation while considerably decreasing AKT
and ERK activation in MDA-MB-468 cells. It also significantly decreased expression of Cy-
clin D1, Survivin, XIAP, Bcl2 and Mcl-1 [42]. In the pancreatic cancer cell line Capan-1, CuD
induced cell-cycle arrest and death via the ROS/p38 pathway [43]. Cucurbitacin I-induced
cell death in ovarian cancer (SKOV3) included apoptosis, as evidenced by upregulated
caspase 3 and BAX and a decrease in Bcl2 [21]. Flow cytometric measurement of DNA
content and RT-PCR analyses suggested that cucurbitacin B caused G2/M arrest in human
breast cancer cell lines (MDA-MB-231 and MCF-7) through elevated p21 expression [44].
Huang et al. showed that in human bladder cancer (T24) cells, cucurbitacin E-induced
G2/M arrest was accompanied by a significant rise in p53 and p21 levels and a fall in the
levels of STAT3, cyclin-dependent kinase 1 (CDK1) and cyclin B [45]. In addition, cucur-
bitacin E-induced G2/M phase arrest and death of T24 cells also depended on Fas/CD95
and mitochondria-dependent apoptotic pathways. Similarly, using other cancerous cell
lines, cucurbitacins target the cell-cycle actions that involves growth inhibition, cell-cycle
arrest at G2/M phase and induction of apoptosis [46]. Cucurbitacin I has been observed
to suppress phosphotyrosine STAT3 in human cancerous lung cells [47]. Recently, it was
observed to promote gastric cancer cell apoptosis by inducing the production of cellular
ROS, as well as the endoplasmic reticulum stress pathway [40,48]. While cucurbitacin B, E
and I have been observed to inhibit both JAK2 and STAT3 activation, cucurbitacin A and
I have been reported to inhibit JAK2 and STAT3, respectively [47]. Treating Hep-2 cells
with different concentrations of cucurbitacin B for various time intervals showed reduc-
tion in cell proliferation, cell-cycle distribution, and increased cell apoptosis in cancerous
cell lines [46]. This study also stated that cucurbitacin B exhibited significant efficacy in
inhibiting cell growth, arresting cell cycle at the G2/M phase, and inducing apoptosis in
a dose- and time-dependent manner [46]. Similarly, cucurbitacins B, D, E were observed
to inhibit proteins such as JAK-STAT3. They also inhibited mitogen-activated protein
kinases (MAPK)- signaling pathways and tumor angiogenesis [48]. A study conducted on
human umbilical vascular endothelial cell lines revealed cucurbitacin to significantly inhibit
the proliferation, migration, and angiogenesis. It also blocked essential proteins such as
Jak2-signal transducer, vascular endothelial growth factor receptor (VEGFR) and STAT3
signaling pathways [49]. Such studies have highlighted that the main mechanism involved
in imparting the anti-tumorigenic potentials of cucurbitacins involves inhibition of the
JAK/STAT3 signaling pathway, which plays an essential role in activation, proliferation,
and maintenance of cancerous cells [14]. Another recent study has shown that treatment
with 8 µM cucurbitacin IIb for 24 h remarkably inhibited the proliferation of HeLa and
A549 tumor cells, with IC50 values of 7.3 and 7.8 µM, respectively, while increasing total
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apoptosis by 56.9 and 52.3%, respectively [50]. Another pathway by which cucurbitacin
IIb induces apoptosis and cell-cycle arrest is by the regulating EGFR/MAPK pathway [51].
Similarly, cucurbitacin D was observed to regulate the levels of oncogenic signaling cas-
cades, JAK/STAT, Wnt/β-catenin and associated non-coding RNAs in many cancer cell
lines [52]. Recent studies have shown that CuIIb and cucurbitacin B induced apoptosis in
cervical cancer cell lines by Nrf2 inhibition, whereas in lung cancer cell lines cucurbitacin
B was responsible for suppressing growth and inducing apoptotic death by impeding
IL-6/STAT3 signaling [21,53].
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4.2. Antiangiogenic and Antimetastatic Mechanisms

The physiological process by which new blood vessels develop from pre-existing
vessels is known as angiogenesis. Anti-angiogenesis causes suppression of tumor growth
because of hunger and toxic waste buildup in its microenvironment [54,55]. The develop-
ment and metastasis of the tumor have a major impact on the cancer vasculature (Figure 3).
Vascular endothelial growth factors (VEGFs) are crucial protein regulators of angiogenesis
and metastasis. Studies have shown that inhibiting the VEGFR2-mediated JAK/STAT3
pathway is considered as an effective approach to suppress angiogenesis [49]. Though
many studies about the mechanism of cucurbitacins and angiogenesis are not well known,
few studies have still shown that cucurbitacins such as cucurbitacin B, cucurbitacin D,
cucurbitacin E and cucurbitacin I possess anti-angiogenesis properties [56,57]. CuB signifi-
cantly inhibited angiogenesis, metastasis, and vascular development in dose-dependent
manner in in vivo models and chick embryos [56]. CuE significantly inhibited human um-
bilical vascular endothelial cell (HUVEC) proliferation and angiogenesis by targeting the
VEGFR2-mediated Jak2/STAT3 signaling pathway [49]. CuB has been observed to inhibit
ERK1/2, prevent Raf-MEK-ERK from activating STAT3, which ultimately plays a key role
in angiogenesis [58]. A similar effect of CuB was seen also in human breast cancer cell lines.
It successfully inhibited angiogenesis by targeting the FAK/MMP-9 signaling axis [59].
CuB showed antimetastatic activity and targeted angiogenesis also in paclitaxel resistant
A2780/Taxol ovarian cancer cells. It also suppressed angiogenesis by downregulating the
expression of HIF-1 targets, VEGF, VEGFR2 phosphorylation and erythropoietin [56,60].
Another study revealed the effective use of CuE for anti-angiogenesis in Huh7 cells. It de-
creased the tube formation in HUVECs and was also responsible for inhibiting the process
of neo-vascularization in CAM assays [61]. A recent study showed that CuE modulated the
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JAK/STAT3 pathways, which regulated the angiogenesis [62]. CuE has been also involved
in inhibiting the KDR/VEGFR2-mediated pathway of angiogenesis [63]. Treating A549
cells with cucurbitacins for ~21 days showed positive results for inhibiting metastasis by
regulating the levels of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D11 [64].
Similarly, other cucurbitacins were observed to inhibit angiogenesis in MDA-MB-231 and
MCF-7 cancer cells by inhibiting the JAK/STAT pathways [65].
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4.3. Anti-Inflammatory Mechanisms

Most malignancies’ growth and malignant progression are correlated with inflam-
mation [66–68]. Both intrinsic and extrinsic inflammations have the potential to inhibit
the immune system, which creates an ideal environment for the growth of tumors [69–71].
As a result, focusing on inflammation is a tempting strategy for both cancer therapy and
cancer prevention [69,72]. Cucurbitacins have been observed to interact with proteins
associated with inflammatory (Figure 4) pathways such as interleukins (IL)-6, IL-5, IL-1β,
IL-12, IL-13 in a dose-dependent manner [73]. Dietary cucurbitacin E has been shown to
reduce inflammation and immunosuppression by downregulating the NF-κB signaling
pathway [74]. CuB has been studied to possess protective effects by reducing inflammatory
responses on sepsis-induced acute lung injury in in vivo rat models. It significantly reduced
the levels of TNF-α, IL-6, cytokine secretion and accumulation of inflammatory cells. It also
regulated the levels of Ca2+, which play an essential role in inflammatory responses [75].
CuB inhibited inflammatory responses through targeting the SIRT1/IGFBPrP1/TGF β1
axis. It downregulated the expression levels of TGF β1, IGFBPrP1, and upregulated the ex-
pression of SIRT 1 [76]. Similarly, CuE decreased the levels of pro-inflammatory cytokines,
such as IL-17 and IFN-γ, as well as the activities of the STAT3 and IL-17A-promoter in
allo-reactive T cells [77]. CuE has been shown to inhibit skin inflammation and fibrosis by
regulating the expression of α-Sma and Col-I in mice models [76]. Recently, it has also been
demonstrated that CuE ameliorated lipopolysaccharide-evoked injuries and inflammation
in bronchial epithelial cells by regulating the TLR4-NF-κB signaling. It was responsible
for suppressing levels of inflammatory cytokine production, TNF-α, IL-6 and IL-8 [78].
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Cucurbitacin B was observed to directly bind to toll-like receptor 4 (TLR4) and activate
NLRP3 inflammasome, which further ultimately executed pyroptosis in A549 cells. CuB
treatment has been observed to upregulate the protein expressions of IL-1β, GSDMD,
HMGB1 and led to inhibition of generation of mitochondrial ROS and pyroptosis [79]. CuB
was reported to sensitize CD133+ HepG2 cells in in vitro and in vivo models [80].
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5. Synergistic Effects with Other Drugs

During cancer therapies, the side effects and long-term consequences of anti-cancer
chemotherapy continue to be a major cause of concern. The effectiveness of current med-
ications to prevent the negative effects of chemotherapy is frequently insufficient. As a
result, the current cancer treatment pattern is shifting toward combination chemotherapy.
A combination of medications improves the possibility that numerous oncogenic and resis-
tance signalings will be inhibited simultaneously, whereas chemotherapeutics can affect
cancer cells by affecting only one or two stages in the cell cycle. A modified cell line and the
development of drug resistance are less likely when the malignant cells are attacked via sev-
eral chemo-preventive agents. Recent research using the ovarian sarcoma M5076 cell line
demonstrated that the synergism of cucurbitacin I and doxorubicin enhanced cytotoxicity
and reduced the volume and weight of tumor cells. It was observed that treatment with CuI
and doxorubicin decreased glutathione (GSH) levels, enhancing cytotoxicity in tumors. The
phytochemical also increased DOX-induced antitumor activity [81]. In both in vitro and
in vivo investigations, the combination of cucurbitacin B and curcumin proved particularly
efficient against hepatocellular cancer. It encouraged apoptosis and reduced the potential
for multidrug resistance in human hepatocarcinoma cells. Significant activity was observed
with 2:1 ratio (cucurbitacin B:curcumin). It led to changes in tumor volume, caspase3 activa-
tion and ATP down-regulation, thereby serving as a novel, promising approach for treating
human hepatoma [82]. Irinotecan and cucurbitacin have been found to have synergistic



Biomolecules 2023, 13, 57 8 of 18

effects on the ability of colon cancer cell lines to resist proliferating, which together have
increased their therapeutic benefits by activation of JAK2/STAT3, which plays a crucial role
in cell survival and proliferation [83]. The synergistic effect of 23, 24-dihydrocucurbitacin B
and cucurbitacin R was observed on inhibiting the expression of TNF-α, IL-6 through the
NF-κB pathway in HepG2 cell line. Similar effects were observed with cucurbitacin D and
docetaxel, which together effectively inhibited cancer cell growth and the cloning potential
of prostate cancer stem cells. This combination has been suggested to be a novel therapeutic
modality for the treatment of advanced prostate cancer [84,85]. Cucurbitacin B along with
gemcitabine has been observed to induce apoptosis of MDA-MB-231 breast cancerous cells
by regulating JAK/STAT3, Bcl-Xl, cyclin A and B1 [86], while with imatinib-mesylate it was
responsible for inhibiting the proliferation of cells and inducing apoptosis through inhibi-
tion of MMP-2 expression [87]. Administration of cucurbitacin B and higenamine (in ratios
1:1, 1:2 and 2:1) significantly increased the cytotoxic effects on breast cancer cell lines, which
also increased apoptosis and cell-cycle arrest in G2/M. This combination acts on essential
proteins such as Akt farnesyl-transferase, platelet-derived growth factors, cyclin A2, CDK2,
etc [88]. Cucurbitacin E with doxorubicin successfully induced apoptosis, cell-cycle arrest
and autophagy [89]. Recent advances in the study of cucurbitacin IIb (CuIIb) and kinoin A
(KinA) from Ibervillea sonorae (S.Watson) Greene highlight the ability of these molecules to
reduce proliferation and to tempt apoptotic and cell-cycle apprehension in tumors; also, the
levels of STAT3 expression were downregulated after treatment with CuIIb. These findings
imply that CuIIb and KinA may be considered in future research for the creation of efficient
and secure anti-cancer treatments for breast, cervical, gastric and other cancer types where
STAT3 is overexpressed [90].

6. Safety Studies

As several researchers have identified the presence of toxic cucurbitacins in the roots,
leaves, and fruits of some plants, such as Combretum zeyheri Sond and Cucumis anguria L. [91],
further studies are highly needed to evaluate the safety issue and determine the value of
the no-observed-adverse-effect-level (NOAEL), before any pharmacological applications of
cucurbitacins as anticancer agents can be recommended. On the other hand, it has been
claimed that safety issues of cucurbitacins may be related to their specific variants, the
purity of preparations and differences in the study models [92]. For example, no toxic
reactions were observed in lung cancer xenografted mice treated intraperitoneally with
1 mg/kg of cucurbitacin B [93] or cucurbitacin Q [94]. Today, it is generally accepted that
the active dose and lethal dose are not the same for different types of cucurbitacins, being
related to their structural peculiarities [92]. Therefore, further clinical trials on the safety
and efficacy of specific variants of cucurbitacins are highly required. Tables 1 and 2 present
an outline of diverse antiproliferative actions of cucurbitacins.

Table 1. Antiproliferative actions of cucurbitacins using in vitro investigations.

Type of Tumor Cell Lines Effects Mechanisms Concentration References

Neuroblastoma SH-SY5Y
Regulation of cell
cycle and induces

apoptosis

↑ cell-cycle arrest at the G2/M phase,
↓ p-JAK2, ↓ p-STAT3, ↓
phospho-extracellular

signal-regulated kinases, ↓ c-Jun
N-terminal kinase, ↓ p38, ↓MAPK, ↓
Cyclin B1 ↓ Bcl2- x, ↑ p53 and p21, ↓

Bcl-2 ↑ Bax

0–128 µM [95]

Osteosarcoma U-2 OS

Cell-cycle
apprehension,
apoptosis and
inhibition of
angiogenesis

↓ cell viability, proliferation,
migration ability, ↓MMP-2 and 9, ↑

apoptotic pathway, ↓MAPK signaling
andJAK2/STAT3 cascade, ↓ VEG F, ↑
caspase-3, -8 and -9, ↑ Bad and Bax, ↓
Bcl-2 and Bcl-xL, ↓ p38, ERK1/2, JNK

and p-JNK

20, 40, 80 and
100 µM [96]
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Table 1. Cont.

Type of Tumor Cell Lines Effects Mechanisms Concentration References

Cholangiocarcinoma KKU-452 Inhibits metastatic
behavior

↓ FAK activation, ↓ phospho-FAK
protein, ↓migration, invasion and

adhesion abilities, ↓MMP-9, ICAM-1
and VEGF,

0, 5, 10, 25, 50,
100 nM [97]

Tongue squamous CAL27 and SCC9
Induced apoptosis

and microRNA
mediated

↓ proliferation, migration and
invasion, ↓ Xinactive specific
transcript (XIST), ↑miR-29b

0.001, 0.01, 0.1, 1,
10, 100 µM [98]

Laryngeal squamous

Hep-2 Regulation of cell
cycle and apoptosis

compared with single treatment,
combination treatment ↓ cell

proliferation and viability, G2/M
enrichment was accompanied by a
reduction in G0/G1 phase cells, ↑

condensation of chromatin, ↑ nuclear
fragmentations and apoptotic bodies,
↓ p-STAT3, ↓ Bcl-2, ↓ cyclin B1

1 µM
cucurbitacin B +
2, 5, 10, 20, and
30 µM cisplatin

[99]

Hep-2

Regulation of cell
cycle, apoptosis,

enhance docetaxel
chemosensitivity

compared with single treatment,
combination treatment ↓ cell

proliferation and viability, G2/M
enrichment was accompanied by a
reduction in G0/G1 phase cells, ↑

condensation of chromatin, ↑ nuclear
fragmentations and apoptotic bodies,

significant activation
(phosphorylation) of ERK1/2, ↓

p-STAT3, ↓ Bcl-2, ↓ cyclin B1

1 µM
cucurbitacin B +
25 nM docetaxel

[100]

Colon HCT116; Apoptosis induction

↓ proliferation and migration ability,
G2/M arrest, ↓ cyclin A, ↓ cyclin D1, ↑

p21, ↑ early apoptosis, ↓ p- Akt
(Ser473)

0.001 µM–10 µM [14]

Breast

MDA-MB-231 Suppresses
metastasis

↓migration, invasion and adhesion
ability, ↓ p-FAK (focal adhesion

kinase), ↓ p- paxillin, ↑ intracellular
ROS generation,

0–100 nmol·L−1 [101]

MCF-7 Induces autophagy

↓ cell viability, ↑ γH2AX, comet tails
were significantly longer, ↑

phosphorylation of ATM (Ser-1981)
and ATR (Ser428, ↑ LC3 II, ↓ p-mTOR,
↓ p-Akt (Ser308 and Ser473), ↓ p62, ↑

Beclin-1 and p-ULK1 (Ser 317), ↑
intracellular ROS

0–200 nM [102]

MCF-7
Regulation of cell
cycle and induces

apoptosis

↑ γH2AX, comet tails were
significantly longer, ↑

phosphorylation of ATM (Ser-1981) ↑
p- p53(Ser-15)

0–800 nM [103]

Pancreatic

ASPC-1,BXPC-3,
CFPAC-1, SW 1990

Induced cell-cycle
Arrest and apoptosis

↓ proliferation, viability, ↑ percentage
of cells in G2/M phase ↓ decrease in S
and G0/G phase cells, ↓ cyclin B1, ↓
cyclin D1 and cyclin A2, ↓ Caspase3
and PARP1, ↓ p-JAK2 andp-STAT3

0, 0.25, 0.5 and
1.0 µM [19]

AsPC-1, BxPC-3,
CaPan-1, and

HPAF-II
Cell-cycle arrest

↓ viability of PanCa cells, ↓ colony
formation capacity, ↑ G2/M Phase, ↓

invasion and migration ability, ↓
MUC13, restores miR-145 expression,
↓ proliferation of gemcitabine

resistant PanCa cells, ↓ RRM1/2
expression,

0.1, 0.25, and
0.5 µM [104]
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Table 1. Cont.

Type of Tumor Cell Lines Effects Mechanisms Concentration References

Hepatoblastoma HepG2 Induced cell-cycle
arrest and apoptosis

↓ proliferation and migration ability,
G2/M arrest, ↓ cyclin A, ↓ cyclin D1, ↑

p21, ↑ early apoptosis, ↓ p- Akt
(Ser473), ↑ caspase-8 and PARP,

0.001 µM–10 µM [14]

Lung

A549 cells
Inhibits Metastatic

Behavior, Cell-cycle
arrest and apoptosis

↓ proliferation and cell
viabilitygradually, ↑ condensation, ↓
p-STAT3 levels, ↑ percentage of cells

in G2/M phase, ↑ levels of ROS, ↑
membrane pore formation, ↑

pyroptosis, ↑ caspase-3, 9 activity

Cucumber-
derived

nanovesicles
(CDNVs)-
CDNVs

containing 10 nM
CuB

[15]

A549 Apoptosis and
microRNA mediated

↓ proliferation of lung cancer cells, ↑
cell apoptosis frequency, ↑ Bax and
cleaved caspase3, ↓ cyclin B1 and

Bcl-2, ↓ XIST and IL-6, ↑miR-let-7c
expression, ↓ IL-6/STAT3 pathway

0.1, 0.3, 0.6, and
0.9 µM [52]

A549, A549-GR Anti-metastasis ↓ EMT, ↓ p-PI3K, ↓ p-Akt, ↓ p-mTOR 5, 10, 15, 20 nM [105]

PC9 (gefitinib
resistance)

Apoptosis and
microRNA mediated

↑miR-17-5p in PC9/GR cells,
caspases, STAT3, ↓ p- STAT3 – [106]

A549 Induced cell-cycle
arrest and apoptosis

↓ proliferation and migration ability,
G2/M arrest, ↓ cyclin A,↓ cyclin D1, ↑

p21, ↑ early apoptosis, ↓ p- Akt
(Ser473)

0.001 µM–10 µM [14]

A549, NCI-H1299
(H1299),

NCI-H1975
(H1975), and

NCI-H820 (H820)
(gefitinib

resistance)

Induces apoptosis

↓ anchorage-dependent growth and
clonogenic ability, ↓ proliferation,
invasion and migration ability, ↑

caspase-8 and 3, caspase-3, c-PARP, ↑
Lysosomal Degradation of EGFR and
thus Inhibits ERK Signaling, ↓ CIP2A

expression, ↑ PP2A, ↓ pAkt

IC50 (µM)
H1299-0.77
A549-0.76
H197-0.63
H820-0.19

[107]

A549 Induces apoptosis ↓ cell proliferation, ↑ capase-3/9, ↓
PI3K, p-AKT and p-p70S6K

0, 50, 100 and
200 nM [108]

A549 Induces autophagy

↓ cell viability, colony formation
ability, ↑apoptosis frequency, ↑

apoptotic and necrotic, ↑
autophagosomes, ↑ LC3-II/LC3-I, ↓
p-mTOR (S2448), ↓ p- ERK and p-

STAT3

0, 100, 200, 300,
400 and 500 nM [109]

A-549 Induces cell-cycle
arrest and apoptosis

↑ G2/M phase cell-cycle collapse, ↓
m-TOR/PI3K/Akt proteins

0, 10, 20, 40, 100,
150 and 200 µM [110]

A549
Regulation of cell
cycle and induces

apoptosis

↓ proliferation and colony forming
ability, ↑ γH2AX, comet tails were

significantly longer, ↑ G2/M phase, ↑
phosphorylation of ATM (Ser-1981), ↑

p- p53(Ser-15)

0–800 nM [103]

A549
Regulation of cell
cycle and induces

apoptosis

↓ cell proliferation, ↑ G2/M
phasecells, % early and lateapoptotic

cells, ↑ cell shrinking, ↑
intracytoplasmic vacuoles,
↑chromatin condensation,

↑mitochondrial swelling, ↑caspase-3
and caspase-9, ↑ disruption of the

∆Ψm, ↓ (p)-STAT3, ↓ cyclinB1 ↓ Bcl-2

0.02,0.1, 0.5, 2.5,
12.5 and

62.5 µmol/L
[111]

CD133-positive
and

CD133-negative

Inhibits tumorigenic
ability and enhances

radiochemo-
sensitivity

↓ STAT3, ↓ tumorigenic capacity,↓
sphere formation ability, ↓

radioresistance and chemoresistance
in CD133-positive, ↓ stemness gene

signature of CD133-positive, ↓ Bcl-2, ↓
Bcl-xL ↓survivin, ↑ Bax

radiation doses
(0 Gy, 2Gy, 4 Gy,
6 Gy, 8 Gy, and
10 Gy) + 0, 50,

100 and 150 nM

[112]
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Table 1. Cont.

Type of Tumor Cell Lines Effects Mechanisms Concentration References

Gastric

Human
DDP-resistant

gastric cancer cell
lineSGC7901/DDP
and human GC cell

line SGC7901

Induces autophagy
and apoptosis

↓ viability, ↓ clonogenic ability, ↑
cytoplasmic shrinkage, ↓

pro-caspases-3 and -9 and cleaved
PARP, ↑ LC3 II and Beclin1, ↓ P-gp,
and HIF-1α, ↓ phosphorylation of

mTORC1 effectors (mTOR, p70S6K
and 4E-BP1), ↓ pAkt, ↑ pP2A, ↓ CIP2A

IC50 (nM)
SGC7901- 216.70
SGC7901/DDP-

170.25

[113]

MKN-45 Cell-cycle arrest,
apoptosis

↓ proliferation of cancer cells, ↓
progression of the cell cycle from
G0/G1 to S phase, ↓ cyclin D1, ↓

cyclin E, ↓ CDK4 and CDK2
(cyclin-dependent kinase), ↑ p27, ↑

cell apoptosis frequency, ↑Bax, ↓ Bcl-2,
↓ JAK2/STAT3 signaling pathway

0.1, 1 or 10 µM [114]

Colorectal SW620 and HT29 Regulation of cell
cycle and apoptosis

↓ proliferation and invasion, ↑
chromatin condensation and

fragmentation, ↓ pro-cas-3, ↓cleaved
PARP, ↓ YAP ↓Cyr 61 and c-Myc, ↑

LATS1

0, 0.1, 0.2, 0.4, 0.6,
0.8 and 1.0 µM [115]

Prostate LNCaP,
DU145, and PC-3;

Induced cell-cycle
arrest and apoptosis

↓ proliferation and migration ability,
G2/M arrest, ↓ cyclin A,↓ cyclin D1, ↑

p21, ↑ early apoptosis, ↓ p- Akt
(Ser473), ↑ caspase-8 and PARP

0.001 µM–10 µM [15]

Bladder

MB49
Induce the cell death
pathways, apoptosis

and autophagy

↓ viability of cancer cells, ↓Bcl-2, ↑
LC3II, ↓ phosphorylation of p27,

PRAS40 and Raf-1 proteins, ↓ p- AKT,
↓ p-ERK1/ ERK2, ↓ p-mTOR, ↑ BAD,

↑AMPKα

CuB- 0.01–50 µM
and Cisplatin-

0.5–50 µM
[116]

T24 Induced cell-cycle
arrest and apoptosis

↓ proliferation and migration ability,
G2/M arrest, ↓ cyclin A,↓ cyclin D1, ↑

p21, ↑ early apoptosis, ↓ p- Akt
(Ser473), ↑ caspase-8 and PARP

0.001 µM–10 µM [14]

Ovarian SKOV3 Cell-cycle arrest,
apoptosis

↑ chromatin condensation, ↑ apoptotic
body formation, ↑ deformed cell
morphology, ↑ intracellular ROS

levels, ↓MMP, ↓mTOR/PI3K/Akt
signaling pathway, ↓m-TOR, ↓

phospho m-TOR proteins. ↓ PI3K/Akt
protein expressions, ↑ DNA damage,
↑ cell-cycle arrest at G2/M checkpoint

0, 10, 20, 40, 80
and 160 µM [117]

Table 2. Antiproliferative actions of cucurbitacins using in vivo investigations.

Type of Tumor Animal Models Effects Mechanisms Dosage Duration References

Laryngeal

Nude mice injected
with 5 × 106 Hep-2

cells

Inhibits tumor
growth

↓ tumor weight and
volume,

55 µg/kg/day
ofcucurbitacin B, or
7.5 mg/kg/week of

docetaxel

14 days [100]

Athymic nude mice
5 × 106 Hep-2 cells

Inhibits tumor
growth

↓ tumor growth
inhibition, no

significant adverse
effects were observed

55 µg/kg daily for 14
days, orcisplatin
(intraperitoneal

injection) 10 mg/kg
daily

14 days [99]

Tongue
squamous

Nude mice injected
with SCC9 cell lines

(8 × 106)

Inhibits tumor
growth

↓ XIST, XIST
expression was lost in
XIST KO (knockout)

0.5 mg/kg 14 days [98]
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Table 2. Cont.

Type of Tumor Animal Models Effects Mechanisms Dosage Duration References

Lung

C57BL/6 J mice
injected with 5 × 105

B16-F10-Luc cells
Anti-metastasis ↓ lung index, ↓ lung

metastasis

CuB (0.25 mg/kg, and
0.5 mg/kg) groups and

Geftinib (40 mg/kg)
14 days [105]

BALB/c nude mice
injected with A549
cells (2 × 106 cells)

Inhibits tumor
growth

↓tumor weight,
↑necrotic and

apoptotic cells were
observed in tumor

sections, ↓ p-STAT3, ↓
CD31,

CsDNVscontaining
472 nM CuB 14 days [15]

nu/nu mice injected
with GR NSCLC

H1975 cells
(2.5 × 106)

Inhibits tumor
growth

↓ tumor weight, ↓
CIP2Aand EGFR

gefitinib (30 mg/kg) or
CucB 0.5 mg/kg 24 days [107]

BALB/c mice injected
with 1 × 105

CD133-positive and
CD133-negative cells

Inhibited tumor
growth

↓ lung metastasis, ↓
tumor size, ↓

tumorigenic and
metastatic capabilities,
↑ survival rate

1 mg/kg 4 weeks [112]

Pancreatic

BALB/c-nu injected
with BXPC-3cells

(2 × 106 cells)

Inhibits tumor
growth

↓ p-STAT3 in the
tumors of mice, ↑
PCNA in control

1 mg/kg and 2 mg/kg 30 days [19]

NOD-SCID gamma
mice injected with

HPAF-II cells
(4 × 106 cells)

Inhibits tumor
growth

↓MUC13, ↓ PCNA
(nuclear proliferating

cell antigen), ↑
miRNA-145

1 mg/kg 40 days [104]

Hepatocellular SCID mice injected
with HepG2 (3 × 106)

Inhibits tumor
growth

No significant
differences of body

weight, ↑ DNA
cleavage, ↑ CDKN1A

(p21), ↑ CDKN1B
(p27), ↑ FOXO, ↓ p-

Akt

0.1 mg/kg 3 weeks [14]

Prostrate
SCID mice injected

with HepG2 (3 × 106)
cells

Inhibits tumor
growth

No significant
differences of body

weight, ↑ DNA
cleavage, ↑ CDKN1A

(p21), ↑ CDKN1B
(p27), ↑ FOXO, ↓ p-

Akt

0.1 mg/kg 8 weeks [14]

Bladder
C57BL/6 injected

with 1 × 106 MB49
cells

Reduced the
tumor growth

No histopathological
changes, ↓ Bcl-2, ↑

LC3II, ↓
phosphorylation of
p27, PRAS40 and

Raf-1 proteins, ↓ p-
AKT, ↓ p-ERK1/

ERK2, ↓ p-mTOR,

CuB (0.5–1 mg/kg) and
Cis (1–3 mg/kg) 19 days [116]

7. Conclusions and Further Perspectives

As demonstrated in the present review article, diverse variants of cucurbitacins can be
active against different types of malignancies. Moreover, the combination of cucurbitacins
with conventional chemotherapeutic drugs might lead to synergistic anticancer effects,
revealing a great promise for the application of these compounds in future clinical settings
as either individual agents or drug adjuvants. However, many steps have remained to
achieve this attractive goal. First, the safety of cucurbitacins must be elucidated, jointly with
their metabolic conversion and possible bioactivities of various metabolites. Secondly, the
proper dosage regimens also need to be elaborated. Studies related to the pharmacokinetic
properties of cucurbitacins, including t1/2, Cmax, Tmax, Vd, mean residence time, etc.,
should be carried out singly or in synergism. Investigations on the metabolic conversions
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of cucurbitacins will improve its bioavailability and stability prospective. In this way, the
current review presents a strong basis to move on with these next steps in the path to
ultimately find novel, safe and more efficient therapies against cancer.
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