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Abstract: Recent advances and discoveries in the structure and role of mRNA as well as novel
lipid-based delivery modalities have enabled the advancement of mRNA therapeutics into the clinical
trial space. The manufacturing of these products is relatively simple and eliminates many of the
challenges associated with cell culture production of viral delivery systems for gene and cell therapy
applications, allowing rapid production of mRNA for personalized treatments, cancer therapies,
protein replacement and gene editing. The success of mRNA vaccines during the COVID-19 pan-
demic highlighted the immense potential of this technology as a vaccination platform, but there
are still particular challenges to establish mRNA as a widespread therapeutic tool. Immunostim-
ulatory byproducts can pose a barrier for chronic treatments and different production scales may
need to be considered for these applications. Moreover, long-term storage of mRNA products is
notoriously difficult. This review provides a detailed overview of the manufacturing steps for mRNA
therapeutics, including sequence design, DNA template preparation, mRNA production and formu-
lation, while identifying the challenges remaining in the dose requirements, long-term storage and
immunotolerance of the product.

Keywords: mRNA therapeutics; mRNA manufacturing; in vitro transcription; lipid nanoparticles

1. Introduction

From the first demonstration of messenger RNA (mRNA) delivery into in vivo mod-
els [1] to the development of lipid nanoparticles using ionizable lipids as a delivery system
for the first approved siRNA therapeutic [2], decades of fundamental research converged
to enable the creation of feasible RNA vaccines and therapeutics. Given the global success
demonstrated during the COVID-19 pandemic, the mRNA technology platform is cur-
rently in the spotlight and shows considerable potential not only for vaccines, but also for
treatment of diseases [3–7]. This promising technology was shown to have incredibly fast
development, manufacturing, and roll-out times [8], with the potential of revolutionizing
the therapeutic field as a drug with a wide range of applications [9].

mRNA technology relies on the transfer of an mRNA either encoding an antigen
or a therapeutic protein of interest into the cytoplasm [3]. This genetic message, once
translated, functions to stimulate an immune response or alter a disease state. In contrast
to DNA therapeutics, mRNA does not require nuclear entry as expression occurs directly
in the cytoplasm. In addition, this eliminates the risk of insertional oncogenesis associated
with viral vector and plasmid DNA techniques. Their ability to be manufactured through
cell-free systems eliminates the time constraints and possible contaminants associated with
traditional viral vector-based gene and cell therapies [10,11]. Therapeutic use of adeno-
associated viruses, for example, require high doses that are difficult to accommodate with
the current productivity and scalability issues [12], while enzymatic mRNA production
is linearly scalable [13], thus achieving the required production more easily. Moreover, a
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new mRNA product implies a new sequence, but the physicochemical characteristics of an
mRNA remain the same, meaning that the manufacturing process can be replicated with
minimal changes for a powerful plug-and-play platform [14]. The technology’s versatility
allows it a broad potential of therapeutic applications including but not limited to cell
reprogramming, gene editing, protein replacement therapy and cancer immunotherapy [3].

Historically, the progression of RNA-based gene and cell therapies has been limited by
challenges related to the instability of RNA, the immunogenic response to RNA molecules
as well as the delivery of the RNA across the cell membrane. However, several improve-
ments have been made to increase the stability and to reduce the degradation of RNA
molecules including base modifications and the emergence of the lipid nanoparticle (LNP)
as an advanced tool for the delivery of RNA-based therapeutics [15]. A range of these
drugs have reached the pre-clinical and clinical spaces, with the American Society for
Gene and Cell Therapy reporting 897 RNA therapeutics in the clinical pipeline as of April
2023 [16]. In addition, the number of publications which mention mRNA therapeutics has
been steadily increasing over the past decade, indicating the growth of the field, as shown
in Figure 1.
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as of August 2023.

Despite the technology’s potential, mRNA therapeutics have not taken the market by
storm as quickly as the vaccines due mainly to different regulatory processes during global
health emergencies. Moving forward, mRNA therapeutics will face challenges regarding
different manufacturing and regulatory considerations compared to vaccines. The diversity
of applications, classifications, and manufacturing protocols when it comes to mRNA
therapeutics make streamlining of regulatory approval more difficult [17]. Moreover, im-
munostimulatory by-products such as double-stranded RNA must be strictly controlled
during manufacturing to ensure immunotolerance of the drug for long-term mRNA treat-
ments [18]. Currently, these therapeutics lack a standardized production pipeline across
the published literature and within patents, and manufacturing scalability is limited by
high costs associated with current good manufacturing practice (cGMP)-grade reagents
required for in vitro transcription (IVT) [19]. Long-term treatments with repeated dosing
requires affordable drugs of consistent yield and quality.

As such, this review addresses the challenges to enable widespread use of mRNA
therapeutics from a manufacturing perspective, focusing on particularities of therapeutics
in contrast to what has been established with production and approval of mRNA vaccines.
First, we explore the current landscape of applications in the clinical trial space. Next, we
discuss the entire manufacturing pipeline, including sequence design and optimization;
production and purification of template DNA; production and purification of mRNA;
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microfluidic techniques for encapsulation in LNPs; and formulation for product stability.
Finally, we identify future perspectives in manufacturing and process automation, as well
as novel strategies for delivery and targeting.

2. Current Therapeutic Applications of mRNA

In the context of gene and cell therapy, mRNA may be applied to replace or supplement
disease genes and proteins. Specifically, mRNA as a tool for the restoration of a gene or
protein in monogenic disorders is of interest within the field [20]. For example, a study
conducted by Ramaswamy et al. demonstrated the delivery of factor IX encoding mRNA
for the treatment of hemophilia B in a mouse model [21]. Similarly, An et al. demonstrated
mRNA therapy in mice for the treatment of methylmalonic acidemia in mice using mRNA
encoding human methylmalonyl-CoA mutase [22]. There are also several studies which
discuss the use of mRNA therapy for cardiac related diseases [23]. For example, Zangi et al.
explored the use of mRNA encoding the vascular endothelial growth factor A gene for
cardiac tissue repair [24].

Furthermore, there is therapeutic value in the use of mRNA in cancer treatments. In
these cases, the mRNA can be used to deliver suicide genes or tumor-associated antigens
(TAAs). A 2019 study examined the use of mRNA encoding a suicide gene for colon cancer
therapy and was found to be successful at shrinking tumor size in mice models [25]. Several
mRNA treatments for rare genetic diseases have also made it into the clinical pipeline in
recent years, with companies such as Moderna and Translate Bio occupying the space [26].

Future prospects in the development of personalized gene therapies are promising
due to the rapid manufacturing of these molecules. Personalized medicine strategies con-
sider each patients’ genotypic characteristics, which will allow the production of therapies
specifically for cancer patients, rare metabolic disease patients and a range of other patholo-
gies [27,28]. From a manufacturing perspective, these personalized medicines may require
smaller infrastructure than that established throughout the COVID-19 pandemic due to the
scale of production for individual patients rather than global populations. Hospital-based
RNA therapeutic programs, to expedite the process of genetic testing to the production of
small cGMP grade material, may accommodate the implementation of these personalized
therapeutics [29].

Cell therapies, traditionally performed using viral vectors, have also been an active
area of development using RNA therapeutics. Specifically, chimeric antigen receptor
(CAR) T-cell therapy has been of interest [30]. This process involves the delivery of the
CAR to autologous cells using mRNA and re-infusing these cells to the patient after their
modification. Several clinical trials have been performed using this method, including
ECI-006, MCY-M11 and Descartes-08, which target melanoma, mesothelin-expressing solid
tumors and multiple myeloma, respectively [31].

Similarly, the use of in vitro transcribed mRNA for gene editing techniques is growing
both in the literature reports and in the clinical applications. This technique involves
mRNA which encodes genome editing nucleases, including zinc finger nucleases, CRISPR-
associated nucleases and transcription activator-like effector nucleases, and a guide RNA to
repair DNA mutations [32]. The mRNA expresses the encoded nuclease in the cytoplasm,
which then enters the nucleus alongside the guide RNA. As such, this technique avoids the
challenge associated with DNA-mediated approaches of delivering the encoded nuclease
genes to the nucleus before expression and translation in the cytoplasm [32]. Several
clinical trials have applied this technique, including a trial sponsored by the University of
Pennsylvania for the treatment of HIV-1 infected patients [33]. This technology has been
successful in primates, as demonstrated by Munusuru et al. in a recent study [34], and is
currently being evaluated in clinical trials conducted by Intellia therapeutics [35,36].

Ongoing Clinical Trials

Currently, there are 84 ongoing (not yet recruiting, recruiting, and active) trials evalu-
ating mRNA therapeutics, with the majority targeting cancer (Figure 2). The majority of
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ongoing clinical trials involve mRNA therapeutics employing the use of lipid nanoparticles
or liposomes. Among these lipid-based mRNA therapeutics, a wide variety of treat-
ments are currently being explored, including protein replacement therapy [37–39], cancer
immunotherapy, personalized cancer vaccines [40–43], mRNA-encoded monoclonal anti-
bodies [44,45], and gene editing [35,36] (Table 1). This demonstrates the lipid nanoparticle
(LNP) technology’s versatility.
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Table 1. Lipid Carrier-Based mRNA Therapeutics in Ongoing Clinical Trials as of August 2023.

Trial ID Status Indication Treatment Name Dose Regimen Administration
Method

NCT04573140 Recruiting Adult glioblastoma

Autologous total tumor
mRNA and pp65 full-length

(fl) lysosomal-associated
membrane protein (LAMP)

mRNA-loaded
DOTAP liposome

Every 2 weeks
(3 cycles), monthly

(15 cycles)
IV

NCT05097911 Recruiting
Advanced

Hepatocellular
Carcinoma

MTL-CEBPA
Day 1 and Day 8 of

a 21-Day
Dosing Schedule

IV

NCT05579275 Recruiting
Advanced

malignant solid
tumors

JCXH-212 Injection Every 3 weeks (up
to 8 cycles)

Unspecified
injection

NCT05949775 Not yet
recruiting

Advanced
Malignant Solid

Tumours

Neoantigen mRNA
Personalized Cancer vaccine

Every 3 weeks
(9 cycles) SQ

NCT05978102 Not yet
recruiting

Advanced Solid
Tumor STI-7349/IL2v mRNA Every 3 weeks IV

NCT05533697 Recruiting Advanced Solid
Tumours mRNA- 4359 N/A IM

NCT02872025 Recruiting
Carcinoma,
Intraductal,

Noninfiltrating
mRNA 2752 2–4 Doses ILES

NCT05659264 Recruiting Chronic heart
failure mRNA-0184

2 groups: single
dose OR 4 doses
every 16 weeks

IV

NCT05141721 Recruiting Colorectal
neoplasms

GRT-R902 (samRNA),
GRT-C901(viral vector)

4 doses over
first year IM

NCT05712538 Recruiting Cystic Fibrosis ARCT-032 Single dose INH

NCT05668741 Recruiting Cystic Fibrosis VX-522 Single dose INH
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Table 1. Cont.

Trial ID Status Indication Treatment Name Dose Regimen Administration
Method

NCT05938387 Recruiting Glioblastoma CV09050101 mRNA vaccine 7 doses at
different intervals IM

NCT05095727 Recruiting Glycogen storage
disease mRNA-3745

Single dose.
Additional dosages

after >21 days
IV

NCT05497453 Recruiting Hepatocellular
Carcinoma OTX-2002 At least 2 doses IV

NCT04710641 Recruiting Hepatocellular
Carcinoma MTL-CEBPA (saRNA) Every 3 weeks IV

NCT05120830 Recruiting Hereditary
Angioedema NTLA-2002 Single dose IV

NCT05933577 Recruiting High-Risk
Melanoma V940 Every 3 weeks (up

to 9 doses) IM

NCT05295433 Recruiting
Isolated

methylmalonic
acidemia (MMA)

mRNA-3705 Every 2–4 weeks IV

NCT04899310 Recruiting
Isolated

methylmalonic
acidemia (MMA)

mRNA-3705 Every 2–4 weeks IV

NCT03289962 Active, not
recruiting

Locally or
Advanced

Metastatic Cancer
RO7198457 Every 2 weeks IV

NCT05969041 Recruiting Malignant
Epithelial Tumours MT-302 (A)

Weekly–biweekly
doses for first
3 doses. Every

4 weeks
subsequently

IV

NCT05539157 Active, not
recruiting

Malignant solid
tumours, etc. JCXH-211 Every 4 weeks (up

to 3 doses) IT

NCT05714748 Recruiting Malignant
Tumours EBV mRNA vaccine

Weekly (4 doses),
followed by a

1-month interval
(1 dose)

IM

NCT03897881 Active Melanoma mRNA-4157 Every 3 weeks (up
to 9 doses) IM

NCT05264974 Not yet
recruiting Melanoma

Autologous total tumor
mRNA loaded DOTAP

liposome vaccine
Every 2 weeks IV

NCT04526899 Recruiting Melanoma BNT111 N/A IV

NCT03871348 Active, not
recruiting

Metastatic
Neoplasm SAR441000 N/A IT

NCT05142189 Recruiting Non-Small Cell
Lung Cancer BNT116 N/A IV

NCT04442347 Active, not
recruiting

Ornithine
Transcarbamylase

Deficiency
ARCT-810 Single dose IV

NCT05526066 Recruiting
Ornithine

Transcarbamylase
Deficiency

ARCT-810 Every 2 weeks (up
to 6 doses) IV

NCT04161755 Active, not
recruiting Pancreatic cancer RO7198457 Every week

(8 Cycles) IV

NCT03953235 Active, not
recruiting

Personalized
cancer vaccine for
many cancer types

GRT-R904 (samRNA),
GRT-C903 (adenoviral

vector)
N/A N/A
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Table 1. Cont.

Trial ID Status Indication Treatment Name Dose Regimen Administration
Method

NCT05130437 Recruiting Propionic
Acidemia mRNA-3927 Every 3 weeks IV

NCT04159103 Recruiting Propionic
Acidemia mRNA-3927 Every 3 weeks (up

to 10 doses) IV

NCT04382898 Recruiting Prostate Cancer BNT112 N/A IV

NCT05660408 Not yet
recruiting

Pulmonary
osteosarcoma RNA-LP vaccine

Every 2 weeks
(2 cycles), monthly

(12 cycles)
N/A

NCT03739931 Recruiting
Relapsed solid

tumor malignan-
cies/lymphoma

mRNA-2752 Every 2 weeks IT

NCT04503278 Recruiting Solid Tumor
BNT211- CLDN6

CAR-T/CLDN6 CAR-T(A),
CLDN6 RNA-LPX

N/A IV

NCT05262530 Recruiting Solid Tumor BNT142 N/A IV

NCT04710043 Recruiting Solid Tumor BNT152/BNT153 N/A IV

NCT04455620 Recruiting Solid Tumor BNT151 N/A IV

NCT03313778 Active, not
recruiting Solid tumours mRNA-4157 9 cycles (once

every 3 weeks) IM

NCT03946800 Active, not
recruiting Solid tumours MEDI1191 Every 3 weeks IT

NCT04683939 Recruiting Solid tumours, etc. BNT141 N/A IV

NCT04601051 Recruiting

Transthyretin-
Related (ATTR)

Familial Amyloid
Polyneuropathy

NTLA-2001 Single dose IV

NCT04534205 Recruiting
Unresectable Head

and Neck
Squamous Cell

Carcinoma
BNT113 N/A IV

IV: intravenous, IT: intratumoral, IM: intramuscular, ILES: intralesional, SQ: subcutaneous, INH: inhalation,
N/A: Not Available.

Despite the large range of applications, the majority of the lipid-based mRNA thera-
peutics in ongoing clinical trials are administered intravenously. For immunotherapeutic
applications, intravenous administration allows for high antigen production levels as
opposed to other administration methods [46]. The advantage of systemic delivery is,
however, accompanied by the requirement of manufacturing larger dosages as opposed to
tissue-specific delivery. Intravenous administration requires larger volumes of the drug,
and typically leads to the accumulation of the drug in the liver [47], which may limit their
internalization in the target tissue. For example, where many therapeutics delivered by
IV have been evaluated at mRNA doses in the milligram range [48–51], an intratumorally
delivered drug, MEDI1191, was evaluated at mRNA dosages of 0.1–12 µg [52]. Another
targeted administration method, inhalation, has also presented potential for both therapeu-
tic and vaccine applications in recent years. Recent advancements in the nebulization and
formulation of lipid nanoparticle products for inhalation demonstrate the possibility of
an increase in the number of these products [53,54]. Currently, however, ARCT-032 and
VX-522, protein replacement therapies for cystic fibrosis, are the only inhalable mRNA
therapeutics in ongoing trials [55,56].

Additionally, the need for repeated dosing is clearly illustrated in these current ongoing
clinical trials, emphasizing the need for high-yield production processes for mRNA drug
products. However, the challenge of chronic dosing of mRNA therapeutics is balanced by
its safety profile compared to viral vector therapeutics and its ability to produce high levels
of protein intracellularly compared to protein therapeutics [4].
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Beyond lipid-based delivery systems, several ongoing clinical trials are currently
evaluating the use of dendritic cells pulsed with mRNA for cancer immunotherapy [57–67],
mRNA-based T-cell therapies [68–74], and other carriers including exosomes and VLPs [75,76].
However, this review focuses on the manufacturing of lipid-based mRNA therapeutics due
to their ubiquity in the clinical space.

3. Manufacturing Process

mRNA is a negatively charged, single-stranded molecule involved in protein synthesis
that typically ranges between 1 and 15 kilobases in length (kb) [77,78]. It consists of a single-
stranded open reading frame flanked by untranslated regions (5′-UTR and 3′-UTR), as
well as 5′ cap and 3′ polyadenylation (poly(A)) tail sequences [27]. Each of these segments
plays an essential role in the function and stability of the mRNA and must be incorporated
throughout production. It is also possible to design a cap-independent RNA treatment by
using circular RNA and internal ribosome entry sites [79–82], which implies a separate
category of design and manufacturing considerations outside the scope of this review.

The production process of a new mRNA therapeutic can be divided into the following
main steps: (1) DNA template sequence design, (2) DNA template production and purifica-
tion, (3) IVT, (4) mRNA purification, and (5) encapsulation and formulation for delivery
and storage, as illustrated in Figure 3.
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synthetic approaches, (3) mRNA synthesis via IVT, (4) mRNA purification, and (5) encapsulation for
delivery and storage.

3.1. Upstream Process: DNA Template Sequence Design

The production process of mRNA therapeutics begins with the design of a DNA tem-
plate for subsequent IVT. Transcription templates for mRNA synthesis can be in the form of
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plasmid DNA (pDNA), PCR products or synthetic double-stranded oligonucleotides [83,84].
Typically, the DNA template should include the following elements [85]: promoter se-
quence, gene of interest (GOI), 5′ and 3′ untranslated regions (UTRs), poly(A) tail. Each
element can be modified or selected accordingly to improve the stability and translation of
the mRNA, as has been thoroughly explored in other publications [86,87].

Most commonly, the T7 promoter sequence (5′-TAATACGACTCACTATA-3′) is used
for recognition by the T7 RNA polymerase during IVT, considered the standard polymerase
for manufacturing purposes [88]. If using the cap analog CleanCap AG, an additional A
is required at the 3′ end of the promoter sequence for an AGG initiator sequence [89]. If
the manufacturer aims to use a different RNA polymerase, such as from T3 or SP6, the
corresponding promoter must be present in the DNA template. Additionally, in the case of
a plasmid DNA construct, an antibiotic resistance marker sequence for bacterial selection
and restriction sites for DNA template linearization are required.

In applications in which the gene of interest encodes for a therapeutic protein, op-
timization of the coding sequence can be performed to reduce protein immunogenicity
and increase protein expression [90]. For instance, codon optimization can lead to more
controllable translation and increased mRNA half-life [78,86,90,91]. It has been reported
that high GC content increases mRNA stability, ribosome association, and thus translation
efficiency [86,92,93]. Optimization of the GC content in the GOI, with concurrent uridine
depletion in therapeutic mRNA design, not only improves the elongation rate and transla-
tion efficiency, but can also alter RNA secondary structures that can interfere with gene
expression [78].

Both the 5′- and 3′-UTRs are indispensable for the stability and translation initiation of
the therapeutic mRNA molecule being delivered [94]. The β-globin UTRs have been widely
used in both clinical trials and research contexts [95,96]. 5′-UTR features such as the length,
sequence elements and secondary structures play an important role in translation initiation
during scanning [97], with the average length of 5′-UTR in eukaryotes ranging from ~100
to ~200 nucleotides (nt) in mammals [86]. However, it has been proposed that a shorter
5′-UTR with at least 20 nt minimizes the scanning process and thus maximizes protein
expression [86]. Moreover, highly stable secondary structures near the 5′-end should be
avoided as they can disrupt ribosome loading and scanning [98,99], and potential upstream
start codons should be eliminated to avoid leaky scanning [86]. Selective translation can
be achieved by introducing additional sequence elements to the 5′-UTR depending on the
therapeutic purpose. In the context of cancer therapy, special 5′-UTR elements capable of
translation under nutrient restriction may be needed for intratumor mRNA injection [86].

The 3′-UTR, similarly to the 5′-UTR, contains regulatory elements that affect translation
efficiency and mRNA stability. It is generally believed that a shorter 3′-UTR increases the
stability of the mRNA due to the loss of microRNA binding sites, thus escaping mRNA degra-
dation [86]. Additionally, the use of two sequential β-globin 3′UTRs resulted in significantly
higher maximum protein levels and prolonged persistence of the protein [100]. Lastly, high
throughput techniques have been developed for 3′-UTR optimizations, including a novel
cell-based selection process to identify 3′-UTRs that increase protein expression encoded by
synthetic mRNA [101] and a massive parallel functional assay for optimization [102].

The poly(A) tail plays a key role in mRNA translation and stability, as it protects the
mRNA from nuclease degradation [103]. The poly(A) tail can be added to the mRNA either
by using a poly(A) polymerase after transcription or by already having a poly(A) sequence
in the DNA template [3]. The latter is the standard practice for clinical applications, as it
allows for a consistent, predetermined length of the poly(A) tail [104]. The extension of the
poly(A) tail up to 120 nt has been demonstrated to improve translation efficiency, showing
that the length is an important aspect to consider [105,106]. Additionally, Trepotec et al.
demonstrated the benefit of using segmented poly(A) tails, which consists of at least two
A-containing elements of 40–60 adenosines separated by a spacer element of different
length. This segmented approach avoids recombination of plasmid DNA during bacterial
replication without impairing protein expression and mRNA half-life [107].



Biomolecules 2023, 13, 1497 9 of 27

3.2. Upstream Process: DNA Template Production

For use in IVT, a linearized and purified DNA template is required. Although there are
several approaches for the manufacturing of the template DNA, the space is currently dom-
inated by the use of bacterial fermentation to obtain plasmid DNA. Recently, synthetic and
enzymatic approaches have also been proposed for the manufacturing of these templates,
including PCR.

3.2.1. Bacterial Fermentation Approach

Plasmid DNA generation is generally performed through fermentation of Escherichia
coli (E. coli). Several different strains have been reported for pDNA production such as
DH5α [108], DH5 [109], DH10B [110], DH1 [111], JM108 [112], and SCS1-L [113]. Among
them, DH5α remains the standard strain used in laboratory and industry practices due to
the existence of effective widespread protocols that have been previously established [112].
For this methodology, E. coli competent cells are transformed with the designed DNA
plasmids. At the industrial scale, bacterial culture expansion follows three main steps:
inoculation for the creation of a master cell bank, shake flask fermentation, and large-
scale bioreactor fermentation. To improve pDNA production yields using this production
platform, several strategies can be adopted such as selecting a high-producing bacterial
strain and/or combining varying medium composition and culture strategies such as batch
or fed-batch mode [114].

Vector engineering has contributed to higher yields such as the use of pUC-based
plasmids and R1-based plasmids [114]. A study conducted by Lopes et al. demonstrated
that a fed-batch mode culture leads to higher plasmid volumetric yields compared to
a batch-mode culture [114]. Another study by Carnes et al. demonstrated that using
standard high-copy pUC origin-containing plasmids and novel control parameters for
fed-batch fermentation resulted in increased specific pDNA yield with respect to cell mass
(up to 1500 mg/L of culture medium) compared to 100–250 mg/L for typical plasmid
fermentation media and processes [115]. An E. coli DH5α culture in the fed-batch mode,
with glucose and glycerol as initial carbon sources in the batch phase, showed a 2.2-fold
increase compared to similar feeding phases but with no glycerol [114]. In fact, glycerol is
considered a complementary carbon source of glucose because of its high specific plasmid
DNA productivity and can be used to increase plasmid yield up to 70.6% [116]. The most
used growth medium for E. coli is Luria Broth (LB) with yeast extract as the nitrogen source,
although other medium compositions have successfully been used, including a modified
MBL medium [116].

3.2.2. Synthetic DNA Approach

To avoid the cloning and preparation steps involved in pDNA production through
bacterial fermentation, which are both costly and time consuming, several publications and
industrial production platforms have adopted alternative template production methods.
The fermentation process can take several days or, at times, several weeks, and it involves
expensive reagents, including bacteria and antibiotics [117]. The associated risk of biocon-
tamination in the final product has also become a concern for the good manufacturing
practice (GMP) of these therapeutics in the clinical industry [83]. As such, synthetic DNA
approaches such as PCR, which allow for time-effective manufacturing, have been used to
generate the DNA template for mRNA synthesis [3].

Traditional PCR has successfully been used to produce a DNA template for IVT [118].
In 2022, de Mey et al. introduced a novel approach for the production of mRNA based
on a synthetic DNA template generated using assembly PCR with synthetic oligonu-
cleotides [83]. It was reported that using this method, the DNA template amplification can
go up to several micrograms, allowing for a fast transition from the DNA production step
to the mRNA synthesis in only a few hours [83].

Other synthetic DNA production methods have also been described. For example,
Touchlight Genetics Ltd. developed a synthetic DNA manufacturing platform using an
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in vitro dual enzyme process [117]. This proprietary enzymatic platform enables multi-
gram DNA production in weeks, allowing for rapid and large-scale production [117].
However, despite the potential of synthetic DNA template production, these approaches
have yet to be established for longer DNA strands. It is crucial to consider not only yield
but also the error rate, as mutations should be avoided in the sequence. To produce RNA
for therapeutic applications, DNA templates are required to be several kilobases long, and
thus bacterial fermentation currently remains most appropriate for these productions.

3.3. Upstream Process: DNA Template Purification

For use in the IVT reaction, the DNA template must be purified and linearized to
ensure the quality of the subsequently produced mRNA. The purification process is most
extensive in the case of bacterial fermentation. Purification of pDNA from bacterial cells typ-
ically begins with an alkaline lysis step after cell harvesting [119,120], in which a detergent
solution such as sodium dodecyl sulfate (SDS) and sodium hydroxide are used to disrupt
the cell membrane [84]. Next, the lysate is neutralized before clarification [84,119,121].
However, due to the viscous nature of the resulting precipitate, separation of cellular
components can only be performed by pre-filtration or centrifugation followed by clearing
filtration, which can be time-consuming and expensive [122]. Moreover, DNA sensitivity
to shear stress requires low shear stress techniques to gently mix the cell lysate and the
neutralizing agent, such as a flotation-based method described in a patent by PlasmidFac-
tory [121,122]. Another method that has been explored for pDNA purification is boiling cell
lysis [123], which has been successfully scaled up using a streamlined method of plasmid
DNA extraction by continual thermal lysis [124].

In many traditional plasmid DNA purification processes, RNAse enzymes are used to
degrade the RNA prior to proceeding with chromatography steps for pDNA isolation [125].
However, RNAse A is purified from bovine components and is of concern in large scale
manufacturing [125]. Furthermore, for a process ultimately aiming to produce RNA, the
addition of RNAse should be avoided. To this end, RNAse-free purification methods have
been proposed: Duval et al. implemented calcium chloride precipitation, followed by
tangential flow filtration (TFF) for the removal of high molecular weight RNA and low
molecular weight RNA species, respectively [125,126]. These two steps also contribute to
the reduction in microbial proteins and chromosomal DNA and to concentration of the
product. In addition, performing concentration prior to chromatography reduces column
loading time, accelerating the overall process [126].

For pDNA isolation, chromatography steps based on three different principles result
in high-purity plasmid free of host DNA, RNA, proteins, and endotoxins: size-exclusion
chromatography, ion-exchange chromatography, and hydrophobic interaction chromatog-
raphy [119,127–130]. The plasmids can be collected in several isoforms: supercoiled circular
isoforms, open circular, and linear. A hydrophobic interaction chromatography method has
been proposed to select for supercoiled pDNA, as it is the most stable isoform [130,131].

Finally, the DNA template must be linearized to prepare for mRNA transcription.
For the use of the SP6 and T7 RNA polymerase during IVT, a 5′overhang is known to be
preferable to ensure the stability of the polymerase and to reduce artifacts [132]. To achieve
this overhang after linearization, endonucleases such as HindIII, SpeI, SapI, NotI, EcoRI
may be used [133]. Removal of this enzyme as well as of the un-linearized DNA is required
to isolate the final DNA template and proceed with transcription. In both laboratory- and
industry-scale productions, phenol chloroform extraction has been established as the gold
standard technique for this step. However, this technique requires the management of
highly hazardous materials and is no longer preferred for large-scale clinical operations [14].
As such, Cui et al. demonstrated a method using positively charged resins for strong anion
exchange chromatography, which was deemed comparable to phenol chloroform extraction
in terms of the quality of the resulting mRNA [14]. Subsequent TFF allows for removal of
smaller impurities while filtering the DNA template into an appropriate solvent for the
subsequent IVT [133].
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3.4. Upstream Process: mRNA Synthesis
3.4.1. Enzymatic Synthesis

mRNA is produced by IVT, a relatively rapid and simple process in which an RNA
polymerase consumes NTPs (nucleotide triphosphates) to catalyse the synthesis of the
mRNA from the corresponding DNA linear template. The required components include
RNA Polymerase, NTPs, Magnesium (MgCl2), and a reaction buffer. Various bacteriophage
polymerases have been used in the field, such as T7, T3, or SP6 RNA polymerases [134].
The T7 RNA polymerase (T7 RNAP) is the most used RNAP in both research and industry,
owing to its ability to produce full-length RNA transcripts (longer than 20 kb) with high
fidelity [134,135].

Despite its high fidelity and tolerance for incorporation of non-natural NTPs [135], T7
RNAP can also generate immunostimulatory by-products such as double-stranded RNA
(dsRNA) which may affect protein expression and render the downstream purification pro-
cess more difficult [136,137]. Double-stranded RNA molecules are innate immune response
activators and should therefore be avoided in therapeutic applications in which immuno-
tolerance to the treatment is important [137–139]. The generation of dsRNA by-products
can be significantly decreased by engineering a mutant T7 RNAP using computational,
structural, mechanistic and laboratory screening approaches. For example, a double-mutant
T7 RNAP (G47A + 884G) successfully reduced dsRNA content while maintaining RNA
yield and purity [136]. Other advances include the development of thermostable RNA poly-
merases, such as Hi-T7 RNA Polymerase M0658 by BioLabs, which has been engineered to
withstand IVT performed at high temperatures, preventing loopback transcription [140].
However, some experts have noted that high temperatures (≥48 ◦C) are difficult to scale up
and may lead to RNA degradation [136]. Lastly, the addition of urea at a concentration of 1
M during IVT was shown to be an effective method to reduce the undesired nucleobase
pairing that causes dsRNA formation [141].

Moreover, magnesium ions are required as a cofactor for the T7 polymerase. Kern et al.
found that below 5 mM of free Mg2+, both the transcription rate and IVT efficiency are
greatly reduced [142]. However, there is a lack of consensus on the ideal conditions for
free Mg2+ concentration. While Sartorius claims that 12–20 mM of MgCl2 per reaction
increases mRNA yield [143], Young et al. claim an ideal range between 50 and 60 mM of free
Mg2+ [144]. Magnesium counter-ions also have an impact on mRNA yield, with both mag-
nesium acetate and magnesium chloride having been successfully used for IVT [118,145].
A study showed that magnesium acetate is preferred over chloride [145], which was
corroborated by Samnuan et al. [146].

The use of modified NTPs such as N1-methylpseudouridine (m1ψ) has been found
to reduce the immunogenicity of synthetic mRNA and to drive high levels of protein
production, which is in part attributed to its ability to blunt TLR3 activation [135]. The
incorporation of other modified nucleotides such as pseudouridine (ψ), 5-methylcytidine
(m5C), N6-methyladenosine (m6A), 5-methyluridine (m5U), or 2-thiouridine (s2U) have
also shown reduced immunostimulatory effect of the delivered RNA and enhanced transla-
tion [135,147–149]. The reduction in immune stimulation and increase in stability of the
mRNA molecule are especially important in the context of mRNA therapeutics and protein
replacement therapies where degradation and lack of translation pose a direct obstacle to
the function of the product.

The addition of spermidine to the reaction mixture at a concentration of 1 to 3 mM
has been shown to enhance transcription while having an inhibitory effect at higher con-
centrations [118]. A design of experiment (DoE) performed by Samnuan et al. found that
spermidine enhances transcription when present at a concentration of 0.2 to 2 mM [146],
further supporting its use.

Mature mRNA requires the 5′ cap structure for mRNA stability and gene expression. A
Cap 1 (m7GpppN1mp) structure is preferred for optimal mRNA stability and expression, as
it is recognized as self by the immune system [150]. Cap 0 (m7GpppNp), on the other hand,
can activate an innate immune response, impairing stability and expression levels [151].
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There are two main methods for capping: (1) post-translational capping, where the tran-
scribed mRNA is capped in an additional step using enzymes, or (2) co-transcriptional
capping, a one-step process where a Cap analog is incorporated in the IVT reaction.

The vaccinia virus capping enzyme (VCE) is commonly used for enzymatic capping
and results in a Cap 0 structure [152]. An additional step using 2′-O-methyltransferase
(2′-O-MTase) modifies Cap 0 into a Cap 1 structure [153], reaching a capping efficiency
of up to 100% [151]. Moderna has successfully employed this capping strategy in their
mRNA-1273 vaccine against SARS-CoV-2 [154]. It is important to note, however, that the
addition of several enzymatic steps, including added purification and buffer exchange
between the steps, can make the process more difficult to streamline and control [151].

The second capping method uses cap analogs co-transcriptionally, thus reducing
production steps. Early iterations of cap analogs had the risk of mRNA elongation in
the reverse direction, reducing translation efficiency [155,156]. To avoid this, the anti-
reverse cap analog (ARCA) emerged; however, it could only be used to generate constructs
with a Cap 0 structure and lower capping efficiency (60–80%) [151,157]. Later, CleanCap
technology revolutionized the field as this cap analog allowed for a co-transcriptional
addition of the naturally occurring Cap 1 structure at 90–99% efficiency [151], which was
successfully implemented in the Pfizer-BioNTech BNT162b2 vaccine against SARS-CoV-2
for emergency use [158]. Cap analogs can lead to a simpler and faster process compared
to enzymatic capping, but the use of patented technology can come at a high cost, which
should be carefully analyzed in comparison to the cost of enzymatic capping [8].

The IVT reaction may be conducted in both batch and fed-batch modes. The fed-batch
mode involves the addition of NTPs and Mg feed during the reaction, as these components
have the highest impact on the rate of the reaction as well as the yield [159]. This approach
was first demonstrated in 1999 by Kern et al. to produce short RNA molecules [160].
Fed-batch IVT has since been employed on larger mRNA molecules to achieve increased
yields [161]. The consumption of NTPs may be monitored using HPLC throughout the
duration of the reaction, and they can be supplemented accordingly [159]. Both exceedingly
low and high NTP concentrations have been shown to be limiting to the production of
RNA, thus supporting the approach to control NTP levels throughout production [146].
This method has previously led to mRNA production with yields of up to 12 g/L [159]
compared to the usual 5 g/L [19], showing the immense potential in process intensification.

3.4.2. Towards Automated Production of mRNA

Although production of mRNA therapeutics in a continuous mode has yet to be imple-
mented, several publications have explored this perspective [8,162–164]. The intensification
of mRNA manufacturing by integrating production and purification in a continuous man-
ner could decrease the hold times and freeze–thaw cycles during the process, potentially
increasing the quality and yield of the final product. This could address the challenge in
obtaining a higher amount of product with low immunogenicity required for the repeated
dosing of mRNA therapeutics. Self-amplifying RNA (saRNA) has been proposed as a
modality to reduce manufacturing burden and costs, as a lower dose is required to reach
the same level of protein expression as conventional mRNA [19]. However, it is important
to note that saRNA can have immunogenic effects [165] that would make it undesirable for
chronically dosed treatments.

Continuous processes require the implementation of controls throughout the produc-
tion to validate the product and to facilitate their automation. Well-defined process models
are vital in the transition to continuous automated production. To this end, Helgers et al.
produced in silico models for the continuous production of mRNA in plug flow and contin-
uously stirred tank reactors and determined a theoretical improvement factor of 56 times
for the space-time yield in comparison to batch production in a continuously stirred tank
reactor [162]. Vetter et al. also suggested that the use of control loops, such as proportional
integral derivative (PID) control, can be key to improving productivity, robustness and
compliance with critical quality attributes (CQA) [163]. Rosa et al. and Ouranidis et al.
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produced digital designs and conceptual designs for the continuous end-to-end manufac-
turing of mRNA therapeutics, establishing the initial frameworks for future experimental
work to build upon these initial approaches [8,164].

3.4.3. Solid-Phase Synthesis

First established in 1963 by Merrifield for the production of peptides [166], the chemical
synthesis method was adapted to the production of short oligonucleotides and advanced
by Beaucage and Caruthers [167,168]. Once scaled up to the industrial scale, this method
allowed for the production of oligonucleotides up to the kilogram scale, and it can be fully
automated [169,170]. The method relies on phosphoramidite chemistry and involves the
cyclical addition of nucleosides in a sequence-specific manner on a solid support [171,172].
However, this method for RNA production is only suitable for short oligomers, with some
claiming its ability to form chains of up to 40 nucleotides and others using this method
extending up to approximately 100–150 nucleotides [153,173,174]. This renders this method
currently unsuitable for mRNA production, but rather, it is appropriate for the production
of siRNA, miRNA and anti-sense oligonucleotide (ASO) molecules as a straightforward
chemical synthesis. It is possible to generate longer RNA molecules through the synthesis
of two separate strands and joining them together through ligation strategies, namely
T4 ligase [175,176], but this has not yet reached the efficiency and productivity that is
established with enzymatic synthesis of mRNA.

3.5. Downstream Process: mRNA Purification

Isolation of complete mRNA transcripts from reagents and reaction by-products
is critical for both product functionality and regulatory considerations. Process-related
impurities include residual reagents (DNA template, enzymes, unincorporated NTPs) and
by-products (immunogenic dsRNA and aborted mRNA products). DNA, RNA (around
300 kDa per kb [177]) and T7 polymerase (99 kDa [14]) are the larger components, while
NTPs and cap analogs are much smaller (less than 1 kDa). The DNA template is typically
larger than the mRNA produced, as the linearized plasmid includes a backbone sequence
that is not transcribed. The purification of mRNA is essential to ensure immunotolerance
and to achieve biologically active and therapeutically administrable mRNA [18].

The removal of the DNA template is typically accomplished via enzymatic digestion
with DNAse I prior to other purification steps [8,178,179], followed by inactivation with
EDTA. However, industry experts have previously indicated that the use of DNAse I may
lead to the small DNA template fragments hybridizing to the final mRNA product [133].
Alternatively, chromatography capture methods have been implemented in some processes
to remove the DNA template without digestion. Oligo-dT purification is of particular
interest due to its ability to bind the polyA tail of the complete mRNA transcripts, without
binding the DNA template, truncated mRNA transcripts, unused nucleotides, and the
enzyme [133,180]. Cui et al. demonstrated that Oligo-dT chromatography purification
may lead to mRNA recoveries of over 90% [14]. However, Oligo-dT purification may
not be sufficient to separate dsRNA from the product and must be followed by polishing
chromatography steps in the cases of high dsRNA content [8]. Several other chromatogra-
phy techniques have been demonstrated for mRNA purification, but they were typically
preceded by a TFF step, while the Oligo-dT method was used directly as a capture step for
a more streamlined process [14].

For therapeutic applications, an emphasis has been placed on the elimination of dsRNA
from the IVT mixture to improve translation efficacy and limit induction of cytokines. Sev-
eral strategies have been described in the literature to ease the burden on purification by
avoiding dsRNA formation throughout the reaction, including the addition of urea or use
of modified T7 RNAP, as discussed in the mRNA synthesis section. The gold standard
purification method for the removal of dsRNA is high-performance liquid chromatography
(HPLC) using an alkylated non-porous polystyrene-divinylbenzene copolymer matrix [181].
A simple method using cellulose has proven successful to selectively remove dsRNA at
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the small scale [182]. Other methods, such as hydroxyapatite chromatography, core bead
chromatography, and anion exchange chromatography, have been explored to improve
the scalability of the platform [14]. For example, GSK has previously detailed an RNA
purification method using DNAse, TFF, and CaptoCore resins, a core bead chromatography
resin [183]. These purification methods may be product dependent; however, it has pre-
viously been demonstrated that mRNA recovery using core bead chromatography varies
based on the length of the sequence [14].

In summary, multiple scalable chromatography methods have been explored for
mRNA purification, with further efforts being made to streamline the process while main-
taining a high quality of the product. For large-scale mRNA manufacturing, methods
which require heating the mRNA sample or using organic solvents should preferably be
avoided [14]. It is crucial that the chosen process ensures low levels of immunostimulatory
by-products for chronically dosed therapeutic approaches [151].

3.6. Downstream Process: mRNA Delivery

The delivery of naked mRNA into in vivo models was first performed in 1990 by
Wolff et al., demonstrating the feasibility of the technique [1]. Though the delivery of
naked RNA has since been conducted in animal models and in clinical trials, these RNAs
are unstable and can be easily degraded by ribonuclease enzymes during administra-
tion [184–186]. Thompson et al. found that higher concentrations of RNA are required to
overcome the degradation and clearance of naked RNA in plasma, with over 90% of the
RNA being cleared within 30 min of administration [187]. In addition, the size, negative
charge, and hydrophilicity of messenger RNA molecules hinder their diffusion across the
cell membrane [188]. Phua et al. evaluated the transfection efficiency of naked mRNA
through several modes of administration and observed rapidly decreasing expression of
the naked mRNA when delivered intravenously or intranasally [184]. This instability has
previously been presented as an advantage for the safety profile of these therapeutics, but it
nonetheless presents a challenge in their transfection efficiency and their long-term storage.
To prevent degradation and facilitate cellular entry for cell and gene therapy applications,
mRNA therapeutic delivery systems have been developed. Lipid-based and polymeric
delivery of mRNA allowed this technology a successful entrance to the clinical space, with
lipid nanoparticles (LNPs) being the most prevalent.

Lipid-based delivery particles have also received a considerable amount of attention in
the clinical space, with liposomes being the first FDA approved lipid-based nanocarriers in
1990 [189]. Further progress was achieved when another class of lipid-based nanocarriers,
lipid nanoparticles (LNPs), were efficient in RNA delivery in non-human primates [190,191].
Finally, the success of these carriers was exemplified during the SARS-CoV-2 pandemic,
with both the BioNTech and Moderna vaccines utilizing LNP technology for the delivery of
mRNA vaccines [5]. Furthermore, the expansion of lipid libraries and lipid-like compounds
over the past two decades has allowed for the identification of novel lipid nanocarrier
compositions for RNA delivery [192].

Liposomes are composed of a singular lipid bilayer with an aqueous core, whereas the
lipid nanoparticle contains several lipid layers and microdomains of lipids and the oligonu-
cleotide [193]. Liposomes for nucleic acid delivery range between 20 and 1000 nanometers
(nm) in size and are generally composed of a cationic lipid along with stabilizers such as
cholesterol [188]. In 1987, the formation of cationic liposomes for nucleic acid delivery was
first demonstrated [194]. Despite their success in vitro, permanently charged liposomes
were unsuccessful in the clinical space due to toxicity, and neutral lipids were inefficient
at encapsulating nucleic acids [195]. The emergence of the ionizable cationic lipid, which
acquires a positive charge according to the surrounding pH, surmounted this issue and led
to the creation of ionizable LNPs [196].

LNPs first entered the therapeutic space with the approval of Onpattro, an siRNA drug
product, in 2018 [2]. The vectors are primarily composed of an ionizable cationic lipid, and
are supplemented by helper lipids, polyethylene glycol (PEG)-lipids and cholesterol [197].
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Ionizable cationic lipids acquire a positive charge according to the surrounding pH, and
thus promote interaction and complex formation with the mRNA [195]. For immunothera-
peutic applications, studies have demonstrated that the ionizable lipid chosen should have
a pKa value between 6.6 and 6.9 in order to elicit an appropriate immune response [198].
The helper lipids, which are commonly phospholipids, and cholesterol serve to stabilize
the nanoparticle and aid in the endosomal escape of the mRNA [199]. PEG-lipids reduce
aggregation of the LNPs and prolong the circulation time of the particles once adminis-
tered. The molar ratio at which the lipid components are mixed is not uniform across
mRNA therapeutic products and may impact the biological activity of the drug product.
Roces et al. demonstrated that altering the lipid molar ratios impacts both size and zeta
potential of the LNPs [200]. These characteristics of the LNP impact the biodistribution and
immunogenicity of the drug product and should therefore be optimized according to the
application. Studies evaluating lipid-based systems administered through subcutaneous
and intramuscular injection have shown clear effects of the size on their uptake [201,202].
A study originating from Moderna demonstrated that LNP sizes between 60 and 150 nm
were found to produce strong immune responses in non-human primates [201]. Thus,
immunotherapeutic mRNA LNP products are likely to be produced within this range [201].

As previously established, administration of LNPs through intravenous and intra-
muscular methods leads to non-specific accumulation of the particles in the liver [203].
Consequently, this accumulation may lead to side effects of the vaccine including hepatic
inflammation and hepatic necrosis [204], and could limit access for patients with preex-
isting inflammatory conditions [205]. The ability to redirect mRNA LNP therapeutics to
their target tissue is therefore critical in order to reduce off-target effects [206]. Further
work to improve the distribution of LNPs to target-specific tissues is ongoing [207]. Most
prominently, selective organ targeting (SORT) nanoparticles, developed by Cheng et al.,
demonstrated that supplementing currently established LNP compositions with specified
percentages of charged molecules can alter tissue tropism [208]. Furthermore, the spleen
has been shown to be effectively targeted through the use of mRNA coated lipoplexes by
adjusting the charge ratio (lipid to RNA) to 1.3:2 [209]. Coating strategies for mRNA LNPs
have also been explored [210], including new avenues being PEG coatings for redirection
of other nanoparticles from the liver to the target tissue [211,212]. These technologies
may reduce dose requirements for mRNA therapeutics intended for expression in specific
tissues due to their ability to direct the LNPs rather than their non-specific biodistribution.

3.6.1. Microfluidic Manufacturing of mRNA-LNPs

The lipid concentration, the mRNA concentration, the lipid to mRNA ratio as well as
the encapsulation technique impact the particle size, polydispersity, surface charge and
RNA encapsulation efficiency, all of which are critical quality attributes of the product and
impact the activity of the product [213]. As such, the encapsulation protocol should be
carefully optimized to meet these standards.

mRNA LNPs are most commonly formulated using T-junction mixing and microflu-
idic mixing, with work ongoing to improve the scalability of these processes for clinical
applications. At a laboratory scale, sonication and bulk mixing have been used, but they
present limitations in reproducibility and scalability [214]. Benchtop instruments such
as Precision Nanosystems Spark and Ignite systems have been adopted for mRNA LNP
formation, both in laboratories and in the industry. There are, however, a number of
publications which have designed custom microfluidic devices for this formulation step.

Table 2 summarizes microfluidic mixers which have been used for the encapsulation
of RNA into lipid-based delivery systems. Optimization of the flow rates and flow rate
ratios (FRR) for each of the devices are uniquely tailored to the device and have not been
generalized across microfluidic designs. However, overall trends concerning the operating
parameter have been observed in several publications. For example, Roces et al. confirmed
that an increase in overall flow rate results in a decrease in size as well as increases in the
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FRR [200]. These results were corroborated by Gkionis et al. using a different microfluidic
system [215].

Table 2. Microfluidic Designs in Literature for Encapsulation of RNA into Lipid-Based Delivery
systems. Q total refers to the total flow rate.

Microfluidic Architecture Channel Width Flow Rate Operation References

Ring Micromixer (Precision Nanosystems) 150–280 µm channel widths Q total = 0.4 mL/min–20 mL/min [216]

Staggered Herringbone Mixers 150 µm channel width Q total = 0.024 mL/min–2.4 mL/min [217]

Y junction entry with baffle mixer (iLiNP) 200 µm channel width Q total = 0.05–0.5 mL/min [218]

Staggered herringbone mixer with Y
junction entry 200 µm channel width Q total = 1 mL/min–5 mL/min [219]

Staggered Herringbone mixer 200 µm channel width Q total = 0.4 mL/min–1 mL/min [220]

Staggered Herringbone mixer with Y
junction entry 200 µm channel width Q total = 0.02 to 4 mL/min [221]

Baffle Mixer with Y junction entry 200 µm channel width Q total = 0.05 mL/min [222]

Hydrodynamic flow focusing 150 µm channel width Q total = 0.20006–0.8001 mL/min [215]

Spiral Mixing 300 µm channel width Q total = 0.00666 mL/min [223]

3.6.2. mRNA-LNP Formulation

Thermostability and physical stability of mRNA-LNPs remains a challenge in the
translation of mRNA therapeutics to the market. In non-urgent applications, as in the
case of therapeutic use rather than the case of pandemic use, the product may require
long-term storage prior to its use. Furthermore, to improve treatment accessibility and
transport, refrigerated or room temperature storage are preferable. Both lyophilized and
liquid formulations have been considered for the improvement of mRNA-LNP storage. It
has been demonstrated that the choice of buffer and cryopreservatives impact the stability
of the LNPs both in liquid and solid formulations. Henderson et al. found that, for example,
the Hepes buffer better maintains the morphology of the LNPs after freeze–thaw compared
to Tris and PBS [224]. Furthermore, their study found that LNPs stored in Tris buffer lead to
improved expression of the delivered gene compared to those stored in PBS and Hepes [224].
Zhao et al. evaluated cryopreservatives in the long-term storage of lipid-like nanoparticles
under aqueous, freezing and lyophilized conditions [225]. Their results suggested that,
when stored at 4 ◦C, the particles lose the majority of their delivery efficiency within
5 months of storage. Additionally, they found that sucrose and trehalose outperformed
mannitol maintaining the delivery efficiency when freezing in liquid nitrogen [225]. Similar
results were obtained concerning the efficacy of both sucrose and trehalose at preserving
LNPs throughout freezing for LNPs encapsulating siRNA [226]. Similarly, Kim et al. found
that LNPs stored in 10% w/v sucrose in PBS did not lose potency after 1 month of storage.
Despite most of the current publications presenting data in support of freezing of mRNA-
LNPs rather than aqueous conditions, Zhang et al. previously presented a thermostable
aqueous vaccine which remains stable for 7 days at 4 ◦C and 25 ◦C [227].

Furthermore, formulations undoubtedly vary based on the target application and
administration method as well. For example, for lung delivery through inhalation, the
formulation requires nebulization. This process can easily destabilize the mRNA-LNPs,
impacting size, encapsulation efficiency and subsequent mRNA expression. While the
lipid composition of the LNPs impacts their stability throughout the aerosolization pro-
cess [228], formulation excipients can also be used to decrease changes in these critical
quality attributes throughout the process. A patent from Moderna, for example, has previ-
ously described mRNA-LNP formulation variations appropriate for nebulization which
include the addition of P188 and sucrose to a Tris buffer [54]. Their formulations were also
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able to maintain both size and encapsulation efficiency over the course of 19 freeze–thaw
cycles [54].

Several studies involving the lyophilization of mRNA-LNPs have also been completed
since the evolution of the lipid nanoparticle [229–231]. Lyophilization promises the ability
to store mRNA-LNP formulations at room temperature without the effects of hydrolysis,
as is the case of aqueous formulations [229]. Lamoot et al. found that the addition of
20% sucrose (w/v) in a Tris-based buffer allowed for successful lyophilization without
major impacts on LNP size, zeta potential or in vitro expression of the encoded gene [229].
Additionally, Muramatsu et al. found that lyophilization of mRNA LNPs in the presence
of sucrose (10% w/v) and maltose (10% w/v) provided long-term stability (for at least
12 weeks) of the formulation both at room temperature and at 4 ◦C [229]. These results
emphasize the need for the evaluation of cryoprotectants and lypoprotectants throughout
the manufacturing process of lipid-based mRNA therapeutics.

4. Conclusions and Future Perspectives

The revolution of mRNA technology in vaccination highlighted the potential of mRNA
therapeutic development, with over 80 ongoing clinical trials and immense interest from
companies. The diverse scope of applications for this powerful tool continue to expand,
ranging from gene editing to cancer immunotherapy and protein replacement therapy.
Additionally, the technology continues to be further refined as new techniques are studied
for tissue-targeting with the idea of tailored UTRs [86] and tissue-specific miRNA control
systems [232] for selective mRNA translation, as well as development of nanoparticles
for targeted delivery [208]. Innovations are also underway in administration methods,
with the convenience of the inhalation route and the specificity of intratumoral injections
incentivizing further studies.

However, challenges remain when it comes to manufacturing and commercializing this
novel class of therapeutics. The regulatory framework for a drug modality with such diverse
applications remains unclear, and further streamlining of the approval process could speed
up commercialization of new mRNA products [17]. Classification of RNA-based therapies
as gene therapies in the literature is unclear due to the fact that RNA therapeutics do not
necessarily lead to modification of the patients’ genetic material [3]. While some literature
does not distinguish between RNA therapy and gene therapy [103,233–235], others strictly
refer to gene silencing and gene delivery via RNA molecules as RNA therapeutics [236]. It
is therefore clear that as the number of applications and trials for mRNA-based therapeutics
grows, harmonization of these definitions is required across regulatory agencies to establish
the necessary requirements and controls for the manufacturing of these products, allowing
for a more streamlined roll-out of new mRNA therapeutic products. Manufacturers have to
closely monitor how such regulatory requirements and definitions evolve to ensure more
effective development and data generation for their product.

Moreover, therapeutics have different dose requirements when compared to vaccines,
and thus pose different manufacturing scale requirements. The scale can be as small
as hospital-based production for personalized medicine [29], and as extensive as large-
scale production for a supply of milligram doses administered multiple times a month.
A greater focus on process intensification, especially automated and tightly controlled
continuous manufacturing, can lead to higher yields and improved product quality, as
well as reducing the dependence on the bottleneck of costly GMP-grade reagents. It is also
important to emphasize formulation suitable for long-term storage of mRNA, with further
studies of both solid and liquid formulations, as therapeutic drugs are not distributed and
administered with the same urgency as vaccines during a pandemic.

Additionally, immunotolerance is a crucial characteristic for many chronically dosed
treatments [4]; thus, it is essential to tightly control the levels of immunostimulatory
by-products like dsRNA by avoiding its formation [136,140,141] or removing it with an
adequate purification pipeline [14,182]. Further progress in synthetic approaches to produc-
ing DNA template and long RNA molecules could alleviate the burden on purification and



Biomolecules 2023, 13, 1497 18 of 27

revolutionize the mRNA manufacturing landscape. Overall, as production methods be-
come more well-established and suitable for all these purposes, standardization of mRNA
manufacturing in the industry can facilitate regulatory approval and enable consistent
product yield and quality.
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