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Abstract: Cells in the body are exposed to dynamic external and internal environments, many of
which cause cell damage. The cell’s response to this damage, broadly called the stress response, is
meant to promote survival and repair or remove damage. However, not all damage can be repaired,
and sometimes, even worse, the stress response can overtax the system itself, further aggravating
homeostasis and leading to its loss. Aging phenotypes are considered a manifestation of accumulated
cellular damage and defective repair. This is particularly apparent in the primary cell type of the
articular joint, the articular chondrocytes. Articular chondrocytes are constantly facing the challenge
of stressors, including mechanical overloading, oxidation, DNA damage, proteostatic stress, and
metabolic imbalance. The consequence of the accumulation of stress on articular chondrocytes is
aberrant mitogenesis and differentiation, defective extracellular matrix production and turnover,
cellular senescence, and cell death. The most severe form of stress-induced chondrocyte dysfunction
in the joints is osteoarthritis (OA). Here, we summarize studies on the cellular effects of stressors on
articular chondrocytes and demonstrate that the molecular effectors of the stress pathways connect to
amplify articular joint dysfunction and OA development.

Keywords: mechanical overloading; oxidative stress; DNA damage; proteostatic stress; metabolic
stress; inflammation; chondrocyte; signaling pathway

1. Introduction

Osteoarthritis (OA) is characterized by the degradation of joint cartilage tissue, chronic
local inflammation, and bone remodeling, which result in joint pain, stiffness, swelling, and
restricted motion [1,2], with an increased prevalence of over 110% in the last 30 years [3].
OA is highly associated with age, metabolic condition, genetic predisposition, and a history
of joint injury or overuse [1]. OA is currently incurable, and standard treatments are
pain control or joint replacement [4]. The difficulty in OA treatment reflects the unique
properties of the joint tissues, particularly the articular cartilage, which is composed of
articular chondrocytes (ACs) and lacks blood and lymphatic vessels [5]. ACs produce
and remodel the extracellular matrix (ECM) to maintain a smooth and elastic gliding
surface to facilitate movement of and resistance to shocks to the joints [5]. Except for
those ACs with progenitor-like properties located in the superficial layer of the articular
cartilage, the majority of ACs are long-lived postmitotic cells that are rarely replaced [6].
Over time, ACs accumulate stress-related damage, mostly resulting from mechanical
overloading [7], oxidative stress [8], DNA damage, proteostatic stress, and metabolic
imbalance. These stressors trigger AC homeostatic defects, including abnormal chondrocyte
differentiation [9], senescence and apoptosis [8], a decline in ECM production [10] and an
increase in ECM degradation and widespread inflammation [11], leading to OA. Taken
together with the associated risk factors, stress acts as a major mediator between these
factors and OA pathogenesis (Figure 1).
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Figure 1. Stress is a major mediator between associated OA risk factors and pathogenesis. The
OA-associated risk factors can serve as the initiator of stress or can promote the accumulation of
stress-induced cellular damage or aggravate the vulnerability of joint tissues to these damages.

The long-lived ACs becoming senescent following the accumulation of cellular damage
from stressors is supposed to promote AC survival by activating anti-apoptotic pathways,
despite severely compromised functionality. Yet stressed ACs also produce the senescence-
associated secretory phenotype (SASP), which consists of inflammatory and catabolic
factors, such as tissue degrading enzymes [12], de facto functioning as the “contagious”
root source of inflammation and tissue degradation in OA [13]. SASP produced from
senescent ACs triggers a cascade of pathogenic events that lead to OA [14], supported
by augmented senescence observed in cartilage in post-traumatic OA [15]. Overall, the
presence of senescent ACs can act as a key component of a vicious loop of OA-related
stressors: they can be both the source of new stressors and the products of others.

A key to preventing OA is to harness what we know from decades of work detail-
ing how stressors damage ACs and lead to OA pathogenesis to reduce those molecular
mediators of stress in aging joints. In this review, we summarize and integrate ways in
which the five primary stressors connect molecularly to give rise to the profound changes
to ACs in OA pathogenesis. While generating this schema has allowed us to evaluate a
wide breadth of the field, we had to sacrifice detailed coverage to do so. Several excellent
reviews exist that cover OA and individual stressors in general, and the reader is directed
to them [2,15–18].

2. Primary Stressors in OA Pathogenesis
2.1. Mechanical Overloading

Normally, mechanical loading is necessary for joint health: by promoting cartilage
thickness and ECM content, and by accelerating the exchange of fluid between the cartilage
matrix and synovial cavity to supply the avascular articular cartilage with nutrients [19].
Cyclic loading also increases aggrecan biosynthesis in highly damaged and inflamed lesions,
which can aid in repair [20]. In addition, proper level of mechanical loading is a source of
anti-inflammatory processes [21,22]. However, excessive or cumulative mechanical stress, as a
result of aging, joint injury, repetitive joint loading, joint misalignment, and obesity, damages
joint tissues, in particular articular cartilage. In fact, introducing excessive mechanical stress
to the joints is the main way to generate post-traumatic OA mouse models [23].
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Chondrocytes sense mechanical loading through mechanosensing channels, cilia, in-
tegrins, and other elements of the focal adhesion complex, all of which convert loading
information into the cell via intracellular signaling pathways. The TRPV4 Ca2+ preferred
ion channel is a mechanosensitive channel present in ACs which increases the expression
of ECM proteases under mechanical loading [24]. Chondrocyte-specific loss of TRPV4
alleviates the age-related OA phenotype in mice, suggesting that TRPV4-mediated mechan-
otransduction pathway can be a possible therapeutic target to treat aging-associated OA [25].
The mechanosensitive Ca2+ channels PIEZO1 and PIEZO2 are robustly expressed in ACs,
and they potentiate the mechanically induced Ca2+ signals. A PIEZO-blocking peptide
reduces chondrocyte apoptosis after mechanical injury in an explanted cartilage model,
suggesting that PIEZO-mediated cartilage mechanotransduction may be a factor in OA
pathogenesis and attenuating its activity may be a potential therapy for post-traumatic
OA [26]. Increased intracellular Ca2+ concentration as a result of mechanical loading can
trigger mitochondrial reactive oxygen species (ROS) production and cartilage degenera-
tion [27]. Mechanical loading can also deform the cytoskeleton and cause damage to the
mitochondria, leading to strain-mediated ROS release [27,28]. In a mouse model of OA,
mechanical overloading reduces AC expression of superoxide dismutase 2 (SOD2), an
enzyme that clears mitochondrial ROS; this exacerbates excessive mitochondrial superox-
ide formation and promotes AC apoptosis [29]. AC stressors do not act in isolation, and
as is already apparent, mechanical overloading acts directly to increase oxidative stress.
Oxidative stress in OA will be further elaborated below.

Another arm of mechanical overloading that initiates OA development is the stim-
ulation of defective joint repair, which requires the removal of damaged cartilage. This
usually involves the interplay of integrins, kinase activations, augmented inflammatory
factors, and cartilage catabolic enzymes. For example, mechanical overloading of chondro-
cytes activates integrin (αVβ3 and αVβ5)-mediated FAK and MAPK pathways to induce
expression of tumor necrosis factor-α (TNFα), IL-1β, or NF-κB which results in MMP
expression and ECM degradation [30]. In another example, mechanical loading leads to
TNFα activation of NF-κB, MAPK, and c-Jun pathways and increases cartilage degrading
MMP13 and ADAMT4/5 expression [31], ultimately inducing AC apoptosis [32]. Mechan-
ical overloading-induced IL-1β further upregulates the expression of cartilage catabolic
enzymes via MAPK pathways, amplifying inflammation by producing proinflammatory
factors including COX-2, iNOS, PGE-2, and IL-6 [32].

During injury or overloading-induced cartilage remodeling, previously ECM-sequestered
growth factors, such as TGFβ and FGF, are released [33]. TGFβ signaling acts as a double-
edged sword in OA development. On the one hand, TGFβ blocks chondrocyte apoptosis
and prevents cartilage degradation by promoting the production of cartilage matrix and
lubricant while suppressing the expression of cartilage degrading enzymes [34–37]. TGFβ-
SMAD2/3 signaling in ACs also has a protective role in AC degeneration and apoptosis
following mechanical loading [38]. On the other hand, excessive mechanical load increases
TGFβ activation in subchondral bone area, leading to marrow osteoid islet formation and
enhanced angiogenesis, thus accelerating osteophyte formation and OA progression [39].
It was further determined that within subchondral bone, there is an uneven distribution
of TGFβ. In areas of high mechanical loading, TGFβ expression is higher, but in areas of
low mechanical stress, TGFβ expression is even lower than that in healthy tissue; both of
these extremes are detrimental [40]. FGF2 expression appears to be beneficial in the joint, as
FGF2 inhibits IL-1-induced aggrecanase production, thus alleviating OA progression [41].

Mechanical loading also alters the sensitivity of cartilage tissues to other signaling
pathways. For example, tensile strain increases β-catenin levels and sensitizes WNT3A
signaling-activated expression of cartilage catabolic proteases [42]. Moreover, chondrocytes
under hydraulic pressure alter their expression of miR223, which promotes NF-κB signaling
by suppressing the level of an NF-κB signaling inhibitor, IKKα [43]. As a downstream
effector of many inflammatory cytokines, NF-κB signaling stimulates the expression of
inflammatory factors as well as cartilage-degrading enzymes [44]. In addition, exces-
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sive mechanical loading was determined to activate the expression of Gremlin-1, which
stimulates NF-κB signaling and promotes inflammation and oxidative stress in joints [45].

2.2. Oxidative Stress

The oxidative pathway is activated by mechanical strain, but it also integrates the
input from several other stressors. ROS are highly reactive free radicals containing oxygen
molecules. ROS are a lethal weapon of phagocytic cells to attack and kill invaded pathogens
and cancer cells. However, they also oxidize and damage proteins, DNA, and lipids [46].
Cells have an antioxidant system to scavenge ROS, primarily comprised of enzymes such
as SOD and catalase, and small molecules, such as glutathione (GSH) and vitamin C [47,48].
Reduced expression of SIRT4, a deacetylase, was detected in OA cartilage; it leads to
a decrease in SOD1, SOD2, and CAT expression, building up a more severe oxidative
environment [49]. ROS production and oxidative stress are elevated in patients with OA,
while OA cartilage has reduced expression of antioxidant enzymes. Together, these lead to
an oxidative environment in OA tissue [50]. A major source of ROS is the mitochondrial
electron transport chains, out of which 2–3% of O2 turns into O2

−. O2
− is also generated

by NADPH oxidase, which is expressed in chondrocytes and also contributes to the OA-
promoting oxidative environment that advances OA progression [51–53]. Finally, nitric
oxide synthase (NOS) catalyzes the reaction that converts arginine into citrulline which
produces the free radical, NO− [54]. Inducible NOS (iNOS) is upregulated in ACs by shear
stress and proinflammatory factors, including IL-1β, NF-κB, and AP-1 [55]. iNOS loss in
ACs prevents OA progression in mouse models, demonstrating that ROS production is a
key factor in OA pathogenesis [56,57].

One major cellular consequence of oxidative stress is AC apoptosis. Given that ACs are
the main cells responsible for cartilage matrix renewal and remodeling and that they are rarely
replenished, their death fundamentally undermines the joint. NO is excessively produced
from articular cartilage explants undergoing mechanical stress and is a potent inducer of
chondrocyte apoptosis [58–60]. As a primary donor of ROS, mitochondria are also a victim
of ROS and play a key role in oxidative stress-induced OA pathogenesis. ROS, if not cleared
in time, can interrupt mitochondrial respiratory chain, reduce ATP production, and mutate
mitochondrial DNA (mtDNA) [61–63]. H2O2 production and hyperoxidation of peroxiredoxin
suppresses normal redox signaling, leading to an accumulation of H2O2 and disruption of
physiological signaling. OA severity can be reduced in mice with increased expression of the
antioxidant mitochondrial catalase [64]. While there is no significant change in expression of
peroxiredoxin antioxidants in human ACs from older patients, the ACs are still more prone to
hyperoxidation in comparison to ACs from younger patient tissue [65].

A recent study identified that oxidative stress-induced mitochondrial damage pro-
motes mitochondrial double-strand RNA (mt-dsRNA) efflux. Chondrocytes exposed to
H2O2, doxorubicin, or acute ionizing radiation (IR) induce cell senescence and elevate
the cytosolic level of mt-dsRNAs. This further upregulates the expression of senescence-
associated secretory phenotype (SASP), interferon β (IFN-β) and IFN-stimulated genes
(ISGs), leading to inflammation through the activation of protein kinase R (PKR) and
Toll-like receptor 3 (TLR3) pathways [66]. In addition, elevated levels of mt-dsRNA were
detected in the synovial fluid of OA patients and cartilage of post-traumatic OA mice. In
addition, removal of mt-dsRNA protects chondrocytes from those stresses, representing a
promising strategy to treat OA [66].

Cartilage matrix synthesis is also severely affected in oxidative stress-induced OA
progression. Endogenously produced ROS suppresses proteoglycan production in hu-
man articular cartilage [64]. In addition, introduction of oxidative stress in healthy donor
ankle cartilage steers the normally pro-matrix-synthesis IGF1-PI3K/AKT pathway to-
ward an anti-matrix-breakdown IGF1-MEK/ERK pathway [67]. Higher basal level of the
IGF1-MEK/ERK pathway is also observed in human OA chondrocytes [67]. Moreover, in-
flammatory cytokines, such as IL-1, elevate the level of radicals [68], which further block the
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synthesis of proteoglycan, collagen type II, and aggrecan, as well as suppress chondrocyte
progenitor migration to and proliferation at the injured foci [69].

2.3. DNA Damage

DNA double-strand breaks and G/T or G/A transversions occur as a result of free
radical oxidization of nucleoside bases [70], irradiation, genotoxins, and/or proinflammatory
cytokines, leading to apoptosis and cellular senescence [71,72]. DNA damage increases linearly
with age in human chondrocytes [73]. Furthermore, age-matched OA tissue has higher levels
of DNA damage in comparison to healthy controls [73]. Elevated oxidative DNA damage
in cartilage is positively correlated with OA symptom severity in a porcine OA model [74],
and human cartilage explants irradiated to induce double-strand breaks and stimulated with
exogenous mitogens, TGFβ and FGF [75], had accelerated chondrocyte senescence.

Another study reported that the inflammatory factors, IL-1β and TNFα, increase
free radicals in human chondrocytes, resulting in mitochondrial DNA (mtDNA) damage,
impaired ATP production, and apoptosis [76]. In an additional study using porcine articular
cartilage, mtDNA changes were more severe in the OA-associated chondrocytes than in
healthy ACs, indicating that the OA-associated ACs are more sensitive to inflammatory
signals in producing free radical production [77].

Disruption of metabolic pathways, such as the selenium pathway, by depleting se-
lenophosphate synthetase 1 (SEPHS1) increases ROS levels and leads to DNA damage [78].
The Sephs1-deficient cells have reduced expression of those stress-related selenoproteins
that act as oxidoreductases (including glutathione peroxidase 1 (GPX1) and methionine
sulfoxide reductase B1 (MSRB1)) [79]. These deficient cells have stronger staining for
γ-H2A.X (a marker of DNA damage) and higher expression of cartilage-degrading pro-
teases ADAMTS5 and MMP13. In addition, SEPHS1 expression is decreased in human OA
transcriptomes. These overall suggest that the selenium metabolic pathway is crucial for
maintaining the health of ACs by decreasing ROS, and its loss/deficiency contributes to
the progression of OA pathogenesis [79].

Expression of genes involved in DNA damage repair is changed in OA tissue. For
example, the excision repair cross-complementation group 1 (ERCC1), an endonuclease
required for DNA damage repair, is reduced in OA cartilage [80]. ERCC1 loss increases
Mmp13 and suppresses Col2 expression, leading to degradation of ECM, while also pro-
moting chondrocyte apoptosis and senescence [80]. In addition, the expression of cyclic
GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING), a component of the
innate immune pathway that senses cytosolic DNA fragments derived from DNA damage,
is markedly increased in OA tissues or IL-1β treated chondrocytes [81]. Gain of STING
function suppresses ECM production, increases the expression of cartilage-degrading en-
zymes, promotes NF-κB signaling, and leads to chondrocyte apoptosis and senescence.
Another recent work reported that irradiation-induced DNA damage stress synergizes
with mitogenic stimuli by TGFβ and basic FGF to accelerate chondrocyte senescence in
horse and human cartilage explants [75].

DNA damage impacts the expression of nuclear receptors in OA tissue. Estro-
gen receptor-α (ERα) decreases in human and mouse chondrocytes under Doxorubicin
treatment-induced DNA damage [82]. In human OA tissues, the severely damaged re-
gions have increased DNA damage in chondrocytes coupled with decreased ERα expres-
sion. Overexpression of ERα partially rescues the senescent phenotype of Doxorubicin-
pretreated human ACs via suppressing NF-κB pathway [82]. This suggests that an estrogen-
independent mechanism that regulates ERα is needed to maintain AC homeostasis [82,83].

2.4. Proteostatic Stress

Proteostasis is the homeostatic state of a functional proteome. It is maintained by
the proteostatic network that integrates protein synthesis, folding, trafficking and degra-
dation in various cellular compartments [84]. Chondrocytes, as dedicated secretory cells,
have robust protein synthesis activity and large endoplasmic reticula (ERs), so they are
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particularly vulnerable to proteostatic stress [16]. ER stress, a main type of proteostatic
stress, occurs when the capacity for nascent protein folding in the ER becomes impaired.
This is usually caused by protein overexpression, expression of misfolding-prone mutant
proteins and dysregulated protein trafficking and degradation [16,85]. To handle ER stress,
eukaryotic cells have evolved a conserved unfolded protein response (UPR), which re-
lies on three unfolding protein sensing pathways: (1) IRE1/XBP1 pro-survival pathway;
(2) ATF4 protective pathway; and (3) the PERK/ATF6/CHOP pro-apoptosis pathway. IRE1
is a transmembrane protein with both kinase and RNase activity. It can sense protein
misfolding in the ER to become activated, then generates an XBP1 splicing variant, that
encodes a stable form of the transcription factor XBP1 to promote the expression of UPR
target genes. ER stress triggers ATF6 translocation from the ER to the Golgi apparatus,
where ATF6 is cleaved and activated by S1P/S2P proteases. Cleaved ATF4 also enters
the nucleus to activate UPR gene transcription. PERK, a serine/threonine ER protein
kinase, phosphorylates and activates eIF2a to promote ATF4 mRNA translation. ATF4
induces the expression of a pro-apoptotic transcription factor, CHOP, leading to apoptosis
of damaged cells [86].

Chondrocytes are sensitive to ER stress [87], and evidence of ER stress is present
in human OA chondrocytes [87,88]. ER stress reduces transcription of cartilage matrix
genes and promotes rat chondrocyte apoptosis [89]. Moreover, ER stress increases cartilage
degradation via the expression of MMP13 in human chondrocytes [90], and reduces the
XBP1-dependent protective UPR while enhancing the CHOP-dependent pro-apoptotic
UPR, thus causing chondrocyte death [91].

The guiding of nascent protein folding or the degradation of misfolded proteins by
chaperones is essential for minimizing protein aggregation and maintaining proteosta-
sis. If the production or function of the molecular chaperones is impaired, accumulating
misfolded proteins cause ER stress and induce UPR [84]. It has been observed that the ex-
pression of molecular chaperones, such as HSPA5 and BIP, is reduced in aging cynomolgus
monkey articular cartilage, which sensitizes chondrocytes to ER stress, and ultimately leads
to cell death [92]. In addition, siRNA knockdown of the chaperone, calnexin, in human
chondrocytes increases the ER stress markers P-IRE1αm, XBP1, ATF4, and CHOP [92].

ER stress can also be induced by metabolic stress. For example, OA chondrocytes from
diabetic OA patient cartilage and cultured in the presence of long-term high glucose diet
express higher levels of the ER stress makers, GADD34, GRP78, and MANF, but suppress
Col2 expression and cell proliferation [93]. In addition, mice fed with high-fat diet develop
OA-like lesions exhibiting chondrocyte apoptosis. Treatment with 4-phenyl butyric acid, a
chemical chaperone known to ease ER stress, alleviates the OA phenotypes in the high-fat-
diet-fed mice [94]. These studies demonstrate that ER stress contributes to high-fat diet or
obesity-induced OA, which can be targeted for OA therapeutics.

2.5. Metabolic Stress

Metabolites are the source of energy and the building blocks of biomaterials for tissue
homeostasis and renewal. However, chronic metabolite imbalance, or improper function in
processing or using these metabolites, can bring forth stress to cells and ultimately lead
to disease. High dietary fat consumption [95] and type 2 diabetes [95] can both accelerate
the progression of knee OA. A meta-analysis integrating multiple studies showed that
the risk for knee OA is increased by metabolic syndromes (MetS), defined as the presence
of any three of the following components: abdominal obesity, hypertriglyceridemia, low
high-density lipoprotein cholesterol; high blood pressure, and high fasting glucose [96].
These metabolic conditions accompany or induce systemic elevation of ROS and proinflam-
matory cytokines in OA [97]. A connection between high-fat diet, inflammation, and OA
development has been established [98].

A number of nuclear receptors that regulate lipid metabolism contribute to OA pro-
gression by altering the production of cartilage ECM, cartilage degrading enzymes, antiox-
idants, and oxidative stress inducers [99]. In the case of high-fat diet, palmitate induces
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IL-1β-stimulated chondrocyte apoptosis [100]. Palmitate also upregulates COX2 and IL6
expression via TLR4 signaling and causes cartilage breakdown [100]. In addition, exces-
sive free fatty acids released from lipid droplets can accumulate and induce apoptosis or
metabolic disruption in ACs, defined as lipotoxicity [101]. Lipotoxicity and the pathological
phenotypes of OA chondrocytes can be restrained by the protein kinase casein kinase
2 (PKCK2)-six-transmembrane protein of prostate 2 (STAMP2) and fat-specific protein
27 (FSP27) axis, which sequesters free fatty acids [101]. In contrast, a scarcity of lipids
determines the chondrogenic fate of skeletal progenitors by activating the forkhead box
O (FOXO) transcription factor, which activates SOX9 gene expression [102]. Besides its
well-established function in initiating chondrogenesis, SOX9, in turn, suppresses oxidation
of fatty acids, allowing chondrocytes to sustain an avascular microenvironment with low
lipid supply [102].

Aberrant carbohydrate metabolism, which can be a result of alterations in dietary input,
transport, and receptor usage, is also associated with pathological changes in chondrocytes.
High-sucrose diet can recapitulate characteristics of early-stage OA, including chondrocyte
hypertrophy and higher synovial cellularity independent of weight [103]. The high-sucrose
diet also decreases antioxidant proteins, glycolysis-related enzymes, and the expression of
genes related to mitochondria function [103]. Glucose is also a major energy source for chon-
drocytes, and its cellular entry requires the glucose transporter GLUT1. Glut1 deletion during
development disrupts chondrocyte proliferation and hypertrophy resulting in a skeletal phe-
notype [104]. Notably, Glut1 expression is mediated by the BMP-mTORC1-HIF1α axis [104].
Extrapolating from the developmental context may provide new insights into AC homeostasis
because related signaling pathways are found in OA pathogenesis [105].

Hyperglycemia and aging promote the accumulation of advanced glycation end
products (AGE) as a result of a spontaneous reaction that adds a sugar group onto lipids,
proteins, and ECM. AGEs trigger signaling via receptor for AGE (RAGE), which increases
ROS and inflammation in articular joint tissues and promotes OA development [106,107].
Furthermore, the accumulation of intracellular AGEs induces ER stress and leads to CHOP-
mediated chondrocyte apoptosis [108].

3. An Integrated Schema of Stressors in OA and Joint Aging

With age, cellular damages induced by these five primary stressors accumulate in
ACs, and in conjunction with the diminution of anti-stress mechanisms, they generate a
hostile environment for AC homeostasis [109]. These ultimately lead to the manifestation
of aging phenotypes of joints or pathology of OA by promoting the hallmarks of AC
defects: abnormal chondrocyte proliferation and differentiation, chondrocyte senescence
and apoptosis, cartilage matrix loss (caused by either insufficient matrix production or
overactive matrix-degrading enzymes), and inflammation (Figure 2).

Those stressors do not act alone; instead, extensive feed-forward loops and cross-talk
between them snowball to accelerate AC changes that give rise to OA progression over
time. For example, mechanical stress causes oxidative stress, inflammation, and signaling
changes. Inflammatory signaling sensitizes Piezo1 response to mechanotransduction in
articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis [110].
Oxidative stress can further induce DNA damage and mitochondrial dysfunction, which
leads to mt-dsRNA efflux, cell senescence, apoptosis, and inflammation. Cell senescence
causes the release of inflammatory factors and matrix-degrading enzymes, while in turn,
inflammation aggravates oxidation, DNA damage, and senescence, forming a vicious loop
advancing cartilage damage. Yet this interconnectedness also means that alleviating one
stressor can improve the damage and symptomology caused by the others. For example,
oxidation-induced cartilage abnormality can be ameliorated by ER stress inhibitors, while
antioxidants can reciprocally alleviate ER stress-induced OA [94,111].
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Figure 2. An integrated view of the molecular synergy among stressors that leads to articular chon-
drocyte dysfunction and OA pathogenesis. The inner circle represents the hallmarks of OA, including
chondrocyte apoptosis, senescence, decline in ECM production, increase in ECM degradation, abnor-
mal chondrocyte differentiation, and inflammation. These OA hallmarks are the consequences of the
five major stressors placed in the outer circle. The arrows indicate the interplay of these stressors
and their downstream effectors. Note that the oxidative and proinflammatory factors form a central
hub (in red) integrating the output of all stressors and aggravating the stress-induced damage with
multiple vicious feed-forward loops.

It is worthy of note that oxidative stress and inflammation are the two nexuses with
the most connections to other stressors and AC defects, suggesting that they serve as
a central hub to integrate the actions of these stressors as the main path impacting OA
pathogenesis (Figure 2) and can thus be effective targets for OA treatments. Indeed, antiox-
idants and anti-inflammatory medications show great promise for OA treatment [111,112].
Anti-inflammatory drugs are widely used to mitigate OA-related pain [113]. In addition,
Helper-dependent adenovirus (HDAd)- or adeno-associated virus (AAV)-delivered IL1R
antagonist (IL1Ra) showed a plausible effectiveness in reducing OA symptoms in small
and large animal models [114–116]. In recent years, compounds that target the oxidative
stress pathways have been extensively explored as possible therapeutic options; these
include a number of natural compounds (nutraceuticals), particularly plant polyphenols
and flavonoids, such as the extracts of Sida tuberculate or green tea, quercetin, curcumin,
and naringenin. They showed promising anti-oxidative and anti-inflammatory effects
in the in vivo and ex vivo OA models [111,112,117–119]. In addition, other antioxidative
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agents, such as manganese dioxide nanoparticles, scavenge ROS and exhibit protective
effects against cartilage degeneration [120]. Of note, targeting the central hub can alleviate
symptoms and prevent progression of OA effectively, but they need to be used continuously
if the root causes of oxidation or inflammation are not finally removed. As an example,
senescent chondrocytes are the propagators of inflammation, so anti-inflammatory treat-
ments are largely palliative rather than curative. Recently, senolytic drugs developed to
kill senescent cells have been used to treat OA in mouse models with ongoing clinical
trials [121]. By removing the root cause of inflammation, senolytics are postulated to be
not only therapeutic but curative for OA. Nevertheless, as a complex degenerative disease,
OA can be involved with multiple stress-producing root causes, which may be difficult
to remove completely. In these scenarios, targeting the key factors in the central hub will
likely lead to more cost-effective outcomes.

In past decades, the collective efforts of many groups have contributed to the evolu-
tion and refinement of such an integrated view of stressors in OA development. However,
we can also see the disproportionate number of studies among various stressors. This
may reflect the fact that some stressors contribute more heavily than others, but may
also be partially due to our current lack of knowledge or technology in elucidating the
involvement/mechanism of certain stressors. In recent years, along with the prosperity of
epigenomic and metabolomic technologies, our understanding of the pathogenesis of degen-
erative diseases and cancers has been greatly deepened. We expect that in the future, new
technology, such as those mentioned, can help us uncover more crosstalk/interconnection
among these stressors and provide new nexuses to be used as targets for developing fruitful
therapeutics for OA.
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