

MDPI

Review

Melatonin: Facts, Extrapolations and Clinical Trials

J. A. Boutin ^{1,*}, D. J. Kennaway ² and R. Jockers ³

- ¹ Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandy, INSERM U1239, 76000 Rouen, France
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Science Building, North Terrace, Adelaide, SA 5006, Australia; david.kennaway@adelaide.edu.au
- Institut Cochin, Université Paris Cité, INSERM, CNRS, 75014 Paris, France; ralf.jockers@inserm.fr
- * Correspondence: ja.boutin.pro@gmail.com

Abstract: Melatonin is a fascinating molecule that has captured the imagination of many scientists since its discovery in 1958. In recent times, the focus has changed from investigating its natural role as a transducer of biological time for physiological systems to hypothesized roles in virtually all clinical conditions. This goes along with the appearance of extensive literature claiming the (generally) positive benefits of high doses of melatonin in animal models and various clinical situations that would not be receptor-mediated. Based on the assumption that melatonin is safe, high doses have been administered to patients, including the elderly and children, in clinical trials. In this review, we critically review the corresponding literature, including the hypotheses that melatonin acts as a scavenger molecule, in particular in mitochondria, by trying not only to contextualize these interests but also by attempting to separate the wheat from the chaff (or the wishful thinking from the facts). We conclude that most claims remain hypotheses and that the experimental evidence used to promote them is limited and sometimes flawed. Our review will hopefully encourage clinical researchers to reflect on what melatonin can and cannot do and help move the field forward on a solid basis.

Keywords: melatonin; clinical trials; controversies; preclinical data; mitochondria; bacteria; scavenging hypothesis

Citation: Boutin, J.A.; Kennaway, D.J.; Jockers, R. Melatonin: Facts, Extrapolations and Clinical Trials. *Biomolecules* **2023**, *13*, 943. https://doi.org/10.3390/biom13060943

Academic Editor: Kyoungwhan Back

Received: 13 April 2023 Revised: 30 May 2023 Accepted: 31 May 2023 Published: 5 June 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Foreword

A review is a survey of the existing literature on a given subject and the analysis of it by the author(s). Even if the interpretation of the author(s) about the facts is important, it should be identified as such. The present review presents a critical assessment of the existing literature on melatonin effects, including the conclusions drawn by their authors. Such a critical assessment is, by nature, subjective and has to be further discussed by the community in order to reach a consensus on where the field stands in terms of its hypotheses and facts. The new consensual hypothesis and perspective should then guide future research, which will go through the usual cycle of data acquisition that will then be submitted for peer review.

2. Background, Facts

Melatonin is a natural compound synthesized in the pineal gland during the nighttime, discovered by Lerner et al. [1].

Melatonin is synthesized in the pineal gland under the control of the hypothalamic suprachiasmatic nucleus, such that it is high during the night and low during the day. In humans, circulating melatonin is lowest during the day, at <2 pg/mL (8 pM), and is at 30–70 pg/mL (130–300 pM) during the night [2]. Of course, absolute concentrations can be misleading, as they depend on the age, conditions and health status of the patients; however, these levels are generally accepted by the community and were also validated in post-mortem measures of melatonin in human pineal glands [3,4]. The biosynthesis of

Biomolecules **2023**, 13, 943 2 of 26

melatonin is well established [5,6]. This cycle commands the wake/sleep cycle of almost all animals [7]. As the day length varies during the year, melatonin also indirectly commands the circannual rhythm and thus the reproduction season [8].

The main targets of endogenous melatonin in mammals are its two G-protein coupled receptors, MT_1 and MT_2 , which have high affinities for the hormone 1 nM and lower. The receptors are activated by circulating levels of melatonin at night and are believed to translate most of its physiological actions [9].

3. Background, History

The history of melatonin use can be divided into two periods:

The first period is characterized by the establishment of a wide consensus about the nature of melatonin's role, its synthesis and its regulation with outstanding discoveries on those subjects, and was followed by progress on the molecular mechanisms by which melatonin exerts its effect on biological rhythms [9] and sleep initiation [10,11]. In the meantime, the pharmaceutical industry described analogs of melatonin that serve as drugs in disordered sleep conditions [11,12], such as delayed sleep-wake phase disorder and jetlag, but also in cases where disrupted melatonin rhythmicity was associated with neurological conditions such as depression and anxiety [13], where they have been promising results based on standard clinical trials [14,15]. The present essay does not address this aspect of melatonin or its analogs (e.g., agomelatine, tasimelteon or ramelteon).

The second period of melatonin research is still ongoing and addresses the possible role of melatonin as an antioxidant and scavenger molecule; however, this is characterized by the absence of a general consensus in the field [16]. Hundreds of publications have proposed that melatonin can act as an agent to treat almost all the main disease conditions, such as cancers, obesity, Alzheimer's, Parkinson's and various virological problems, such as AIDS, Ebola and COVID-19 (see Table 1). We have previously reviewed several of these conditions, raising doubts about some claims [17,18], questioning whether a natural molecule could be used to treat so many diseases without actually addressing the mechanism(s) of actions or suggesting mechanisms of action that were independent of the melatonin receptors. Table 1 is mostly restricted to the more recent or significant claims. In short, this table essentially regroups the reviews in which the activity of melatonin on a given pathology is indicated/extrapolated. A common trait of most of these studies is the use of supraphysiological concentrations of melatonin (sometimes by six orders of magnitude higher than physiological concentrations). As pointed out earlier, "In principle, the established role of melatonin in rhythmic function is not necessarily incompatible with the use of high doses for 'protective' effects." [19]; however, researchers need to carefully distinguish between the role of endogenous melatonin and the effects observed at high doses of exogenous melatonin. In a clinical setting, the question of specificity and side effects have to be carefully addressed at these supra-physiological concentration levels (see below).

Table 1. A non-exhaustive list of the many claim	med wonders of melatonin.

Pathological Conditions	Title		Exp/Rev	Melatonin Concentration
Aging	Melatonin as an Anti-Aging Therapy	[20]	Rev	
Aging	Protective Role of Melatonin and Its Metabolites in Skin Aging	[21]	Rev	
Alzheimer's Disease	Mechanisms of Melatonin in Alleviating Alzheimer's Disease.	[22]	Rev	
Anxiety	Melatonin as a Potential Approach to Anxiety Treatment.	[23]	Rev	
Atherosclerosis	Melatonin-based therapeutics for atherosclerotic lesions and beyond:	[24]	Rev	
Bacteria infection	Melatonin inhibits Gram-negative pathogens	[25]	Exp	1 to 4 mM *
Cancer	Melatonin and cancer suppression:	[26]	Rev	
Cancer	Melatonin Reverses the Warburg-Type Metabolism	[27]	Exp	3.2 mM
Cancer	Oncostatic activities of melatonin:	[28]	Rev	

Biomolecules **2023**, 13, 943 3 of 26

TOT 1 1		-	0 1
Ian	9		Cont.

Pathological Conditions	Title		Exp/Rev	Melatonin Concentration
Cardiovascular diseases	Evidence for the Benefits of Melatonin in Cardiovascular Disease	[29]	Rev	
Coronavirus infection	Melatonin and other indoles show antiviral activities	[30]	Exp	3 mM **
Diabetes	Coadministration of Melatonin and Insulin Improves Diabetes-Induced	[31]	Exp	~40 µM **
Dislipidemia	The Mechanism of Oral Melatonin Ameliorates Intestinal and Adipose Lipid Dysmetabolis	[32]	Exp	0.4 mg/mL ***
Ischemy (cellular)	Melatonin Attenuates Ischemic-like Cell Injury	[33]	Exp	50 μM
Neurodegeneration	New insights into the role of melatonin in neuronal recovery	[34]	Rev	
Neurodegeneration	Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders	[35]	Rev	
Parkinson's Disease	Melatonin and Parkinson Disease: Current Status	[36]	Rev	
SARS infection	Melatonin use for SARS-CoV-2 infection:	[37]	Rev	
SARS infection	Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection	[38]	Rev	

^{*} Assuming 100% passage in 30 g mice with 4 mL of blood; ** melatonin is not the best inhibitor among the indoles tested; *** of drinking water.

4. Melatonin Goes to Clinic Why? For What?

In order to be entered into a clinical trial, a compound should have shown activity on the defined pathological model(s), exhibit low or no toxicity and be superior to the existing drugs (if there are any). Dietary "supplements", as melatonin is defined in the USA, do not have the same legal constraints as pharmaceuticals, and their marketing information must not infer their use to treat diseases.

In general, such clinical trials are directed at a specific pathological condition and are based on a body of relevant preclinical studies. In the case of melatonin, it seems that almost all the pathological conditions one can think of have been reported in the literature to be ameliorated by melatonin! Thus, the conditions for which melatonin has been tested in clinical studies are extensive and are listed in Tables 2 and 3. It is difficult to find a category that is not listed, and the immense spectrum of conditions reported to be treatable by melatonin is the obvious weakness of those claims.

Table 2. "Main" categories under which the melatonin trials have been conducted.

Abnormalities, Multiple	Colitis	Genetic Diseases, Inborn	Musculoskeletal Abnormalities	REM Sleep Parasomnias
Acute Graft versus Host Disease	Colitis, Ulcerative	Genetic Diseases, X-Linked	Musculoskeletal Diseases	Renal Insufficiency
Acute Kidney Injury	Collagen Diseases	Genital Neoplasms, Female	Musculoskeletal Pain	Renal Insufficiency, Chronic
Acute Lung Injury	Colonic Diseases	Glioma	Myalgia	Reperfusion Injury
Acute Respiratory Distress Syndrome	Colonic Diseases, Functional	Glucose Intolerance	Myocardial Infarction	Respiration Disorders
Adnexal Diseases	Communicable Diseases	Glucose Metabolism Disorders	Myocardial Ischemia	Respiratory Aspiration
Alcoholism	Confusion	Gonadal Disorders	Narcolepsy	Respiratory Distress Syndrome
Alcohol-Related Disorders	Congenital Abnormalities	Growth Disorders	Necrosis	Respiratory Distress Syndrome, Infant
Alzheimer's Disease	Connective Tissue Diseases	Head and Neck Neoplasms	Necrotizing Enterocolitis	Respiratory Distress Syndrome, Newborn
Anaplastic Astrocytoma	Consciousness Disorders	Head Injuries, Closed	Neoplasm Metastasis	Respiratory Hypersensitivity
Anaplastic Ependymoma	Constriction, Pathologic	Headache	Neoplasms by Histologic Type	Respiratory Tract Diseases
Anaplastic Oligodendroglioma	Coronary Artery Disease	Headache Disorders	Neoplasms, Germ Cell and Embryonal	Respiratory Tract Infections
Aneurysm	Coronary Disease	Headache Disorders, Primary	Neoplasms, Ğlandular and Epithelial	Respiratory Tract Neoplasms

Biomolecules **2023**, *13*, 943 4 of 26

Table 2. Cont.

Apnea Cranial Nerve Diseases Apreadorfers, Neurobehavioral Schizophrenia	Angelman Syndrome	Coronaviridae Infections	Heart Diseases	Neoplasms, Nerve Tissue	Retinal Diseases
Apnea Cranial Nerve Diseases Arthythmias, Cardiac Cranioccrebral Trauma Herochologemerative Disorders, Nervous System Neurocognitive Disorders Neurocognitive Disorders Schizophrenia Spectrum and Chert Psycholic Disorders Schizophrenia Phyperinsulinism Hyperinsulinism Hyperinsulinism Aphyria Centrology and Schizophrenial Schizophrenia Sc	Anorexia Anyiety Disorders	COVID-19	Heart Failure		RNA Virus Infections
Arrivythmias, Cardiac	Anxiety Disorders	COVID-19	<u> </u>	=	NIVA VII US II II ECUOTIS
Arterial Occlusive Diseases Arteriosclerosis Arphyxia Death Death Hyperlipidemias Hyperlipide	Apnea	Cranial Nerve Diseases	Disorders,		Schizophrenia
Arterial Occlusive Diseases Cratical Illness Hyperinsulinism Neurodegenerative Diseases Sclerosis	Arrhythmias, Cardiac	Craniocerebral Trauma	Hot Flashes	Neurocognitive Disorders	and
Arthritis Cysts Hyperkinesis Neurodevelopmental Disorder Disorder School Disor			Hyperglycemia		•
Arthritis Cysts Hyperkinesis Neuroectodermal Tumors Seciaures Neuroectodermal Tumors Primitive Asphyxia Neonatorum Asphyxia Neonatorum Deglutition Disorders Ashma Astrocytoma Dementia Disorders Attention Deficit Disorder Depression Posperatum Disorder Autisim Spectrum Disorder Autisim Disorder Depressive Disorder Hypothermia Nevvos Pigmented Skin Diseases Of the Nervous System Diseases of the Nervous System Demantitis Atopic Permatitis Atopic Hypoxia Brain Disorders Disorders Disorder Disorders Disorder Disorders Disorder Disorders Disorder Disorders Disorder Disorders D			Hyperinsulinism	Neurodevelopmental	
Asphyxia Neonatorum Deglutition Disorders Hyperlippidemias Primitive Asthma Astrocytoma Deglutition Disorders Delirium Dementia Demyelinating Attrophy Attention Deficit and Disruptive Behavior Disorders Attention Deficit and Disruptive Behavior Disorders Attention Deficit Bloorder with Hyperativity Participation Disorders Autonomic Nervous Spetern Autonomic Nervous System Autonomic Nervous System Autonomic Nervous System Autonomic Nervous System Diseases of the Nervous System Diseases Developmental Disabetes Mellitus, Type 1 Bipolar Disorder Diabetes Mellitus, Type 2 Blindness Bindness Body Weight Changes Brain Nicoussian Diseases Dyskinenias Brain Nicousses Diseases Pospession Diseases Brain Infarction Brain Direases Dyskinenias Diseases Brain Infarction Brain Injuries Dyspepsia Brain Infarction Brain Injuries Pospession Dyssomais Brain Nopolasms Brain Injuries Pospession Diseases Bone Diseases Bone Diseases Diseases Progression Diseases Brain Infarction Brain Injuries Pospession Diseases Dyskinenias Brain Nopolasms Brain Injuries Disabete Relative Diseases Brain Infarction Brain Injuries Diseases Brain Infarction Brain Injuries Dyspepsia Brain Infarction Brain Injuries Dyspepsia Brain Infarction Brain Injuries Brain Nopolasms Emergence Delirium Brain Nopolasms Brain Injuries Brain Nopolasms Brain Injuries Brain Nopolasms Emergence Delirium Brain Progression Diseases Brain Infarction Brain Injuries Brain Nopolasms Emergence Delirium Brain Nopolasms Brain Nopolasms Emergence Delirium Dispesses Brain Diseases Brain Diseases Brain Diseases Emergence Delirium Dispesses Brain Disea	Arthritis	Cysts	Hyperkinesis		
Asthma Asthma Asthma Astronome Asthma Astronome Asthma Astronome Delentum Dementing Attrophy Autoinmume Diseases Disorder With Hyperactivity Autoin Discrete With Hyperactivity Autoinmume Diseases Office Propersion Depression Propersion Depression Propersion Depression Propersion Proper	Asphyxia	ř	Hyperlipidemias		Sensation Disorders
Attention Deficit and Disruptive Behavior Disorders Attention Defict Disorders With Hyperactivity Attention Defict Disorders With Hyperactivity Attention Defict Disorders With Hyperactivity Attention Defict Disorder Autoimmune Diseases Depression, Postpartum Disorder Autoimmune Diseases of the Nervous System Autoimmune, Diseases of the Nervous System Autoimmune, Diseases of the Nervous System Autoimmune, Diseases of the Nervous System Diseases of the Nervous System Autoimmune, Diseases Dermatitis, Atopic Dermatitis Hypoxia, Brain Diseases Basal Ganglia Diseases Disabilities Disorder Disorder Disorders Disabilities Disorders Disabilities Disorders Disabilities Disorders Disabilities Disorders Disabetes Mellitus Disorders Disabetes Mellitus Diseases Diseases Disabetes Mellitus Diseases Diseases Disabetes Mellitus, Type 1 Infarction Coccupational Diseases Disorders Disabetes Mellitus, Type 2 Infections Diseases Diseases Diseases Disabete Angiopathies Disabete Angiopathies Disabete Angiopathies Disabete Angiopathies Diseases Progression Diseases Diseases Prog	Asphyxia Neonatorum Asthma	Delirium Dementia	Hyperlipoproteinemias Hyperphagia	Neuroendocrine Tumors Neuroepithelioma	Shock Shock, Septic
Disorders With Hypersesion Depression Hypertension Nevi and Melanomas Skin Diseases Skin Diseases, Ezematous Disorder Autoinmune Diseases Operessive Disorder Autoinmune, Diseases Operessive Disorder Autoinmune, Diseases Operessive Disorder Major Operessive Disorder Autoinmune, Diseases Operessive Disorder Major Operessive Disorder Major Operessive Disorder Operes	Atrophy	Autoimmune Diseases,	Hypersensitivity	Neuromuscular Diseases	
Autism Spectrum Disorder Autisinc Disorder Autoimmune Diseases of the Nervous System Autonomic Nervous System Diseases Autoimmune, Diseases Obermatitis, Atopic Autonomic Nervous System Diseases Basal Ganglia Diseases Behavioral Symptoms Bipolar and Related Disorder Disorder Bipolar Disorder Bipolar Disorder Bipolar Disorder Bipolar Disorder Bindness Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Body Temperature Changes Body Weight Changes Body Weight Changes Bone Diseases Disease Progression Disease Progression Brain Infarction Brain Inference Emergence Delirium Brast Diseases Emergence Braes Diseases Emergence Emergence Delirium Brast Diseases Emergence Emergence Braes Diseases Emergence Emergence Emergence Braes Diseases Braes Diseases Braes Diseases Emergence Braes Diseases Braes Diseases Emergence Braes Diseases Braes Di	Disruptive Behavior	Demyelinating Diseases		Neurotoxicity Syndromes	
Disorder Autistic Disorder Depressive Disorder Hypoxia Nidovirales Infections Skin Manifestations Non-24-Hour Sleep-Wake Disorder System Diseases of the Nervous System Autonomic Nervous System Diseases Dermatitis, Atopic Disabilities Diseases Diseases Diseases Diabetes Mellitus, Type 1 Infarction Diseases Diabetes Mellitus, Type 2 Infactions Occupational Diseases Diseases Digestive System Neoplasms Diseases Attributes Diseases Di	with Hyperactivity	Depression	Hypertension	Nevi and Melanomas	Skin Diseases
Autistic Disorder Depressive Disorder, Depressive Disorder, Major Hypoxia Nidovirales Infections Skin Diseases, Genetic Skin Manifestations Autoimmune, Diseases of the Nervous System Autonomic Nervous System Autonomic Nervous System Diseases Dermatitis, Atopic Hypoxia, Brain Nutrition Disorders Sleep Apnea Syndromes Basal Ganglia Diseases Developmental Disabilities Immune System Diseases Obestity Sleep Apnea, Obstructive Behavioral Symptoms Diabetes Complications Infant, Newborn Diseases Obstetric Labor Complications Obstetric Labor, Premature Sleep Disorders, Circadian Rhythm Bipolar and Related Disorders Diabetes Mellitus, Type 1 Infant, Premature, Diseases Obstetric Labor, Complications Obstetric Labor, Premature Sleep Disorders, Circadian Rhythm Bipolar Disorder Diabetes Mellitus, Type 1 Infaction Occupational Diseases Sleep Disorders, Circadian Rhythm Body Temperature Changes Diabetic Angiopathies Infertility Occupational Diseases Sleep-Wake Disorders Bone Diseases Digestive Changes Digestive Changes Infertility, Female Infarentility, Female Infammation Othostatic Intolerance Orthostatic Intolerance Orthostatic Intolerance Orthostatic Intolerance Orthostatic Intolerance Orthostatic Intolerance Orthostat		Depression, Postpartum	Hyperthermia	Nevus	Skin Diseases, Eczematous
Autoimmune, Diseases of the Nervous System Autonomic Nervous System Diseases of the Nervous System Autonomic Nervous System Diseases Developmental Disabilities Immune System Diseases Obesity Sleep Apnea, Obstructive Obstetric Labor Complications Obstetric Labor, Premature Diseases Diabetes Mellitus, Type 1 Infant, Premature, Diseases Progression Diabetes Mellitus, Type 2 Infections Diseases Diabetes Mellitus, Type 2 Infections Diseases Diabetes Angiopathies Infertility Diseases Diabetes Angiopathies Diseases Digestive System Diseases Digestive System Diseases Diseas			Hypothermia	Nevus, Pigmented	Skin Diseases, Genetic
Autonmune, Diseases of the Nervous System Autonomic Nervous System Diseases Basal Ganglia Diseases Basal Ganglia Diseases Behavioral Symptoms Bipolar and Related Disorder Diabetes Mellitus, Type 1 Bipolar Disorder Bipolar Disorder Bipolar Disorder Bipolar Disorder Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Infarction Diabetes Mellitus, Type 2 Infections Body Temperature Changes Body Weight Changes Body Weight Changes Bore Diseases Bone	Autoimmune Diseases		Hypoxia	Nidovirales Infections	Skin Manifestations
Basal Ganglia Diseases Developmental Disabilities Immune System Diseases Obesity Sleep Apnea, Obstructive		,	Hypoxia, Brain		Sleep Apnea Syndromes
Behavioral Symptoms Bipolar and Related Disorders Diabetes Mellitus Diabetes Mellitus, Type 1 Bipolar Disorders Diabetes Mellitus, Type 2 Blindness Bipolar Diabetes Mellitus, Type 2 Blindness Diabetes Mellitus, Type 2 Blindness Diabetes Mellitus, Type 2 Blindness Diabetes Mellitus, Type 2 Infarction Diabetes Mellitus, Type 2 Infections Cocupational Diseases Occupational Diseases Occupational Diseases Disep Disorders, Intrinsic Sleep Disorders, Intrinsic Sleep Disorders, Intrinsic Sleep Initiation and Maintenance Disorders Sleep-Wake Disorders Smith-Magenis Syndrome Osteoporosis Inflammation Diseases Digestive System Diseases Diseases Attributes Disease Attributes Disease Attributes Disease Progression Disease Progression Disorders of Excessive Somnolence Brain Diseases, Metabolic Brain Diseases, Metabolic Brain Infarction Brain Infurires Dyskinesias Dyskinesias Dyskinesias Dyskinesias Brain Injuries, Traumatic Dyssomnias Eczema Brain Injuries, Traumatic Brain Inschemia Brain Neoplasms Emergence Delirium Brain Neoplasms Emergence Delirium Brain Skidney Diseases Kidney Diseases Anatomical Distatric Labor, Complications Obstetric Labor, Permature Distatric Labor, Obstetric Labor, Permature Distatric Labor, Pslep Juriative Sleep Disorders, Intrinsic Sleep Disorders Sleep Disorders Sleep Disorders Sleep Disorders Sleep Disorders Sleep Disorders, Intrinsic Sleep Disorders Sleep Disorde		_	Hypoxia-Ischemia, Brain	Nutrition Disorders	Sleep Apnea, Obstructive
Bipolar and Related Disorders Bipolar and Related Disorders Bipolar Disorders Bipolar Disorders Bipolar Disorders Diabetes Mellitus, Type 1 Bipolar Disorders Diabetes Mellitus, Type 1 Bipolar Disorders Diabetes Mellitus, Type 1 Bipolar Disorders Diabetes Mellitus, Type 2 Infaction Diccupational Diseases Diabetes Mellitus, Type 2 Infections Occupational Diseases Diccupational Diseases Occupational Diseases Sleep Disorders Sleep Initiation and Maintenance Disorders Ocupo-cerebral Syndrome With Hypopigmentation Disorders Sleep-Wake Disorders Sleep-Wake Disorders Sleep-Wake Disorders Sleep-Wake Disorders Disease Power Diseases Infertility, Female Inflammation Body Weight Changes Bone Diseases Digestive System Diseases Digestive System Diseases Digestive System Diseases Disease Progression Disease Progression Disorders of Excessive Somnolence Brain Diseases, Metabolic Brain Infarction Disorders of Excessive Somnolence Brain Infarction Brain Injuries Dyskinesias Intracranial Hemorrhages Brain Infarction Brain Injuries Dyskinesias Intracranial Hemorrhages Brain Injuries, Traumatic Brain Injuries, Traumatic Brain Injuries, Traumatic Brain Inschemia Brain Neoplasms Eczema Jet Lag Syndrome Brain Neoplasms Emergence Delirium Joint Diseases Kidney Diseases Kidney Diseases Lingtinin, Newordian Diseases Dostration Occupational Diseases Sleep Disorders, Intrinsic Sleep Intractabor, Decupation and Maintenance Disorders Sleep-Wake Disorders Sleep-Wake Disorders Sleep-Wake Disorders Shep-Wake Disorders Smith-Magenis Syndrome Spinal Cord Injuries Spinal Cord Injuries Ovarian Cysts Ovarian Cysts Ovarian Disease Spinal Cord Injuries Doverweight Stomatognathic Diseases Strosa Disorders, Intrinsic	Basal Ganglia Diseases		Immune System Diseases	•	
Disorders Diabetes Mellitus, Type 1 Infarction Occupational Diseases Sleep Disorders, Intrinsic Sleep Disorders Sleep Disorders Sleep Initiation and Maintenance Disorders Oculo-cerebral Syndrome With Hypopigmentation and Maintenance Disorders Sleep Initiation and Maintenance Disorders Sleep Initiation and Maintenance Disorders Sleep Initiation and Maintenance Disorders Sleep-Wake Disorders Smith-Magenis Syndrome Spinal Cord Diseases Spinal Cord Diseases Spinal Cord Diseases Diseases Diseases Poyersion Intellectual Disability Ovarian Cysts Spinal Cord Injuries Disorders of Excessive Somnolence Disorders of Excessive Somnolence Disorders of Excessive Somnolence Dyskinesias Intracranial Hemorrhages Pain Stomatignathic Diseases Stomatognathic System Paralysis Paralysis Abnormalities Stress Disorders, Traumatic Stress Disorders, Traumatic Stress Disorders, Traumatic Stress Disorders, Parkinsonian Disorders Stroke Substance-Related Disorders Stroke Substance-Related Disorders Disorders Disorders Disorders Disorders Disorders Stroke Substance-Related Disorders Disorders Disorders Disorders Disorders Disorders Disorders Stroke Disorders Substance-Related Disorders Substance-Related Disorders Disord		Diabetes Complications	•	Complications	
Bipolar Disorder Blindness Diabetes Mellitus, Type 2 Infections Diabetes Mellitus, Type 2 Infections Blindness Diabetes Mellitus, Type 2 Infections Blindness Body Temperature Changes Body Weight Changes Body Weight Body Weight Body Weight Body Weight Changes Bone Diseases Digestive System Neoplasms Diseases Diseases Diseases Diseases Diseases Inflammation Diseases Dovarian Cysts Ovarian Diseases ST Elevation Myocardial Infarction Myocardial Infarction Myocardial Infarction Myocardial Infarction Myocardial Infarction Myocardial Infarction Pain, Post-operative Pain, Post-operative Pain, Post-operative Pain, Post-operative Pain, Post-operative Pain, Post-operative Stomatognathic System Abnormalities Formatic Brain Injuries, Traumatic Brain Injuries, Traumatic Brain Injuries, Traumatic Brain Inschemia Brain Neoplasms Brain Neoplasms Emergence Delirium Brain Diseases Brain Neoplasms Emergence Delirium Brain Diseases Emergence Brain Diseases Brain Diseases Brain Neoplasms Emergence Delirium Joint Diseases Anatomical Disorders		Diabetes Mellitus			_
Body Temperature Changes Body Weight Diabetic Angiopathies Diabetic Retinopathy Body Weight Diabetic Retinopathy Body Weight Changes Bone Diseases Bone Diseases Digestive System Diseases Inflammation Diseases Digestive System Diseases Inflammation Diseases Dovarian Cysts Spinal Cord Injuries Diseases ST Elevation Myocardial Infarction Myocardial Infarction Diseases Disorders of Excessive Somnolence Disorders of E	Bipolar Disorder	Diabetes Mellitus, Type 1	Infarction	-	and Maintenance
Changes Body Weight Body Weight Changes Bone Diseases Bone Diseases Bone Diseases, Metabolic Brain Concussion Brain Diseases Brain Infarction		Diabetes Mellitus, Type 2	Infections		Sleep-Wake Disorders
Body Weight Body Weight ChangesDiabetic Retinopathy Digestive System DiseasesInfertility, Female InflammationOrthostatic Intolerance OsteoporosisSmith-Magenis Syndrome Spinal Cord DiseasesBone DiseasesDigestive System NeoplasmsInflammatory Bowel DiseasesOvarian CystsSpinal Cord InjuriesBone Diseases, Metabolic Brain ConcussionDisease Attributes Disease AttributesInsulin Resistance Insulin ResistanceOvarian DiseasesST ElevationBrain DiseasesDisease Progression SomnolenceIntellectual DisabilityOvernutritionMyocardial InfarctionBrain Diseases, Metabolic Brain Infarction Brain InfarctionDyskinesias DyskinesiasIntracranial Hemorrhages Irritable Bowel Syndrome IschemiaPain ParalysisStomatognathic DiseasesBrain Injuries, TraumaticDyssomniasIschemiaParalysisAbnormalitiesBrain Ischemia Brain IschemiaEczemaJet Lag Syndrome Joint DiseasesParkinson's Disease Parkinsonian DisordersStress Disorders, 	, 1	Diabetic Angiopathies	Infertility	Oligodendroglioma	Sleepiness
Bone Diseases, Metabolic Brain Concussion Brain Diseases Brain Diseases Brain Diseases Brain Diseases Brain Diseases Brain Diseases Brain Infarction Brain Injuries Brain Ischemia Eczema Jet Lag Syndrome Brain Neoplasms Emergence Delirium Joint Diseases Kidney Diseases Brain Ovarian Cysts Ovarian Cysts Ovarian Cysts Strestation Myocardial Infarction Myocardial Infarction Myocardial Infarction Parin Pain Pain Post-operative Stomatognathic Diseases Stress Disorders, Traumatic Parasomnias Stress Disorders, Traumatic Fraumatic Stress, Psychological Parkinsonian Disorders Pathological Conditions, Anatomical Disorders	Body Weight	1 ,	3"		
Bone Diseases, Metabolic Brain ConcussionDisease Attributes Disease ProgressionInsulin Resistance Intellectual DisabilityOvarian Diseases OvernutritionST Elevation Myocardial InfarctionBrain DiseasesDisorders of Excessive SomnolenceIntestinal DiseasesOverweightStomatitisBrain Diseases, Metabolic Brain InfarctionDyskinesiasIntracranial Hemorrhages Intracranial HemorrhagesPain, Post-operative ParalysisStomatognathic DiseasesBrain InjuriesDyspepsiaIschemiaParalysisAbnormalitiesBrain Injuries, TraumaticDyssomniasIschemic StrokeParasomniasStress Disorders, TraumaticBrain IschemiaEczemaJet Lag SyndromeParkinson's DiseaseStress, PsychologicalBrain NeoplasmsEmergence DeliriumJoint DiseasesParkinsonian DisordersSubstance-RelatedBreast DiseasesEmergenciesKidney DiseasesPathological Conditions, AnatomicalSubstance-Related	Bone Diseases		,	Ovarian Cysts	Spinal Cord Injuries
Brain Diseases Somnolence Brain Diseases, Metabolic Dyskinesias Intracranial Hemorrhages Pain Stomatognathic Diseases Brain Infarction Dyslipidemias Irritable Bowel Syndrome Pain, Post-operative Stomatognathic System Brain Injuries Dyspepsia Ischemia Paralysis Abnormalities Brain Injuries, Traumatic Dyssomnias Ischemic Stroke Parasomnias Stress Disorders, Traumatic Brain Ischemia Eczema Jet Lag Syndrome Parkinson's Disease Stress, Psychological Brain Neoplasms Emergence Delirium Joint Diseases Parkinsonian Disorders Breast Diseases Emergencies Kidney Diseases Anatomical Disorders	*	Disease Attributes	Insulin Resistance		
Brain Diseases, Metabolic Brain InfarctionDyskinesias DyslipidemiasIntracranial Hemorrhages Irritable Bowel SyndromePain, Post-operative Pain, Post-operativeStomatognathic Diseases Stomatognathic SystemBrain InjuriesDyspepsiaIschemiaParalysisAbnormalitiesBrain Injuries, TraumaticDyssomniasIschemic StrokeParasomniasStress Disorders, TraumaticBrain IschemiaEczemaJet Lag SyndromeParkinson's DiseaseStress, PsychologicalBrain NeoplasmsEmergence DeliriumJoint DiseasesParkinsonian DisordersStrokeBreast DiseasesEmergenciesKidney DiseasesPathological Conditions, AnatomicalSubstance-Related Disorders	Brain Diseases		Intestinal Diseases	Overweight	Stomatitis
Brain Injuries, Iraumatic Brain Ischemia Brain Ischemia Brain Neoplasms Breast Diseases Emergencies Brain Stroke Jet Lag Syndrome Joint Diseases Parkinson's Disease Parkinson's Disease Parkinsonian Disorders Parkinsonian Disorders Pathological Conditions, Anatomical Substance-Related Disorders	Brain Infarction	Dyskinesias Dyslipidemias	Irritable Bowel Syndrome	Pain, Post-operative	Stomatognathic System Abnormalities
Brain Ischemia Eczema Jet Lag Syndrome Parkinson's Disease Stress, Psychological Brain Neoplasms Emergence Delirium Joint Diseases Parkinsonian Disorders Stroke Breast Diseases Emergencies Kidney Diseases Kidney Diseases Anatomical Disorders	Brain Injuries, Traumatic	Dyssomnias	Ischemic Stroke	Parasomnias	,
Breast Diseases Emergencies Kidney Diseases Anatomical Disorders				Parkinsonian Disorders	Stress, Psychological Stroke
	Breast Diseases	Emergencies	Kidney Diseases		
Dieder reopmond Enterprision Reduce Fundic Fedicine Obesity Symmonic	Breast Neoplasms	Encephalomyelitis	Kidney Failure, Chronic	Pediatric Obesity	Syndrome

Biomolecules **2023**, *13*, 943 5 of 26

Table 2. Cont.

Bronchial Diseases Endocrine System Diseases Diseases Lipid Metabolism Disorders Periodontitis Synucleinopathies Systemic Inflammatory Response Syndrome Cachexia Enterocolitis, Necrotizing Liver Cirrhosis Personality Disorders Response Syndrome Tauopathies Calcinosis Ependymoma Lower Urinary Tract Symptoms Photophobia Tauopathies Calcinosis Epilepsy Lower Urinary Tract Symptoms Photophobia Tauopathies Carcinoma Esophageal Diseases Lower Urinary Tract Symptoms Pneumonia, Viral Tooth Diseases Carcinoma Esophageal Diseases Lung Diseases Pneumonia, Viral Tooth Diseases Carcinoma Esophageal Motility Disorders Lung Injury Syndrome Polycystic Ovary Syndrome Polycystic Ovary Syndrome Polycystic Ovary Syndrome Precancerous Conditions Travel-Related Illness Travel-						
Burns Enterocolitis Liver Cirrhosis Personality Disorders Cachexia Enterocolitis, Necrotizing Calcinosis Ependymoma Liver Diseases Lower Urinary Tract Symptoms Photophobia Tauopathies Disorders Carcinoma Esophageal Diseases Lung Diseases Distructive Disorders Carcinoma, Non-Small-Cell Lung Diseases Diffuse Esophageal Spasm, Diffuse Carotid Artery Diseases Esonateal Hypertension Mania Precaretory Diseases Carotid Stenosis Epe Diseases Esonateal Hypertension Cartaret Passages Fatigue Melanoma Diseases Central Nervous System Diseases Patigue Syndrome Diseases Programs Discovers Disorders Central Nervous System Diseases Patigue Syndrome Disorders Central Nervous System Fetal Growth Retardation Cerebro Vascular Diseases Petal Diseases Programs Diseases Cerebro Vascular Disorders Cerebro Vascular Disorders Chronic Petal Diseases Chronic Cerebrovascular Disorders Chronic Prevalence Disorders Chronic Prevalence Diseases Chronic Chronic Prevalence Diseases Chronic Chronic Prevalence Diseases Chronic Chronic Cerebrovascular Disorders Chronic Chronic Chronic Chronic Cerebrovascular Disorders Chronic Cerebrovascular Disord	Bronchial Diseases		Lens Diseases	Periodontal Diseases	Synovial Cyst	
Cachexia Enterocolitis, Necrotizing Calcinosis Enterocolitis, Necrotizing Calcinosis Ependymoma Calcinosis Ependymoma Disorders Carcinoma Carcinoma Carcinoma Carcinoma, Non-Small-Cell Lung Cardiomyopathies Carotid Artery Diseases Carotid Artery Diseases Essential Hypertension Carotid Artery Diseases Carotid Stenosis Catract Cantral Nervous System Diseases Central Nervous System Diseases Central Nervous System Central Nervous System Diseases Central Nervous System Central Nervous System Cerebral Palsy Cerebrovascular Disorders Cerebral Palsy Cerebrovascular Disorders Cerebral Palsy Fetal Growth Retardation Disorders Cerebral Palsy Cerebrovascular Disorders Chronic Fractures, Bone Chronic Pair Chronic Pair Chronic Periodontitis Captinic Postructive Disorders Complications Presonatiny Disorders Photophobia Tauopathies Photophobia Thoracic Neoplasms Tooth Diseases Poisoning Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Poisoning Toxemia Tooth Diseases Toxemia, Viral Tooth Diseases Poisoning Toxemia Tooth Diseases Precancerous Conditions Traupathies Traupathies Tooth Diseases Precancerous Conditions Precancerous Condit	Burning Mouth Syndrome	Endometriosis	1	Periodontitis	Synucleinopathies	
Cachexia Enterocolitis, Necrotizing Liver Diseases Calcinosis Ependymoma Calcinosis Ependymoma Calcinosis Ependymoma Calcinum Metabolism Disorders Epilepsy Lung Diseases Pneumonia, Viral Tooth Diseases Pneumonia, Viral Tooth Diseases Pneumonia, Viral Tooth Diseases Pneumonia, Viral Tooth Diseases Distructive Carcinoma, Carcinoma, Esophageal Diseases, Obstructive Polycystic Ovary Syndrome Polycystic Ovary Syndrome Post-operative Complications Precancerous Conditions Tuberous System Spanial Alzheimer Diseases Essential Hypertension Maxillofacial Abnormalities Prediabetic State Diseases Patigue Menopause Pregnancy Complications Ulcer Diseases Central Nervous System Patigue Menopause Premature Birth Urogenital Neoplasms Cerebral Palsy Fetal Growth Retardation Prediabetic Diseases Metabolic Diseases Metabolic Diseases Prostatic Diseases Prostatic Diseases Prostatic Diseases Prostatic Diseases Disorders Chronic Primary Dysautonomias Uterine Cervical Diseases Prostatic Diseases Prostatic Diseases Uterine Cervical Diseases Chronic Primary Prospective Carcinal Nervous System Neoplasms Predia Disorders Problem Behavior Urological Manifestations Prumitus Prospective Cerebral Palsy Fetal Growth Retardation Metabolic Diseases Prostatic Diseases Uterine Cervical Diseases Chronic Primary Problem Behavior Urological Manifestations Prumitus Prospective Carcinal Necoplasms Practices Problem Behavior Urological Manifestations Neoplasms Promotor Agitation Uterine Diseases Uterine Neoplasms Practices Problem Behavior Urological Manifestations Neoplasms Prumitus Propried Problem Prumitus Propried Problem Prumitus Propried Problem Behavior Urological Manifestations Neoplasms Propried Propried Problem Behavior Urological Manifestations Propried Proprie	Burns	Enterocolitis	Liver Cirrhosis	Personality Disorders		
Calcium Metabolism Disorders Carcinoma Carcinoma Esophageal Diseases Carcinoma, Carcino	Cachexia	Enterocolitis, Necrotizing		Photophobia		
Carcinoma Esophageal Diseases Disorders Carcinoma, Non-5mall-Cell Lung Disorders Carcinoma, Disorders Carcinoma, Disorders Carcinoma, Carcinoma	Calcinosis	Ependymoma		Pneumonia	Thoracic Neoplasms	
Carcinoma, Esophageal Diseases Carcinoma, Non-Small-Cell Lung Cardiomyopathies Cardiomyopathies Carotid Artery Diseases Carotid Artery Diseases Carotid Stenosis Carotid Stenosis Cataract Catar		Epilepsy	· -	Pneumonia, Viral	Tooth Diseases	
Disorders Lung Injury Syndrome Fatuna, Nervous System Post-operative Complications Travel-Related Illness Carotid Artery Diseases Essential Hypertension Maxillofacial Abnormalities Prediabetic State Tuberous Sclerosis Tuberous Sclero	Carcinoma	Esophageal Diseases		Poisoning	Toxemia	
Cardid Artery Diseases Carotid Stenosis Cataract Familial Alzheimer Disease Central Nervous System Diseases Central Nervous System Infections Central Nervous System Infections Central Nervous System Neoplasms Cerebral Nervous System Neoplasms Cerebral Infarction Cerebral Palsy Cerebral Palsy Cerebral Palsy Cerebral Palsy Cerebral Spisorders Chemically-Induced Disorders Chidl Development Disorders Chronic Graft Versus Host Disorders Chronic Graft Versus Host Disorders Chronic Graft Versus Host Disease Chronic Pain Chronic Pain Chronic Pain Chronic Periodontitis Castroenteritis Multiple Sclerosis Muscular Atrophy Muscular Diseases Cognitive Disorders Gastrointestinal Maxillofacial Abnormalities Precancerous Conditions Tuberous Sclerosis Nealilofacial Prediabetic State Pregnancy Complications Ulcer Premature Birth Urogenital Neoplasms Utrologic Diseases Prostatic Diseases Prostatic Diseases Prostatic Diseases Prostatic Diseases Ulterine Cervical Diseases Ulterine Cervical Diseases Ulterine Cervical Diseases Ulterine Cervical Diseases Psychomotor Agitation Uterine Diseases Uterine Neoplasms Uterine Cervical Diseases Psychomotor Disorders Vascular Diseases Vascular Diseases Vascular Diseases Quadriplegia Virus Diseases Capativity Diseases Neoplasms Virus Diseases Red Stepe Behavior Virus Diseases Red Stepe Behavior	,	Disorders	Lung Injury	Syndrome	Trauma, Nervous System	
Carotid Stenosis Cataract Cataract Familial Alzheimer Disease Central Nervous System Diseases Central Nervous System Infections Cerebral Nervous System Infections Cerebral Nervous System Infections Cerebral Nervous System Infections Cerebral Infarction Feeding and Eating Disorders Cerebral Infarction Fetal Diseases Metabolic Diseases Metabolic Diseases Prostatic Diseases Uterine Cervical Diseases Uterine Cervical Diseases Uterine Cervical Diseases Cerebral Palsy Fetal Growth Retardation Metabolic Syndrome Pruritus Uterine Cervical Diseases Uterine Cervical Necoplasms Necoplasms Verinal Disorders Chemically-Induced Disorders Child Development Disorders Child Development Disorders Chronic Pariativ Diseases Chronic Graft Versus Host Disease Chronic Pain Chronic Pain Chronic Periodontitis Gastroenteritis Multiple Sclerosis, Relapsing-Remitting Muscular Atrophy Recurrence Weight Cain Muscular Diseases Muscular Atrophy Recurrence REM Sleep Behavior	Cardiomyopathies	Diffuse	Lung Neoplasms		Travel-Related Illness	
Carottd Stenosis Cataract Cataract Central Nervous System Diseases Central Nervous System Infections Cerebral Nervous System Neoplasms Cerebral Infarction Feeding and Eating Disorders Problem Behavior Urological Manifestations Metabolic Diseases Prostatic Diseases Uterine Cervical Diseases Uterine Cervical Neoplasms Uterine Cervical Neoplasms Cerebral Palsy Fetal Growth Retardation Metabolic Syndrome Pruritus Neoplasms Cerebrovascular Disorders Chemically-Induced Disorders Child Development Disorders Child Development Disorders Chronic Pain Chronic Pain Canglion Cysts Chronic Pain Chronic Pain Chronic Pain Chronic Pain Castrointestinal Diseases Gastrointestinal Diseases Muscular Diseases Muscular Diseases Muscular Diseases Muscular Diseases Muscular Diseases Muscular Diseases Neight Gain Reading Mental Disorders Problem Behavior Urological Manifestations Uterine Cervical Neoplasms Uterine Cervical Neoplasms Uterine Diseases Uterine Diseases Uterine Diseases Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Vascular Diseases Psychotic Disorders Vascular System Injuries Virus Diseases Quadriplegia Virus Diseases Multiple Sclerosis, Radiation Injuries Wasting Syndrome Weight Gain Relapsing-Remitting Muscular Diseases Red Sleep Behavior	Carotid Artery Diseases	Essential Hypertension		Precancerous Conditions		
Central Nervous System Diseases Central Nervous System Diseases Central Nervous System Infections Central Nervous System Infections Central Nervous System Infections Central Nervous System Infections Central Nervous System Neoplasms Cerebral Infarction Cerebral Infarction Cerebral Infarction Cerebral Palsy Cerebral Palsy Fetal Growth Retardation Cerebral Disorders Chemically-Induced Disorders Child Development Disorders Chronic Graft Versus Host Disease Chronic Graft Versus Host Disease Chronic Graft Versus Host Chronic Periodontitis Chronic Periodontitis Cognitive Dysfunction Central Nervous System Fetal Growth Retardation Metabolic Diseases Metabolic Diseases Metabolic Diseases Prostatic Diseases Uterine Cervical Diseases Uterine Cervical Diseases Uterine Cervical Diseases Prostatic Diseases Uterine Cervical Diseases Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Pregnancy Complications Utrologic Diseases Uterine Cervical Diseases Prostatic Diseases Prostatic Diseases Prostatic Diseases Prostatic Diseases Prostatic Diseases Uterine Cervical Diseases Uterine Cervical Diseases Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Problem Behavior Utrological Manifestations Problem Behavior Utrological Manifestations Uterine Cervical Diseases Psychomotor Agitation Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Uterine Neoplasms Problem Behavior Uterine Cervical Diseases Psychomotor Agitation Uterine Diseases Psychomotor Disorders Vascular Diseases Vascular Diseases Prostatic Diseases Uterine Cervical Diseases Psychomotor Agitation Uterine Neoplasms Utrological Manifestations Uterine Cervical Diseases Psychomotor Agitation Vierine Neoplasms Utrological Manifestations Uterine Neoplasms Uterine	Carotid Stenosis	Carotid Stenosis Eye Diseases		Prediabetic State		
Diseases Central Nervous System Infections Central Nervous System Infections Central Nervous System Neoplasms Central Nervous System Neoplasms Cerebral Palsy Cerebral Infarction Cerebral Palsy Cerebral Palsy Cerebrovascular Disorders Chemically-Induced Disorders Child Development Disorders Chronic Graft Versus Host Diseases Chronic Pain Chronic Periodontitis Chronobiology Disorders Chronobiology Disorders Cognitive Dysfunction Central Nervous System Fetal growth Retardation Mental Disorders Mental Disorders Mental Disorders Problem Behavior Urological Manifestations Uterine Cervical Diseases Prostatic Diseases Pr	Cataract		Melanoma	Pregnancy Complications	Ulcer	
Infections Central Nervous System Neoplasms Cerebral Infarction Cerebral Infarction Cerebral Palsy Cerebral Palsy Cerebral Palsy Cerebrovascular Disorders Chemically-Induced Disorders Chidl Development Disorders Chronic Graft Versus Host Diseases Chronic Pain Chronic Pain Chronobiology Disorders Cognitive Dysfunction Central Nervous System Neoplasms Feeding and Eating Mental Disorders Metabolic Diseases Metabolic Diseases Metabolic Diseases Prostatic Diseases Prostatic Diseases Uterine Cervical Diseases Uterine Cervical Neoplasms Uterine Diseases Uterine Cervical Diseases Psychomotor Agitation Wetabolic Syndrome Pruritus Neoplasms Pruritus Neoplasms Uterine Pervical Diseases Uterine Cervical Diseases Uterine Cervical Diseases Uterine Cervical Neoplasms Psychomotor Disorders Uterine Diseases Uterine Cervical Diseases Psychomotor Agitation Uterine Diseases Uterine Cervical Diseases Uterine C	,	Fatigue	Menopause	Premature Birth	Urogenital Neoplasms	
Neoplasms Cerebral Infarction Fetal Diseases Cerebral Palsy Fetal Growth Retardation Metabolic Diseases Prostatic Diseases Uterine Cervical Diseases Uterine Cervical Diseases Uterine Cervical Diseases Uterine Cervical Diseases Uterine Cervical Diseases Uterine Cervical Diseases Neoplasms Pruritus Neoplasms Cerebrovascular Disorders Chemically-Induced Disorders Child Development Disorders, Pervasive Chromosome Disorders Chronic Graft Versus Host Disease Chronic Pain Chronoic Pain Chronoic Periodontitis Chronoic Periodontitis Chronoic Pain Cognition Disorders Cerebral Infarction Fetal Diseases Metabolic Diseases Metabolic Diseases Metabolic Diseases Metabolic Diseases Prostatic Diseases Uterine Cervical Diseases Uterine Cervical Diseases Uterine Cervical Diseases Vuetrine Cervical Diseases Uterine Cervical Diseases Uterine Cervical Diseases Uterine Cervical Diseases Vuetrine Cervical Diseases Uterine Cervical Diseases Vuetrine Vuetrine Versus Diseases Vaecular Diseases Vascular Diseases Vas				Primary Dysautonomias	Urologic Diseases	
Cerebral Palsy Fetal Growth Retardation Metabolic Syndrome Pruritus Uterine Cervical Neoplasms Cerebrovascular Disorders Chemically-Induced Disorders Child Development Disorders Chronic Graft Versus Host Disease Chronic Pain Chronic Pain Chronobiology Disorders Chronobiology Disorders Cognitive Dysfunction Cerebrovascular Disorders Fever Migraine Disorders Psychomotor Agitation Psychomotor Disorders Psychomotor Di	,	0	Mental Disorders	Problem Behavior	Urological Manifestations	
Cerebrovascular Disorders Cerebrovascular Disorders Chemically-Induced Disorders Child Development Disorders, Pervasive Chromosome Disorders Chronic Graft Versus Host Disease Chronic Pain Chronic Periodontitis Chronobiology Disorders Choronic Disorders Cognitive Dysfunction Cerebrovascular Disorders Fever Migraine Disorders Psychomotor Agitation Mouth Diseases Psychomotor Disorders Psychomotor Agitation Utterine Diseases Psychomotor Disorders Psychomotor Disorders Psychomotor Disorders Psychomotor Disorders Psychomotor Disorders Psychomotor Agitation Utterine Diseases Psychomotor Disorders Puerperal Dis	Cerebral Infarction	Fetal Diseases	Metabolic Diseases	Prostatic Diseases		
Chemically-Induced Disorders Child Development Disorders, Pervasive Chromosome Disorders Chronic Graft Versus Host Disease Chronic Pain Chronic Periodontitis Chronobiology Disorders Chronobiology Disorders Cognitive Dysfunction Chronic Passus Host Gastrointestinal Cognitive Dysfunction Chronic Passus Host Cognitive Dysfunction Chronic Passus Host Cognitive Dysfunction Chronic Passus Host Chronic Passus	Cerebral Palsy	Fetal Growth Retardation	Metabolic Syndrome	Pruritus		
Disorders Child Development Disorders, Pervasive Chromosome Disorders Chronic Graft Versus Host Disease Chronic Pain Chronic Periodontitis Chronic Periodontitis Chronobiology Disorders Chromosome Disorders Chronic Gastroesophageal Reflux Cognitive Dysfunction Cognitive Dysfunction Child Development Disorders Flaviviridae Infections Mouth Diseases Psychotic Disorders Vascular Diseases Psychotic Disorders Vascular Diseases Psychotic Disorders Vascular Diseases Psychotic Disorders Vascular Diseases Quadriplegia Virus Diseases Quality of Life Vision Disorders Radiation Injuries Wasting Syndrome Multiple Sclerosis, Relapsing-Remitting Muscular Atrophy Recurrence REM Sleep Behavior		Fever	Migraine Disorders	Psychomotor Agitation	Uterine Diseases	
Disorders, Pervasive Chromosome Disorders Chronic Graft Versus Host Disease Chronic Pain Chronic Periodontitis Chronic Periodontitis Chronic Posorders Chronic Posorders Chronic Periodontitis Castroesophageal Reflux Cognitive Diseases Chronic Piscases Mucositis Multiple Sclerosis Radiation Injuries Wasting Syndrome Multiple Sclerosis, Relapsing-Remitting Muscular Diseases Muscular Diseases REM Sleep Behavior	Disorders	Fibrosis	Mood Disorders	Psychomotor Disorders	Uterine Neoplasms	
Chronic Graft Versus Host Disease Chronic Pain Chronic Pain Chronic Periodontitis Chronobiology Disorders Chronobiology Disorders Cognitive Dysfunction Chronobiology Chronic Pain Ganglion Cysts Mucositis Multiple Sclerosis Multiple Sclerosis Radiation Injuries Wasting Syndrome Multiple Sclerosis, Relapsing-Remitting Muscular Atrophy Recurrence REM Sleep Behavior		Flaviviridae Infections	Mouth Diseases	Psychotic Disorders	Vascular Diseases	
Disease Chronic Pain Chronic Periodontitis Chronobiology Disorders Cognitive Dysfunction Chronic Pain Chronic Pain Ganglion Cysts Mucositis Multiple Sclerosis Multiple Sclerosis Relapsing-Remitting Muscular Diseases Muscular Diseases Muscular Diseases Quadriplegia Virus Diseases Quadriplegia Virus Diseases Virus Diseases Virus Diseases Wasting Syndrome Multiple Sclerosis, Relapsing-Remitting Muscular Atrophy Recurrence REM Sleep Behavior		Fractures, Bone	Movement Disorders	Puerperal Disorders	Vascular System Injuries	
Chronic Periodontitis Gastroenteritis Multiple Sclerosis Radiation Injuries Wasting Syndrome Chronobiology Disorders Gastroesophageal Reflux Cognition Disorders Gastrointestinal Diseases Gastrointestinal Diseases Gastrointestinal Muscular Atrophy Recurrence Weight Loss Multiple Sclerosis Radiation Injuries Wasting Syndrome Multiple Sclerosis, Relapsing-Remitting Muscular Atrophy Recurrence Weight Loss REM Sleep Behavior		Frailty	Mucinoses	Quadriplegia	Virus Diseases	
Chronobiology Disorders Gastroesophageal Reflux Cognition Disorders Gastrointestinal Diseases Gastrointestinal Diseases Gastrointestinal Muscular Atrophy Recurrence Weight Loss Multiple Sclerosis, Radiodermatitis Weight Gain Muscular Atrophy Recurrence Weight Loss REM Sleep Behavior						
Cognitive Dysfunction Cognitive Dysfunction Cognitive Dysfunction Cognitive Dysfunction Cognitive Dysfunction Gastroinesopnageal Reflux Relapsing-Remitting Muscular Atrophy Relapsing-Remitting Muscular Atrophy Recurrence REM Sleep Behavior	Chronic Periodontitis	Gastroenteritis		Radiation Injuries	Wasting Syndrome	
Cognitive Dysfunction Gastrointestinal Muscular Diseases REM Sleep Behavior			Relapsing-Remitting		6	
	Cognition Disorders		Muscular Atrophy		Weight Loss	
	Cognitive Dysfunction		Muscular Diseases			

 $\textbf{Table 3.} \ \ \text{Each category corresponds to a single trial for melatonin effect}(s).$

Acanthosis Nigricans Acid-Base Imbalance Acidosis	Chromosome Deletion Chronic Disease Cluster Headache	Hepatitis Hepatitis A Hepatitis C	Marijuana Abuse Melanosis MELAS Syndrome	Prognathism Prostatic Hyperplasia Prostatic Neoplasms
Acquired Immunodeficiency Syndrome	Colic	Hepatitis C, Chronic	Memory Disorders	Psychophysiologic Disorders
ACTH-Secreting Pituitary Adenoma	Colonic Neoplasms	Hepatitis, Chronic	Mental Retardation, X-Linked	Rare Diseases
Acute Coronary Syndrome	Colorectal Neoplasms	Hepatitis, Viral, Human	Metabolism, Inborn Errors	Retinal Degeneration
Acute Mountain Sickness	Communication Disorders	Herpes Genitalis	Microvascular Angina	Retrognathia
Adamantinoma	Constipation	Herpes Simplex	Migraine with Aura	Rupture
Adrenal Gland Diseases	Contusions	Herpesviridae Infections	Migraine without Aura	Salivary Gland Diseases
Adrenal Insufficiency	Craniopharyngioma	Hip Fractures	Monosomy	Śarcopenia
Adrenocortical Hyperfunction	Crohn Disease	Hip Injuries	Mouth Neoplasms	Scoliosis
Aggression	Cushing Syndrome	HIV Infections	Mouth, Edentulous	Seizures, Febrile
Alcohol Drinking	Delayed Emergence from Anesthesia	Hodgkin Disease	Multiple Myeloma	Self-Injurious Behavior

Biomolecules **2023**, 13, 943 6 of 26

Table 3. Cont.

Alternating Hemiplegia of	Dengue	Hodgkin Lymphoma	Multiple System Atrophy	Septo-Optic Dysplasia
Childhood	O		Myocardial Reperfusion	Septo-optic Dysplasia
Altitude Sickness	Dengue Fever	Huntington Disease	Injury Myofascial Pain	Spectrum Severe Acute
Alveolar Bone Loss	Dentofacial Deformities Depressive Disorder,	Hyperadrenalism	Syndromes Narcotic-Related	Respiratory Syndrome Sex Chromosome
Ameloblastoma	Treatment-Resistant	Hyperandrogenism	Disorders	Disorders
Amino Acid Metabolism, Inborn Errors	Diabetes Insipidus	Hyperpigmentation	Neonatal Sepsis	Sexually Transmitted Diseases
Anaplastic Oligoastrocytoma	Diabetes Insipidus, Neurogenic	Hypertension, Portal	Neoplasms, Neuroepithelial	Sexually Transmitted Diseases, Viral
Aneuploidy	Diarrhea	Hypertension, Pregnancy-Induced	Neoplasms, Plasma Cell	Shy-Drager Syndrome
Anodontia	Diffuse Large B-Cell Lymphoma	Hypo-hidrotic Ectodermal Dysplasia	Neoplasms, Squamous Cell	Skin Abnormalities
Anorexia Nervosa	DNA Virus Infections	Hypokinesia	Nervous System Malformations	Skin Diseases, Infectious
Aortic Aneurysm	Drug-Resistant Epilepsy	Hypopituitarism	Neuromuscular Manifestations	Skin Diseases, Viral
Aortic Aneurysm, Abdominal	Drug-Related Side Effects and Adverse Reactions	Hypotension	Night Eating Syndrome	Somatoform Disorders
Aortic Diseases	Dysbiosis	Hypotension, Orthostatic	Nocturia	Speech Disorders
Aphasia Arbovirus Infections	Dyskinesia, Drug-Induced Dysmenorrhea	Hypothalamic Diseases Hypothalamic Obesity	Nocturnal Enuresis Obesity, Morbid	Spinal Curvatures Spinal Diseases
Arthritis, Juvenile	Ear Diseases	Idiopathic Hypersomnia	Oligoastrocytoma	Squamous Cell Carcinoma of Head and Neck
Arthritis, Rheumatoid	Ectodermal Dysplasia	Immunoproliferative Disorders	Opioid-Related Disorders	Stillbirth
Atrial Fibrillation	Ectodermal Dysplasia 1, Anhidrotic	Inborn Amino Acid Metabolism Disorder	Optic Nerve Diseases	Stress Disorders, Traumatic, Acute
B-cell Lymphoma	Emaciation	Influenza, Human	Optic Nerve Hypoplasia	Substance Withdrawal Syndrome
Back Pain Bacteremia	Endotoxemia Enterovirus Infections	Intestinal Neoplasms Intracranial Aneurysm	Oral Cancer Oral Leukoplakia	Śunburn Tachycardia
Barrett Esophagus	Enuresis	Intracranial Arterial Diseases	Oral Squamous Cell Carcinoma	Tachycardia, Sinus
Binge-Eating Disorder	Epilepsy, Generalized	Intracranial Hemorrhage, Traumatic	Osteoarthritis	Tardive Dyskinesia
Birth Weight	Epileptic Syndromes	Intraocular Melanoma	Osteoarthritis, Knee	Thoracic Injuries
Blood-Borne Infections	Erythema	Jaw Abnormalities	Osteoporosis, Postmenopausal	Tic Disorders
Bone Neoplasms	Eye Diseases, Hereditary	Jaw Diseases	Otorhinolaryngologic Diseases	Tics
Bone Resorption Borderline Personality	Eye Neoplasms	Lacerations	Pancreatic Cancer	Tinnitus
Disorder	Facies	Language Disorders	Pancreatic Neoplasms	Tobacco Use Disorder
Brain Damage, Chronic Brain Diseases, Metabolic,	Femoral Fractures Fetal Alcohol Spectrum	Leg Injuries	Pelvic Pain	Tooth Abnormalities
Inborn	Disorders	Lennox Gastaut Syndrome	Periodontal Atrophy	Tooth Loss
Bronchial Neoplasms	Fetal Death Fetal Membranes,	Leukoencephalopathies	Phenylketonurias	Tooth, Impacted
Bronchitis	Premature Rupture	Leukoplakia	Photosensitivity Disorders	Tourette Syndrome
Bulimia	Fibromyalgia	Leukoplakia, Oral	Picornaviridae Infections	Trauma and Stressor Related Disorders Trigoninal Autonomic
Bulimia Nervosa	Flavivirus Infections	Lewy Body Disease	Pigmentation Disorders	Trigeminal Autonomic Cephalalgias
Burnout, Psychological Carcinogenesis	Flushing Fragile X Syndrome	Lightning Injuries Liver Failure	Pinealoma Pineocytoma	Unconsciousness Urinary Incontinence
Carcinoma, Bronchogenic	Genital Neoplasms, Male	Low Back Pain	Pituitary ACTH Hypersecretion	Urination Disorders
Carcinoma, Squamous Cell	Headache Disorders, Secondary	Lymphatic Diseases	Pituitary Diseases	Uterine Hemorrhage
Cardiac Conduction System Disease	Hearing Disorders	Lymphoma	Post-Concussion Syndrome	Uveal Diseases
Caregiver Burden	Heat Stress Disorders	Lymphoma, B-Cell	Post-operative Cognitive Complications	Uveal Neoplasms
Central Diabetes Insipidus	Hematoma	Lymphoma, Large B-Cell, Diffuse	Postpartum Hemorrhage	Vector Borne Diseases

Biomolecules **2023**, 13, 943 7 of 26

Table 3. Cont.

Cerebral Hemorrhage	Hematoma, Subdural	Lymphoma, Non-Hodgkin	Postural Orthostatic Tachycardia Syndrome	Viral Hemorrhagic Fever
Childhood Acute Lymphoblastic Leukemia	Hematoma, Subdural, Chronic	Lymphoproliferative Disorders	Prader-Willi Syndrome	Vision, Low
Chorea	Hemiplegia	Lymphosarcoma	Prehypertension	X-linked Hypo-hidrotic Ectodermal Dysplasia
Chorioamnionitis	Hemorrhagic Fevers, Viral	Macular Degeneration	Premenstrual Dysphoric Disorder	Xerostomia
Chromosome 17p Deletion	Hepatic Encephalopathy	Malocclusion, Angle Class III	Premenstrual Syndrome	
Chromosome Aberrations	Hepatic Insufficiency	Mandibular Diseases	Primary Orthostatic Hypotension	

In brief, whenever a clinical trial is launched, if declared on the official site (www. ClinicalTrials.gov, accessed on 23 January 2023, see below), the declaration comprises a series of keywords/categories, according to which the compound tested would have an effect—presumably—on the disease discussed (See Tables 2 and 3 for an exhaustive list of such keywords linked to actual clinical studies, past, present and future).

One should recall (i) all the studies on a compound are not necessarily declared on this site, and (ii), more surprisingly, the data obtained are not necessarily published or made public. They belong to the initiator of the study and remain its property, translating into an absence of published results in most cases.

One should also point out that some of these studies are purely observational, aimed at measuring the levels of melatonin in patients with particular pathological conditions.

5. Clinical Studies

Melatonin is sold over the counter in several Western countries, such as Western Europa and the USA, in doses ranging from 1 to 10 mg. In clinical trials, doses of up to 100 mg have been reported (see Table 4). Several studies on humans showed that 100 mg of melatonin would result in a plasma Cmax of 1,252,500 pg/mL [i.v., bolus [39]] or 101,163 pg/mL [oral [40]]. Incidentally, 100 mg can be considered a huge dosage—the maximal level recorded in the complete review of Harpsøe et al. [41]. This raises the question of the safety of such doses. Because melatonin is considered a natural agent and not a drug, it is accessible without prescription in the USA, Canada and some other Western countries. There have been no large, long-term, high-quality randomized clinical trials specifically addressing melatonin safety in adults or children, probably because no Phase I information is required prior to commencing a clinical trial. It is unlikely that manufacturers and suppliers of melatonin as a dietary supplement would ever sponsor such an expensive trial. Nevertheless, melatonin is said to have a benign safety profile [42], yet this flies in the face of the multitude of physiological systems that melatonin has been associated with that are unrelated to any role in sleep. In a recent review, interactions with the cardiovascular, reproductive, endocrine and metabolic systems in humans were discussed, along with prescription drug interactions [43]. These interactions were discovered in controlled experiments in healthy subjects; we do not know what the effects of melatonin might be for people with cardiovascular diseases, diabetes, cancer, etc. A drug can only be termed safe in relation to what has been investigated. Nevertheless, even in 2023, researchers are calling for studies on the long-term safety of melatonin [44–46]. In the meantime, we are left with a somewhat patchy data collection via poison centers receiving information on adverse events (www.poison.org/accessed on 4 February 2023). Indeed, the review by Vines et al. [47] indicated that no formal safety trials had been performed. All the available information in the public domain comes from poison and other centers, as briefly summarized here: "Health Information" given by the NIH on the side effects of melatonin mentions headaches, dizziness, nausea and sleepiness, with the possible long-term side effects remaining unclear [48]. Furthermore, a recent report by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES) reached a similar conclusion

Biomolecules **2023**, 13, 943 8 of 26

based on 90 responses collected in a nutri-vigilance program between 2009 and 2017 [49], which was complemented by similar data available from other European countries and Canada [50]. Of note, the alert put forward a possible link between melatonin and infant sudden death syndrome [51]. While this study could not directly attribute these infant deaths to the use of melatonin, they concluded that "Melatonin is not known to be acutely toxic; however, it causes a multitude of systemic effects by way of mechanisms of action that are not entirely understood, especially in developing infants." More guidance is critical for parents and pediatricians who use melatonin as a routine sleep aid for young children. This caution is also shared by another group in their recent communication [52] (see also Section 6).

Table 4. Details of the currently recruiting trials on melatonin.

Conditions	Number Patients	Treatment	Duration (Days) (Years)	Observ	vational
Smith-Magenis syndrome	8		1	Mel measure	NCT02180451
Autism	105		3	Mel measure	NCT02878499
Cushing disease	15		90	Mel measure	NCT03343470
Breast Neoplasms	27		270	Mel measure	NCT04364347
Alzheimer's Disease	60		*	Mel measure	NCT04522960
Sleep deprivation	20		32	Mel measure	NCT04868539
Frail Elderly	300		3	Mel measure	NCT05107947
Hypo-hidrotic Ectodermal Dysplasia	80		10	Mel measure	NCT05378932
Bipolar disorder	80		2	Mel measure	NCT05413486
Alzheimer's Disease	164		42	Mel measure	NCT05543681
Sleep Disturbance	60		3	Mel measure	NCT05647148
Hypoxic-ischemic Encephalopathy	70	0.5–5 mg	14		NCT02621944
Delirium	190	4 mg	28		NCT03438526
Multiple Progressive Primary Sclerosis	50	100 mg daily	2		NCT03540485
Alzheimer's Disease	230	5 mg daily	231		NCT03954899
Osteopenia	40	5 mg daily	1		NCT04233112
Attention Deficit Hyperactivity Disorder	80	3 mg daily	0.5		NCT04318067
Postoperative delirium	790	4 mg daily	10		NCT04335968
Huntington's Disease	20	5 mg daily	63		NCT04421339
COVID-19 infection	30	3×10 mg daily	28		NCT04474483
Diabetic Eye Problems	36	3 mg daily	14		NCT04547439
Post-operative pain	60	10 mg 3 days	21		NCT04791943
Osteoarthritis	252	5 mg daily	60		NCT04795336
Traumatic Brain Injury	110	3–5 mg daily	30		NCT04932096
Necrotizing Enterocolitis	100	6 mg daily	150		NCT05033639
Emergence Agitation	117	5 mg pre-op ***	1		NCT05223010
Ischemic Stroke	80	3 mg daily	14		NCT05247125
Hypertension	23	1 mg daily	1		NCT05257291
PD	50	5 mg daily	28		NCT05307770
Epilepsy	120	5 mg daily	28		NCT05439876
Post-menopause insomnia	14	2 mg daily	15		NCT05440734
Chronic Fatigue Syndrome	106	1 mg daily	28		NCT05454683
Uveal Melanoma	100	20 mg daily	5		NCT05502900
Severe Preterm Fetal Growth Restriction	336	3×10 mg daily **	126		NCT05651347

^{*} From 2 days to 2 years. ** Treatment to the mother, not clearly stating for how many days. *** Pre-op means pre-operation.

Interrogating the www.ClinicalTrials.gov site (accessed on 23 January 2023), we found an impressive number (742) of clinical studies on melatonin on the conditions listed in Tables 2 and 3. The condition list can be divided into two parts: the "generic" ones; these 399 conditions regroup several trials (Table 2), for example, "Mental disorders" containing 279 studies, such as "psychosis & sleep", "Rapid Eye Movement, Sleep Behavior Disorder & Parkinson Disease" etc., and the "unique" ones (296), corresponding to a single study, such as "Digestive system diseases or Necrotizing Enterocolitis" or "Bacteremia or Human Endotoxaemia", etc. (Table 3). By tapping the conditions into the search query on the site, one can have access to the trials and their details.

This body of trials comprises all the declared trials in the past, present and future. As a basis for comparison, we did the same query for "resveratrol", a natural product also

Biomolecules **2023**, 13, 943 9 of 26

reported having many beneficial actions in traditional medicine, and found 147 studies, or "vitamin C", and found 453 trials (400 of which are completed). Melatonin has attracted a lot of attention, as the diversity of conditions (and thus of pathological conditions) covers most, if not all, human diseases.

From the trial list, we have removed 118 conditions where the status is "unknown". Another 40 studies were reportedly withdrawn, without obvious reasons, but one might speculate that this was due to difficulties in recruiting patients or to the lack of results, particularly on delirium prophylaxis, Parkinson's disease, coronary artery calcification, intensive care elderly population or "melatonin inhibition of NLRP3 inflammasome in COVID19 patients", to name only but a few.

Looking at the 56 trials currently recruiting, one can separate them into two main categories: observational and interventional. The first section, "observational", comprises all the studies in which the patient's melatonin levels are measured as a function of (i) their pathological conditions and (ii) their daily circadian rhythms. Those studies are basically clinical biochemistry research trials and are extremely useful for our understanding of the dependence of circadian rhythms on pathological conditions. Among the pathological conditions that have been studied are Cushing's syndrome, autism, hypo-hidrotic ectodermal dysplasia, bipolar disorder, frail elderly, etc. The data arising from those studies may be expected to have a major impact on our understanding of how melatonin synthesis and release are influenced by pathological conditions. In our view, those studies are quite important, hopefully leading to scientific paper(s) explaining the results, as those in the Harpsoe et al. review [41], including the negative results in which the melatonin rhythm remains completely "normal".

The intervention group comprises all the studies in which melatonin is tested as a therapeutic agent. Table 4 lists 35 recruiting studies, which are both interventional and observational. It is clear that the conditions studied are numerous and diverse, including cognitive dysfunction, bone diseases, attention deficit and disruptive behavior disorders, bone fractures, chorea, coronavirus infections, diabetes complications, post-operative pain, arthritis and traumatic brain injuries.

Because cancer is one of the most documented and searched domains in pathology, we have selected the trials in which cancer patients were treated with melatonin. Sixty-five studies tested its effectiveness in various cancer-related parameters, such as a loss of appetite, sleep quality, etc. Those studies also comprised trials in which the effects of melatonin as an anti-cancer adjuvant or drug, with direct effects on the disease itself, were reported. Half of the trials are reported as completed (32 studies), yet only the following four had published their results. We have briefly summarized their results and their conclusions:

Trial NCT00513357 (USA): Conclusion: "In cachectic patients with advanced cancer, oral melatonin 20 mg at night did not improve appetite, weight, or quality of life compared with placebo" [53].

Trial NCT00668707 (Canada): Conclusion: "Melatonin may benefit cancer patients who are also receiving chemotherapy, radiotherapy, supportive therapy or palliative therapy by improving survival and ameliorating the side effects of chemotherapy" [54].

Trial NCT00925899 (Denmark): Conclusion: "In the current study, oral melatonin at a dose of 20 mg was not found to improve fatigue or other symptoms in patients with advanced cancer" [55].

Trial NCT04137627 (Indonesia): Conclusion: "In patients with squamous cell carcinoma of the oral cavity, the addition of 20-mg melatonin to neoadjuvant chemotherapy reduced the expression of miR-210 and CD44 and decreased the percentage of tumor residue; however, no statistically significant result was observed".

The survey of those trials currently recruiting is a good image of the other ongoing trials: from those using small to large dosages of melatonin, 50 to 100 patients, spanning a month to more than a year. We would argue that the spectrum of diseases and/or conditions cannot seriously be attributed to a single melatonin-related cause.

It is very often under-regarded that melatonin has poor bioavailability. Indeed, the vast majority (>80%) of melatonin is hydroxylated by cytochrome P450 [56], conjugated with sulphate or glucuronic acid and excreted as conjugates [57], which is a classical scheme in drug metabolism. Melatonin is also a substrate of the indoleamine 2,3-dioxygenase, leading to the opening of the indole cycle, leading to AFMK (N1-acetyl-N2-formyl-5-methoxykynurenamine), which is then rapidly metabolized further to AMK (N1-acetyl-5-methoxykynurenamine) [58].

The wide range of dosages for the patients undergoing these recruiting trials varies from 0.5 to 100 mg, with most of them in the low milligram range. Once again, one should recall that at low 'physiological' doses—those in the 1 to 3 mg range, the resulting C_{max} is low (~10 nM), even if it is two orders of magnitude higher than the nocturnal produced level. If one is given 100 mg, the circulating concentration of the compound is in the 0.5 μ M range [40], as reviewed by Harpsoe et al. [41], although both concentrations vary widely between the various studies. Furthermore, the first pass principle of drug metabolism [59] clearly states that roughly half of the dose in the blood is eliminated by the liver minutes after ingestion and even shorter if injected intravenously [60]. This principle translates into the fact that melatonin remains in the μ M range concentrations in the blood for a few minutes.

In the preclinical studies upon which trials are usually based, melatonin was generally used at concentrations higher than 1 μ M—and even 1 mM. Thus, those concentrations are not expected to be naturally reached in living animals or in humans, and certainly not for prolonged periods. Thus, the transposition to clinical trials of those data might be considered more an act of faith than an experimental reality.

The main issue to be considered here is that nearly 4000 patients have entered these trials and have been treated with 0.5 mg to 100 mg melatonin daily. Furthermore, some of those studies are designed to run for very long periods (for several years, in some cases). In one clinical trial on melatonin and autoimmune diseases (ClinicalTrials.gov Identifier: NCT03540485, accessed on 23 January 2023), it is planned that 50 patients recruited because of their neurological conditions will receive a daily administration of 100 mg of melatonin, or a placebo, orally between 10 pm and 11 pm for 24 months. Finally, several studies are using newborn children (from a few hours to a few days old) with quite desperate health conditions—a feature that is commented on below.

In a survey (meta-analysis) of melatonin used for cardio-protection, the authors stated that the data was difficult to generalize due to the numerous possible biases, the low number of patients and their high heterogeneity [61]. Note that the combined number of patients was 396, half of which were tested with a placebo across six studies. Three of these studies were labeled as 'no or poor effect' (of melatonin as cardio-protectors). The doses were from 12 to 50 mg orally plus 1 or 2 mg intracoronary. Finally, the only study where the myocardial IR injury site was assessed using resonance imaging was classified as 'no effect' [62,63]. Incidentally, one of those articles stated, "... treatment with melatonin was associated with a larger infarct size in the group of patients" [63].

In conclusion, many clinical studies appear to have been based on scientifically poor experimental (preclinical) studies or overenthusiastic interpretations of the preclinical experimental data, thus explaining the overall poor outcome of these studies. The use of small populations of patients—elderly people as well as infants and toddlers in desperate health conditions—may have ethical considerations.

6. Melatonin in Kids

The first reports of the administration of melatonin to children were conducted by Jan and colleagues more than 28 years ago [64–66] in attempts to modify their disordered sleep resulting from neurodevelopmental disorders or blindness. Since that time, there have been many studies published on the pediatric use of melatonin, generally in children with comorbidities, such as autism spectrum disorder or attention deficit/hyperactivity disorder [44], as opposed to typically developing children with sleep problems. The

majority of studies conducted in both adults and children have been small and short-term, although there are reports of treatments continuing for many years outside of the trials. The melatonin used in trials has usually been an immediate release preparation from non-pharmaceutical companies (dietary supplement manufacturers or chemical suppliers), with the first pharmaceutical preparation, Circadin, being approved in Europe in 2007. Circadin, a prolonged-release formulation, is authorized for the short-term treatment of primary insomnia in adults aged 55 years and older. It was not until 2018 that a formulation, Slenyto, was approved in Europe for the treatment of insomnia in children from 2 years of age with autism spectrum disorder and Smith–Magenis syndrome. With respect to the efficacy of melatonin in improving sleep in children presenting with sleep disorders, there is evidence that melatonin can have a role in those with neurodevelopmental disorders [42,67,68]; however, the effects are modest [43].

Since melatonin in the USA is not considered a drug, there is no requirement to report adverse events. The latest such report, covering 2012–21, documented more than 250,000 pediatric ingestions, 45,000 symptomatic effects, 3211 serious outcomes and 2 deaths [69]. Further, unintentional melatonin ingestion and its related hospitalizations and serious outcomes are increasing in the USA [69]. A separate recent study reported seven undetermined deaths of infants and toddlers with high exogenous melatonin as a result of deliberate or incidental ingestion of melatonin [51]. Based on these observations, careful evaluation and caution might be wise before administering melatonin to young children.

It is true that one cannot be sure that melatonin played a significant role in the deaths of infants. It is, however, an indication that melatonin is being recklessly administered to children in the absence of any formal safety information. Even the pharmaceutical companies that sell melatonin say not to take melatonin during pregnancy or when breastfeeding.

The uncertainty about the use of (high dosages of) melatonin by mothers during pregnancy and lactation remains. Indeed, in their thorough review of the subject, Vine et al. [47] concluded, "clinical studies to date suggest that melatonin use during pregnancy and breastfeeding is probably safe in humans and emphasizes the need for clinical studies ..., including exogenous melatonin, during pregnancy and lactation". The key word, for us, is certainly "probably safe". To the best of our knowledge, no actual trial results whose primary outcomes were the safety or efficacy of melatonin for insomnia or other sleep disorders during pregnancy and lactation have been issued. Furthermore, no trial comprising "lactation" has been declared on the trial site.

Overall, our feeling is that, while the study could not directly attribute the deaths to the use of melatonin, they concluded that "Melatonin is not known to be acutely toxic; however, it causes a multitude of systemic effects by way of mechanisms of action that are not entirely understood, especially in developing infants. More guidance is critical for parents and pediatricians who use melatonin as a routine sleep aid for young children" [51].

7. Some Proposed Mechanisms behind the Claimed Beneficial Effects of Melatonin

7.1. Melatonin as an Antioxidant

7.1.1. Melatonin as a Scavenger

In an initial influential paper, melatonin, as well as other indole-based molecules, was shown to be a good scavenger in an a-cellular system. Then, to render the experiment transposable to a "living" system, the tissue homogenate was added to the medium, and it was found that the trapping operation still occurred. Thus, melatonin was called a scavenger. As a direct consequence, more than 1727 (23 February 2023) articles have been published using the words "melatonin" and "scavenger". The initial publications can be pinpointed to Poeggeler et al. [70] and. The influence of this statement can be seen through the evolution of the number of papers appearing in the literature over the years after this publication (Figure 1A). The possibility that melatonin could be an antioxidant molecule appeared early in 1958. Ever since this date, publications formulating hypotheses

or reporting experiments started to appear in the literature. On 25 March 2023, a query of "melatonin" + "antioxidant" returned 24,271 results (see Figure 1B).

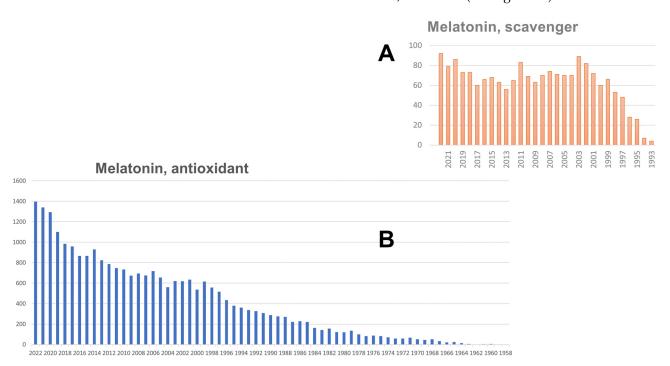


Figure 1. PubMed extraction of queries "melatonin + scavenger" (A); and "melatonin + antioxidant" (B).

The statement that melatonin and many other purported antioxidants are scavengers is common in the introduction of hundreds of publications. We consider the term "scavengers" to be misleading because, while these compounds can react with oxidants, they are generally no more reactive than the thousands of other compounds in cells [71]. Thus, to be 50% effective, they would need to be at a concentration approximately equal to all the other compounds in the cell that could react with the oxidant. In cell culture experiments, scavenging can seem effective; however, it is likely to be because the ratio of the compound to its putative targets is likely thousands of times higher than would occur in vivo [72].

Scavengers do not exist in complex media, living systems, etc. A true antioxidant defense is provided by enzymes that remove superoxide and hydrogen peroxide with rate constants that are hundreds of thousands to more than a million times greater than that of melatonin. For hydroxyl radical, no compound is an effective scavenger, and the antioxidant defense involves the prevention of its formation rather than its removal (see discussions in [73–75]).

Many of the compounds purported to have antioxidant activity can react with Kelchlike erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1), sparing Nrf2 from degradation and thereby activating transcription of the genes for antioxidant enzymes. Several compounds have been reported as such protectors for Keap1 degradation: TBE-31 [76,77], CDDO, a triterpenoid [78], or curcumin and caffeic acid [79,80], to name only but a few. However, many of those compounds also affect other signaling pathways that result in the protection of cells from injury [73].

7.1.2. If Not a Scavenger, Then What?

The toxicity of ROS and oxidative stress is controlled by several enzymes, the activity of which detoxifies ROS, such as the three superoxide dismutases (see discussion in Keller et al. [81]. These enzymes are under the control of oxidative response elements that, once activated, induce their expression. This process is dependent on a nuclear receptor, such as nrf2, and melatonin has been suggested to be able to induce the expression of cellular defenses against oxidative stress (see also discussion in Amoroso et al. [82]). Many years

later, this nuclear receptor has still not been found. Nrf2 might be a candidate [83,84], as might be Hem oxidase 1 [85], or both [86]; however, their role is yet to be experimentally demonstrated (see also Section 7.2).

7.2. Melatonin Nuclear Receptor

The proposed potential role of the nuclear receptors, promoted by many authors, remains an example of the enthusiastic support of a study that has not been reproduced (and thus confirmed) anywhere. In 1994, it was reported that melatonin binds to the receptor RZR α and activates it [87]. Another paper from the same group was published at the same time, reporting the binding affinities of iodo-melatonin in nuclear homogenates from cells in which RZR was cloned and expressed [88], which has been cited ever since 314 times. After several years of unsuccessful attempts to confirm the results in several laboratories, the 1994 paper was withdrawn in 1997 [89]. It has been cited and was continued to be cited 546 times, including 271 times since it was retracted. One possible explanation for that might be the seductiveness of the idea of a nuclear melatonin receptor, knowing that melatonin easily penetrates cells and nuclei, and the number of reported transcriptional effects of melatonin. The goal of the community is to discover the nuclear factor that is activated by melatonin leading to the neo-synthesis of antioxidant proteins, possibly explaining the melatonin antioxidant properties. The possibility that melatonin could be an antioxidant molecule appeared early in the 1990s [90]. Ever since this date, experiments and hypotheses publications started to appear in the literature; as a query, "melatonin" + "antioxidant" returned 24,271 results on 25 March 2023 (see Figure 1B).

7.3. Melatonin in Bacteria and Mitochondria

The idea that bacteria produce melatonin has been formulated in statements such as the following one: "Evolution's best idea" is that melatonin is supposedly produced in bacteria. From there, because bacteria colonized cells several million years ago, eukaryotic cells became mitochondria; mitochondria are thus full of melatonin. Additionally, melatonin is there to protect mitochondria, cells and living organisms from oxidative stress [91].

7.3.1. Melatonin in Bacteria

This statement can be challenged as follows:

Melatonin synthesis in microorganisms has been reviewed by Que et al. [92]. Indeed, numerous yeast, protozoa and algae are reported as capable of synthesizing the hormone, as optimistically reportedly reviewed by Hardeland et al. [93,94]. Algae, protozoa and fungi are eukaryotic organisms. On the contrary, bacteria are prokaryotic organisms, and they might have the capacity to synthesize melatonin, as reported in just six publications, listed in Table 5.

Table 5. Bacteria that	produce melatonin,	as reported by Que et al.	[92].
-------------------------------	--------------------	---------------------------	-------

Bacteria Type	Reference	Comments (See Text)
Cyanobacteria,	[95]	Comment A
Rhodospirillum rubrum	[95,96]	Comments A & B
Bacillus cereus CS-17	[97]	Comment C
Ensifer sp. VA11,	[97]	Comment C
Pseudomonas sp.	[97]	Comment C
Variovorax sp.	[97]	Comment C
Agrobacterium tumefaciens	[97]	Comment C
Bacillus amyloliquefaciens	[97]	Comment C
Bacillus thuringiensis	[97]	Comment C
Sphingomonas sp.	[97]	Comment C
Bifidobacterium breve,	[98]	Comment D
Lactobacillus brevis,	[98]	Comment D
Lactobacillus casei,	[98]	Comment D
Bifidobacterium longum,	[98]	Comment D

Table 5. Cont.

Bacteria Type	Reference	Comments (See Text)
Enterococcus faecalis TH10,	[98]	Comment D
Lactobacillus acidophilus,	[98]	Comment D
Lactobacillus bulgaricus,	[98]	Comment D
Lactobacillus fermentum,	[98]	Comment D
Lactobacillus helveticus	[98]	Comment D
Lactobacillus plantarum,	[98]	Comment D
Streptococcus thermophilus,	[98]	Comment D
Erythrobacter longus,	[99]	Comment E

Color code: **green**: melatonin synthesis proven; **orange**: melatonin synthesis claimed (by patents); **red**: absence of melatonin synthesis reported.

It is interesting to look closely at those articles cited to provide **proof** of bacterial melatonin synthesis.

- A. In an article by Byeon and Back on the cloning of *E. coli* using the necessary enzymatic machinery for this bacterium to produce melatonin, the only mention of two bacterial melatonin productions is in the following sentence: "Melatonin is predicted to have evolved from the precursor bacteria of mitochondria and chloroplasts, such as *Rhodospirillum rubrum* and *Cyanobacteria*, respectively, via an endosymbiotic event with their ancestral eukaryotic host" [95]. This is not evidence of these bacteria producing melatonin.
- B. Manchester et al. reported a melatonin immunoreactivity in this *Rhodospirillum rubrum* [96]; however, this observation has never been reported independently, nor has melatonin been directly measured in the bacterium. Given the capital importance of *Rhodospirillum rubrum* and other purple non-sulfur bacteria, predicted to be at the origin of mitochondria according to the endosymbiotic theory of mitochondria [100], it is surprising that no more effort has been spent to clarify this point.
- C. Jiao et al. [97] reported a thorough study on eight strains of bacteria and found melatonin in only four: *Agrobacterium tumefaciens, Bacillus amyloliquefaciens, Bacillus thuringiensis* and barely in *Pseudomonas* sp.
- D. A review by Tan et al., while not providing any experimental data on bacteria melatonin production [98], stated that a series of Lactobacillus had been patented for their production of melatonin. Furthermore, they wrote: "If these speculations are valid, the beneficial effects in consumption of these products may, at least partially, be explained by the presence of melatonin and its isomers" [98]. This statement was later used as evidence that several *Lactobacillus* produce melatonin. For example, in a trial on abdominal pain in children, Lactobacillus and exogenous melatonin were used for the health of the patient [101], as if melatonin produced by *Lactobacillus* was not enough to obtain the desired effect. In another study, melatonin was shown to increase the amount of Lactobacillus previously decreased by sleep deprivation as if the production of melatonin by *Lactobacillus* was not enough to counterbalance the decrease in circulating melatonin [102]. Finally, in an earlier study on the possible relationship between several "antioxidant" molecules and their capacity to inhibit bacterial growth in the presence of mycotoxins, melatonin did not show any significant effect on the growth of *Lactobacillus* [103]; however, if this bacterium produces melatonin, those authors should have seen an effect of the addition of melatonin to the bacteria. In conclusion, the situation of Lactobacillus as a source of melatonin production remains, at the very least, unclear.
- E. In *Erythrobacter longus*, Tilden et al. [99] reported the presence of melatonin by using a radioimmunoassay, although there is reason to be cautious when using immunoassay melatonin by radioimmunoassay in complex matrices [2,104].

Very recently, Chen et al. reported the discovery of the gene encoding for a serotonin *N*-acetyltransferase gene, xoSNAT3, in the bacteria *Xanthomonas oryzae* [105]. The synthetic

Biomolecules 2023, 13, 943 15 of 26

melatonin capacity of this bacterium was not reported in this paper, nor was the presence of melatonin. This very large family of enzymes has been reported from many organisms [106], including by us [107,108]; however, its expression does not grant the capacity to synthesize melatonin.

We conclude that whether bacteria widely produce melatonin remains to be proven.

7.3.2. Melatonin in Mitochondria

Melatonin is claimed to be present/enriched in mitochondria [91,109].

However, robust and, in particular, quantitative data are not available. To our knowledge, massive amounts of melatonin have not been reported in mitochondria. Furthermore, if melatonin is a ROS scavenger, it would be expected to be transformed into hydroxy-melatonin or possibly into a kynurenamine, as shown by mass spectrometry analyses [110,111]. To the best of our knowledge, the generation of such metabolites was never directly correlated with the trapping of ROS by melatonin in mitochondria—or in other systems. However, 2-hydroxymelatonin, 4-hydroxymelatonin and 6-hydroxymelatonin have been reported in various other situations. Further examples are 2-hydroxymelatonin in the signaling pathways in Arabidopsis [112], the generation of 6- and 2-hydroxymelatonin upon the action of cytochrome P450 on melatonin [113] or the a-cellular system scavenging property of 4-hydroxymelatonin, which was described as superior to that of 2-hydroxymelatonin [114].

It is assumed that the mitochondria occupy a tenth to a twentieth of the total cellular volume [115]. Therefore, any concentration of melatonin in the mitochondria would translate as its tenth or twentieth volume in the whole cells. Assuming a high concentration of melatonin in mitochondria of 1 mM for its role in neutralizing ROS production, it would lead to cell homogenates in a melatonin concentration of ca. 50 to 100 μM (~12 to 23 μg/mL). A feature never measured in the literature is where, in blood, the melatonin concentration during the night is about 60 to 70 pg/mL [116], up to 300 pM. Similarly, in sheep brain tissue, melatonin concentrations of ~1 nM (i.e., 232 pg/mL) and 10 nM have been measured during the day and night, respectively [117]. This would translate into a concentration 10 times higher in mitochondria: 10 to 100 nM, which is far from any capacity to protect those organelles from ROS injuries. One can argue that melatonin concentrations are not in equilibrium between mitochondria and the rest of the cell because mitochondria have the capacity to either enrich melatonin or retain the melatonin synthesized in mitochondria. However, for the moment, there is no experimental evidence supporting these hypotheses. The well-characterized physical properties of melatonin show that exogenous melatonin equilibrates within seconds with the cytoplasm, confirming that melatonin crosses biological membranes rapidly [118].

The question of intra-mitochondrial melatonin synthesis has been recently reexamined by Suofo et al. [119]. The authors identified, using a Western blot, the two enzymes of the biosynthesis pathway, AANAT and ASMT, in preparations of purified mouse nonsynaptosomal brain mitochondria. These bands were fully resistant to proteinase K digestion and digitonin treatment, indicating their localization in the mitochondrial matrix. In contrast to the pineal AANAT levels, these mitochondrial AANAT levels did not change along the circadian cycle. The authors demonstrated further that, in mouse neuroblastoma (N2a) cell knockout for AANAT, mitochondrial-generated superoxide production was increased. No alteration of the mitochondrial membrane potential was seen in these cells. In an attempt to address melatonin synthesis in mitochondria more directly, purified mitochondria were treated with deuterated (d4)-serotonin, the AANAT substrate. The generation of d4-n-acetylserotonin and d4-melatonin was observed by mass spectrometry, indicating that mitochondria can indeed synthesize melatonin if the serotonin precursor is available. These data represent, by far, the most convincing dataset in support of melatonin synthesis in mitochondria. However, several important questions still have to be solved. Furthermore, as whole-brain mitochondria were used, the question of whether melatonin synthesis can occur in the mitochondria of all brain cells or of a subset of cells is unknown. Biomolecules 2023, 13, 943 16 of 26

Whether this capacity of melatonin synthesis also exists in mitochondria from other tissues remains to be studied, as the quantity of mitochondria varies widely from cell type to cell type, and the repertoire of proteins imported into mitochondria largely depends on the cell type. Importantly, whether the generated quantities of melatonin are significant or anecdotal remains an open question, as no quantitative conclusion can be drawn from the data presented by Suofo et al. [119]. To show that melatonin is really synthesized by mitochondria in vivo, in other words, whether the precursor concentrations and enzyme levels are sufficient, remains an important goal for future studies.

7.3.3. Conclusions

In summary, evidence on melatonin synthesis in bacteria remains weak and warrants independent replications. Other bacterial strains should be investigated to determine how generalizable they are. Studies should focus on *Rhodospirillum rubrum* and related species to provide evidence for the assumption that mitochondria are producing melatonin because the bacteria engulfed millions of years ago already produced this molecule. Collectively, the experimental evidence for melatonin synthesis in mitochondria and, in particular, its quantitative aspects and generalization to all mitochondria-containing cells is still weak. This includes the presence of its main precursors, such as serotonin, as well as its main metabolites that could be expected, assuming the highly oxidative environment of the mitochondrial matrix.

7.4. Melatonin as a Co-Substrate of NQO2

Although not really related to the previous points but providing an example of how ideas may emerge, a third melatonin receptor was reported [120] and systematized later on, particularly with a specific ligand, MCA-NAT [121,122]. The identity between this third melatonin binding site and the enzyme NQO2 has been reported [123,124]. In the following years, a mini-review was published hypothesizing that melatonin is, in fact, a co-substrate of NQO2 [125]. That would explain how melatonin regulates the antioxidant capacity of the enzyme. This hypothesis was then experimentally tested by another group and proven to be wrong [126]. Despite the disapproval of the initial hypothesis, it still continued to be mentioned in the literature by citing the mini-review with some citations, even transforming the hypothesis into a fact. Unfortunately, this persistence of the wrong hypothesis may have retarded the field by redirecting future research in the wrong direction.

8. Melatonin Has Many Effects and Targets

The suspected beneficial effect of melatonin in such a large spectrum of diseases is often justified by the involvement of melatonin in a large spectrum of biological processes, as reported in preclinical (cellular and animal) studies. To illustrate this diversity in terms of the melatonin effects, the following 30 randomly selected examples were extracted from a PubMed interrogation with the words "melatonin" and "inhibit", which retrieved 400 items in total between 2018 and the end of 2022.

In also the following publications, the effect of melatonin is associated with a molecular target (IGF1, CYP, Akt, etc.) in a way that might suggest to the reader that melatonin is indeed binding to those targets. This is not the case; in most of the publications, the authors suggest that melatonin does "something" that leads to a pathway acting through one of these proteins without convincingly demonstrating a molecular interaction between melatonin and a protein. Melatonin protects from experimental models of newborn hypoxicischemic brain injury via the MT_1 receptor [127]. Melatonin inhibits LH + insulin-like growth factor 1 (IGF1)-induced androstenedione and progesterone production as well as the expression of steroidogenic acute regulatory protein (StAR) mRNA (via real-time polymerase chain reaction) in Theca cells. Melatonin has no effect on cytochrome P450 11A1 (CYP11A1) and cytochrome P450 17A1 (CYP17A1) mRNA abundance [128]. Melatonin increases apoptosis, induced by cisplatin, by inhibiting the JNK/Parkin/mitophagy axis [129]. Melatonin elevates α -ketoglutarate and diverts adipose-derived exosomes to

Biomolecules **2023**, 13, 943 17 of 26

macrophages in mice [130]. Melatonin downregulates the expression of the dynaminrelated protein 1 [131]. Melatonin restores mitochondrial normalcy after MPTP treatment in zebrafish [132]. Melatonin (3 mM), combined with 20 nM of rapamycin, suppresses the AKT/mTOR pathway activation, mitophagy and apoptosis via the regulation of mitochondrial function(s) in cultured cells [133]. Melatonin inhibits ERK phosphorylation [134]. Melatonin attenuates lung ischemia-reperfusion injury by inhibiting oxidative stress and inflammation [135]. Melatonin inhibits the HIF-1α-VEGF pathway in oxygen-induced retinopathy mice [136]. Melatonin activates Src and PKA in parallel and, thus, regulates CRE-dependent gene transcription [137]. Melatonin preserves insulin secretion and hepatic glycogen synthesis in rats [138]. Melatonin inhibits Cav3.2 T-type Ca²⁺ channels (about 40% at 10 μM) [139]. Melatonin activates the ERK1/2 signaling pathway [140]. Melatonin preserves the YAP expression during doxorubicin-induced cardiotoxicity [141]. Melatonin induces apoptosis in VCR-resistant oral cancer cells [142]. Melatonin induces apoptosis in 3T3-L1 preadipocytes as well [143]. However, melatonin inhibits apoptosis through the upregulation of sestrin2 in vascular smooth muscle cells [144]. Melatonin attenuates Atg5dependent autophagy and activates the Akt/mTOR pathway [145]. Melatonin inhibits excessive mitophagy through the MT2/SIRT3/FoxO3a signaling pathway in cells [146]. Melatonin blocks the ROS-mediated HIF- 1α /miR210/ISCU axis activation [147]. Melatonin inhibits the mitochondrial permeability transition pore opening [148]. Melatonin partially inhibits the NE/AKT/β-catenin/SLUG axis [149]. Melatonin inhibits TRPV4 activity (about 80 % at 1 mM) [150]. Melatonin promotes endocytosis and the subsequent degradation of HER2 [151]. Melatonin (0.2 mM) suppresses O-GlcNAcylation of cyclin-dependentlike kinase 5 [152]. Melatonin activates the ATF6 and PERK signaling pathways [153]. Melatonin activates the Nrf2/HO-1 signaling pathway [154]. Of note, the interaction between melatonin and NF-kB has been reported in numerous pathological cases, such as osteoarthritis [155], breast cancer [156] or, more generally, in inflammatory pathways [157]; however, the nature of the interaction has not been convincingly demonstrated.

This snapshot of articles is not meant to be exhaustive, as the search using keywords will always return only a partial picture. Nevertheless, we found the exercise quite informative on two counts:

- (i) The concentration of melatonin needed for most of the abovementioned effects is high, e.g., in the range of 1μM and up to several mMs. This leads to two remarks: (1) whether these effects are specific for melatonin or would they also be observed in structurally related molecules; (2) related to this first point is the question of the molecular target(s) or mechanism(s) behind it. Most studies lack the appropriate experimental conditions to—or at least start to—address these questions appropriately. For the first point, the most obvious structurally related candidate class of molecules is indoles (see below, Section 9); however, other classes of chemical compounds should also be considered, such as primary amines, etc. The second remark on molecular targets and mechanisms is a crucial step toward a better understanding of the observed effects [158]. The most obvious experiments, in this respect, are the establishment of concentration (dose)–response curves to determine an EC₅₀ value. Low EC₅₀ values generally hint at specific molecular targets, whereas a high EC₅₀ value hints at targets with lower specificity. The absence of EC_{50} values (no saturation) may hint at a general property, such as membrane fluidity or intactness. Unfortunately, many of the articles describing the effects of melatonin use only a single (often high) melatonin concentration/dose.
- (ii) The reported effects of melatonin tend to be over-interpreted. The effects are not only system-dependent but, on their own, do not necessarily allow for conclusions on the precise mechanism or targets involved. These 'descriptive' data should therefore be interpreted with caution, not only in terms of the molecular mechanism and specificity but also in terms of translatability into another cell type, tissue and its relevance for pathologies. Unfortunately, the often-used perspective phrase "... these findings open new avenues in therapeutics" should be used with more precaution, considering

Biomolecules 2023, 13, 943 18 of 26

the high melatonin concentrations used and the fact that almost all experimental protocols use melatonin in a preventive paradigm instead of a treatment paradigm.

Another misleading habit is the transformation of the working hypotheses and ideas formulated in an article into a fact in the following article and then propagated from review to review. This is nicely illustrated by the literature associating melatonin with the recent COVID-19 pandemic. A PubMed search using the terms "melatonin" and "COVID" retrieved 217 publications (25 February 2023) in just a three-year period. Incidentally, most of the papers claim that melatonin is active because it is an antioxidant and scavenger and has anti-inflammatory properties [159], and thus it is unsurprising to reach the conclusion that melatonin would be the ideal anti-COVID-19 therapeutic agent, as proclaimed in many reviews. However, a closer look at the more than 200 publications on COVID-19 and melatonin shows that most of them are reviews or comments and that experimental pieces of evidence are actually only reported in a small number of original articles. Interestingly, the anticipated anti-inflammatory effect of melatonin was not observed in K18-hACE2 mice infected with SARS-CoV-2 [160]. Whether this lack of effect is specific to this mouse model and that of a rapid manifestation of severe COVID-19 symptoms occurred remains to be determined in further studies. The totally unexpected effect of melatonin in this mouse model was the protection of the brain from SARS-CoV-2 infection, as compared to the lungs at high doses of melatonin [161]. Even more unexpected, the mechanistic studies suggest that this effect is mediated by the binding of melatonin to an allosteric binding site at the human angiotensin-converting enzyme 2 (ACE2), thus interfering with the ACE2 function as an entry receptor for SARS-CoV-2.

Altogether, we conclude that the use of high melatonin doses can be problematic in terms of specificity and engagement of molecular targets, two aspects that are rarely addressed but need to be clarified based on experimental evidence (see also the discussion and recommendations in Cecon et al. [9]).

9. The Indole Hypothesis

As we detailed previously, particularly in the recommendations on melatonin-related publications [162], the necessity must be emphasized to use the control substances at concentrations similar to melatonin concentrations to evaluate the specificity of an observed effect. This includes the use of other indole-based compounds, including those that may not be oxidized in the same way as melatonin, to address and demonstrate the possible mechanism of action of melatonin for the particular outcome.

Concerning indole-based compounds, it is interesting to evaluate some of the examples that addressed the question of specificity: (a) serotonin was found to be the most effective compound for inhibiting amyloid-β peptide aggregation. Almost all the indole compounds tested in this study prevented amyloid-\$\beta\$ peptide fibril formation and increased cell viability between 9 and 25%. Melatonin and serotonin were found to be the most active. Moreover, serotonin increased the expression of SIRT-1 and 2, heat shock protein 70, and heme oxygenase activity—as melatonin is reported to do as well—this being a possible mechanism underlying the observed neuroprotective effect [163]. This paragraph, adapted from the abstract of the paper, is a rare break from the melatonin-does-everything system, suggesting that either high concentrations of natural compounds may have beneficial effects on the disease models or that indole-based compounds have the propensity to interfere with proteins due to their chemical natures. (b) Zhai et al. demonstrated that a series of indole-based compounds (including tryptamine and tryptophane but not the unrelated histidine) were able, at the same concentrations (3 mM), to block the virus infectivity, probably via a virus/receptor interaction [30]; see also [161]. (c) Wölfler et al. showed that *N*-acetylserotonin is a better compound for antioxidant activity than melatonin, especially at 10 µM, at which the concentration of melatonin is almost inactive in this cellular model [164]. (d) When the neuroblastoma SK-N-MC cells were treated either by hydrogen peroxide (H_2O_2) or following glutamate-induced cell death, N-acetyltryptamine, as well as melatonin, were reported to protect the cells against those injuries, although at

concentrations from 10 to 500 μ M. The authors suggested that the protection occurred via the induction of NF- κ B [165]. The systematic inclusion of melatonin-related compounds and the determination of the EC50 values are highly desirable in future studies to better understand the effects associated with melatonin, in particular, at high concentrations. From a therapeutic point of view, the putative interchangeability of indole-based compounds, such as melatonin, N-acetyltryptamine, etc., would increase the number of therapeutic choices to minimize the harmful effects, depending on the disease context.

10. What to do?

For several years now, a growing number of claims can be said to have distracted melatonin research and trivialized the role that endogenously produced melatonin has in maintaining circadian sleep patterns, metabolism and mental health.

Indeed, the disruption of light rhythms in our cities and the constant use of electronic devices with artificial light have led to questions about the way public health is affected by such changes. In the meantime, significant resources—intellectual, financial and societal—are potentially wasted by moving forward the working repetitive claims/hypotheses that are not, or only insufficiently, supported by experimental evidence with all the required scientific rigor. Clearly, only the clarification of the basics and not the extension of non-consensual theories will lead to a general consensus in the scientific community to eventually move on in a coordinated manner and on a solid scientific basis to address the most relevant questions and challenges.

Another way to reduce the impact of misleading claims is to discourage reviews of the literature that simply and uncritically repeat statements or discuss experiments.

Another point should be stressed: the use of melatonin at very high dosages in patients and infants should be restricted as a precautionary principle. Indeed, as pointed out on several occasions, melatonin toxicity, in vivo, remains unexplored territory at these dosages, even at moderate dosages. There have been no rigorous toxicity studies reported in humans, and the repeated claims that a compound being natural cannot be toxic, are potentially harmful.

Author Contributions: All the authors equally contributed to the writing and editing of the review. All authors have read and agreed to the published version of the manuscript.

Funding: The work of R.J. was supported by the Agence Nationale de la Recherche (ANR-19-CE16-0025-01 « mitoGPCR », ANR-21-CE18-00XX « alloGLP1R », ANR-20-COV4-0001 « MELATOVID »), the Fondation de la Recherche Médicale (Equipe FRM DEQ20130326503), La Ligue Contre le Cancer N/Ref: RS19/75-127, Plan de Relance 2021 and the Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are indebted to H.J. Forman (University of Southern California at Los Angeles, CA, USA) for his help in Section 7.1.1's writing. The work of R.J. was supported by the Agence Nationale de la Recherche (ANR-19-CE16-0025-01 « mitoGPCR », ANR-21-CE18-00XX « alloGLP1R », ANR-20-COV4-0001 « MELATOVID »), the Fondation de la Recherche Médicale (Equipe FRM DEQ20130326503), La Ligue Contre le Cancer N/Ref: RS19/75-127, Plan de Relance 2021 and the Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. *J. Am. Chem. Soc.* **1958**, *80*, 2587. [CrossRef]
- 2. Kennaway, D.J. Measuring melatonin by immunoassay. J. Pineal Res. 2020, 69, e12657. [CrossRef] [PubMed]

Biomolecules **2023**, 13, 943 20 of 26

3. Luboshitzky, R.; Yanai, D.; Shen-Orr, Z.; Israeli, E.; Herer, P.; Lavie, P. Daily and seasonal variations in the concentration of melatonin in the human pineal gland. *Brain Res. Bull.* **1998**, 47, 271–276. [CrossRef] [PubMed]

- 4. Kennaway, D.J. The Dim Light Melatonin Onset (DLMO) across ages, methodologies and sex and its relationship with Morningness/Eveningness. *Sleep* **2023**, *46*, zsad033. [CrossRef] [PubMed]
- Klein, D.C. Arylalkylamine N-acetyltransferase: "The Timezyme". J. Biol. Chem. 2007, 282, 4233–4237. [CrossRef]
- 6. Falcón, J.; Coon, S.L.; Besseau, L.; Cazaméa-Catalan, D.; Fuentès, M.; Magnanou, E.; Paulin, C.-H.; Boeuf, G.; Sauzet, S.; Jørgensen, E.H.; et al. Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya. *Proc. Natl. Acad. Sci. USA* **2014**, *111*, 314–319. [CrossRef]
- 7. Cassone, V.M. Effects of melatonin on vertebrate circadian systems. *Trends Neurosci.* 1990, 13, 457–464. [CrossRef]
- 8. Hastings, M.H.; Herbert, J.; Martensz, N.D.; Roberts, A.C. Annual reproductive rhythms in mammals: Mechanisms of light synchronization. *Ann. N. Y. Acad. Sci.* **1985**, 453, 182–204. [CrossRef]
- 9. Cecon, E.; Boutin, J.A.; Jockers, R. Molecular Characterization and Pharmacology of Melatonin receptors in Animals. *Receptors* **2023**, *2*, 127–147. [CrossRef]
- 10. Dijk, D.J.; Cajochen, C. Melatonin and the circadian regulation of sleep initiation, consolidation, structure, and the sleep EEG. *J. Biol. Rhythms* 1997, 12, 627–635. [CrossRef]
- 11. Pevet, P.; Challet, E.; Felder-Schmittbuhl, M.-P. Melatonin and the circadian system: Keys for health with a focus on sleep. *Handb. Clin. Neurol.* **2021**, 179, 331–343. [CrossRef] [PubMed]
- 12. Yue, J.-L.; Chang, X.-W.; Zheng, J.-W.; Shi, L.; Xiang, Y.-J.; Que, J.-Y.; Yuan, K.; Deng, J.-H.; Teng, T.; Li, Y.-Y.; et al. Efficacy and tolerability of pharmacological treatments for insomnia in adults: A systematic review and network meta-analysis. *Sleep Med. Rev.* 2023, *68*, 101746. [CrossRef] [PubMed]
- 13. Hickie, I.B.; Rogers, N.L. Novel melatonin-based therapies: Potential advances in the treatment of major depression. *Lancet* **2011**, 378, 621–631. [CrossRef] [PubMed]
- 14. Kasper, S.; Corruble, E.; Hale, A.; Lemoine, P.; Montgomery, S.A.; Quera-Salva, M.-A. Antidepressant efficacy of agomelatine versus SSRI/SNRI: Results from a pooled analysis of head-to-head studies without a placebo control. *Int. Clin. Psychopharmacol.* **2013**, *28*, 12–19. [CrossRef]
- 15. Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. *Lancet* 2018, 391, 1357–1366. [CrossRef]
- 16. Boutin, J.A.; Jockers, R. Melatonin controversies, an update. J. Pineal Res. 2021, 70, e12702. [CrossRef]
- 17. Boutin, J.A. Quinone reductase 2 as a promising target of melatonin therapeutic actions. *Expert Opin. Ther. Targets* **2016**, 20, 303–317. [CrossRef]
- 18. Boutin, J.A. How Can Molecular Pharmacology Help Understand the Multiple Actions of Melatonin: 20 Years of Research and Trends. In *Melatonin-Molecular Biology, Clinical and Pharmaceutical Approaches*; Manuela Drăgoi, C., Crenguţa Nicolae, A., Eds.; IntechOpen: London, UK, 2018; ISBN 978-1-78984-504-4.
- 19. Arendt, J. Melatonin: Countering Chaotic Time Cues. Front. Endocrinol. 2019, 10, 391. [CrossRef]
- Martín Giménez, V.M.; de Las Heras, N.; Lahera, V.; Tresguerres, J.A.F.; Reiter, R.J.; Manucha, W. Melatonin as an Anti-Aging Therapy for Age-Related Cardiovascular and Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 888292. [CrossRef]
- 21. Bocheva, G.; Slominski, R.M.; Janjetovic, Z.; Kim, T.-K.; Böhm, M.; Steinbrink, K.; Reiter, R.J.; Kleszczyński, K.; Slominski, A.T. Protective Role of Melatonin and Its Metabolites in Skin Aging. *Int. J. Mol. Sci.* **2022**, *23*, 1238. [CrossRef]
- 22. Shukla, M.; Govitrapong, P.; Boontem, P.; Reiter, R.J.; Satayavivad, J. Mechanisms of Melatonin in Alleviating Alzheimer's Disease. *Curr. Neuropharmacol.* **2017**, *15*, 1010–1031. [CrossRef] [PubMed]
- 23. Repova, K.; Baka, T.; Krajcirovicova, K.; Stanko, P.; Aziriova, S.; Reiter, R.J.; Simko, F. Melatonin as a Potential Approach to Anxiety Treatment. *Int. J. Mol. Sci.* **2022**, 23, 6187. [CrossRef] [PubMed]
- 24. Ajoolabady, A.; Bi, Y.; McClements, D.J.; Lip, G.Y.H.; Des Richardson, R.; Reiter, R.J.; Klionsky, D.J.; Ren, J. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. *Pharmacol. Res.* **2022**, *176*, 106072. [CrossRef] [PubMed]
- 25. He, F.; Liu, Y.; Li, P.; Wu, X.; Xia, Y.; Zhang, D.; Li, N.; Peng, Y.; Zhu, G.; Hardeland, R.; et al. Melatonin inhibits Gram-negative pathogens by targeting citrate synthase. *Sci. China Life Sci.* **2022**, *65*, 1430–1444. [CrossRef]
- 26. Davoodvandi, A.; Nikfar, B.; Reiter, R.J.; Asemi, Z. Melatonin and cancer suppression: Insights into its effects on DNA methylation. *Cell. Mol. Biol. Lett.* **2022**, *27*, 73. [CrossRef]
- 27. Cucielo, M.S.; Cesário, R.C.; Silveira, H.S.; Gaiotte, L.B.; Dos Santos, S.A.A.; de Campos Zuccari, D.A.P.; Seiva, F.R.F.; Reiter, R.J.; de Almeida Chuffa, L.G. Melatonin Reverses the Warburg-Type Metabolism and Reduces Mitochondrial Membrane Potential of Ovarian Cancer Cells Independent of MT1 Receptor Activation. *Molecules* 2022, 27, 4350. [CrossRef]
- 28. Targhazeh, N.; Reiter, R.J.; Rahimi, M.; Qujeq, D.; Yousefi, T.; Shahavi, M.H.; Mir, S.M. Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy. *Biochimie* **2022**, 202, 34–48. [CrossRef]
- 29. Tobeiha, M.; Jafari, A.; Fadaei, S.; Mirazimi, S.M.A.; Dashti, F.; Amiri, A.; Khan, H.; Asemi, Z.; Reiter, R.J.; Hamblin, M.R.; et al. Evidence for the Benefits of Melatonin in Cardiovascular Disease. *Front. Cardiovasc. Med.* **2022**, *9*, 888319. [CrossRef]
- 30. Zhai, X.; Wang, N.; Jiao, H.; Zhang, J.; Li, C.; Ren, W.; Reiter, R.J.; Su, S. Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concentrations. *J. Pineal Res.* **2021**, *71*, e12754. [CrossRef]

Biomolecules **2023**, 13, 943 21 of 26

31. Hajam, Y.A.; Rai, S.; Pandi-Perumal, S.R.; Brown, G.M.; Reiter, R.J.; Cardinali, D.P. Coadministration of Melatonin and Insulin Improves Diabetes-Induced Impairment of Rat Kidney Function. *Neuroendocrinology* **2022**, *112*, 807–822. [CrossRef]

- 32. Rong, B.; Wu, Q.; Reiter, R.J.; Sun, C. The Mechanism of Oral Melatonin Ameliorates Intestinal and Adipose Lipid Dysmetabolism Through Reducing Escherichia Coli-Derived Lipopolysaccharide. *Cell. Mol. Gastroenterol. Hepatol.* **2021**, *12*, 1643–1667. [CrossRef] [PubMed]
- 33. Luchetti, F.; Nasoni, M.G.; Burattini, S.; Mohammadi, A.; Pagliarini, M.; Canonico, B.; Ambrogini, P.; Balduini, W.; Reiter, R.J.; Carloni, S. Melatonin Attenuates Ischemic-like Cell Injury by Promoting Autophagosome Maturation via the Sirt1/FoxO1/Rab7 Axis in Hippocampal HT22 Cells and in Organotypic Cultures. *Cells* **2022**, *11*, 3701. [CrossRef] [PubMed]
- 34. Luchetti, F.; Carloni, S.; Nasoni, M.G.; Reiter, R.J.; Balduini, W. Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery. *J. Pineal Res.* **2022**, *73*, e12800. [CrossRef]
- 35. Loh, D.; Reiter, R.J. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. *Antioxidants* **2021**, *10*, 1483. [CrossRef]
- 36. Tamtaji, O.R.; Reiter, R.J.; Alipoor, R.; Dadgostar, E.; Kouchaki, E.; Asemi, Z. Melatonin and Parkinson Disease: Current Status and Future Perspectives for Molecular Mechanisms. *Cell. Mol. Neurobiol.* **2020**, *40*, 15–23. [CrossRef] [PubMed]
- 37. Reiter, R.J.; Sharma, R.; Tan, D.-X.; Neel, R.L.; Simko, F.; Manucha, W.; Rosales-Corral, S.; Cardinali, D.P. Melatonin use for SARS-CoV-2 infection: Time to diversify the treatment portfolio. *J. Med. Virol.* **2022**, *94*, 2928–2930. [CrossRef] [PubMed]
- 38. Reiter, R.J.; Sharma, R.; Simko, F.; Dominguez-Rodriguez, A.; Tesarik, J.; Neel, R.L.; Slominski, A.T.; Kleszczynski, K.; Martin-Gimenez, V.M.; Manucha, W.; et al. Melatonin: Highlighting its use as a potential treatment for SARS-CoV-2 infection. *Cell. Mol. Life Sci.* 2022, 79, 143. [CrossRef]
- 39. Andersen, L.P.H.; Gögenur, I.; Rosenberg, J.; Reiter, R.J. Pharmacokinetics of Melatonin: The Missing Link in Clinical Efficacy? *Clin. Pharmacokinet.* **2016**, *55*, 1027–1030. [CrossRef]
- 40. Vakkuri, O.; Leppäluoto, J.; Kauppila, A. Oral administration and distribution of melatonin in human serum, saliva and urine. *Life Sci.* **1985**, 37, 489–495. [CrossRef]
- 41. Harpsøe, N.G.; Andersen, L.P.H.; Gögenur, I.; Rosenberg, J. Clinical pharmacokinetics of melatonin: A systematic review. *Eur. J. Clin. Pharmacol.* **2015**, *71*, 901–909. [CrossRef]
- 42. Rolling, J.; Rabot, J.; Schroder, C.M. Melatonin Treatment for Pediatric Patients with Insomnia: Is There a Place for It? *Nat. Sci. Sleep* 2022, 14, 1927–1944. [CrossRef] [PubMed]
- 43. Kennaway, D.J. What do we really know about the safety and efficacy of melatonin for sleep disorders? *Curr. Med. Res. Opin.* **2022**, *38*, 211–227. [CrossRef] [PubMed]
- 44. Skrzelowski, M.; Brookhaus, A.; Shea, L.A.; Berlau, D.J. Melatonin Use in Pediatrics: Evaluating the Discrepancy in Evidence Based on Country and Regulations Regarding Production. *J. Pediatr. Pharmacol. Ther.* **2021**, *26*, 4–20. [CrossRef]
- 45. Zisapel, N. Assessing the potential for drug interactions and long term safety of melatonin for the treatment of insomnia in children with autism spectrum disorder. *Expert Rev. Clin. Pharmacol.* **2022**, *15*, 175–185. [CrossRef]
- 46. Kuehn, B.M. Climbing Melatonin Use for Insomnia Raises Safety Concerns. JAMA 2022, 328, 605–607. [CrossRef] [PubMed]
- 47. Vine, T.; Brown, G.M.; Frey, B.N. Melatonin use during pregnancy and lactation: A scoping review of human studies. *Braz. J. Psychiatry* **2022**, 44, 342–348. [CrossRef]
- 48. Seabra, M.L.; Bignotto, M.; Pinto, L.R.; Tufik, S. Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. *J. Pineal Res.* **2000**, 29, 193–200. [CrossRef]
- 49. ANSE. Available online: https://www.anses.fr/fr/system/files/NUT2016SA0209.pdf (accessed on 22 February 2023).
- 50. NCI. Available online: www.nccih.nih.gov/health/melatonin-what-you-need-to-know (accessed on 21 March 2023).
- 51. Bishop-Freeman, S.C.; Young, K.A.; Labay, L.M.; Beuhler, M.C.; Hudson, J.S. Melatonin Supplementation in Undetermined Pediatric Deaths. *J. Anal. Toxicol.* **2022**, *46*, 808–816. [CrossRef]
- 52. Rishi, M.A.; Khosla, S.; Sullivan, S.S. Health advisory: Melatonin use in children. J. Clin. Sleep Med. 2023, 19, 415. [CrossRef]
- 53. Del Fabbro, E.; Dev, R.; Hui, D.; Palmer, L.; Bruera, E. Effects of melatonin on appetite and other symptoms in patients with advanced cancer and cachexia: A double-blind placebo-controlled trial. *J. Clin. Oncol.* **2013**, *31*, 1271–1276. [CrossRef]
- 54. Seely, D.; Wu, P.; Fritz, H.; Kennedy, D.A.; Tsui, T.; Seely, A.J.E.; Mills, E. Melatonin as adjuvant cancer care with and without chemotherapy: A systematic review and meta-analysis of randomized trials. *Integr. Cancer Ther.* **2012**, *11*, 293–303. [CrossRef] [PubMed]
- 55. Lund Rasmussen, C.; Klee Olsen, M.; Thit Johnsen, A.; Petersen, M.A.; Lindholm, H.; Andersen, L.; Villadsen, B.; Groenvold, M.; Pedersen, L. Effects of melatonin on physical fatigue and other symptoms in patients with advanced cancer receiving palliative care: A double-blind placebo-controlled crossover trial. *Cancer* 2015, 121, 3727–3736. [CrossRef] [PubMed]
- 56. Skene, D.J.; Papagiannidou, E.; Hashemi, E.; Snelling, J.; Lewis, D.F.; Fernandez, M.; Ioannides, C. Contribution of CYP1A2 in the hepatic metabolism of melatonin: Studies with isolated microsomal preparations and liver slices. *J. Pineal Res.* **2001**, *31*, 333–342. [CrossRef] [PubMed]
- 57. Ma, X.; Chen, C.; Krausz, K.W.; Idle, J.R.; Gonzalez, F.J. A metabolomic perspective of melatonin metabolism in the mouse. *Endocrinology* **2008**, *149*, 1869–1879. [CrossRef]
- 58. Ferry, G.; Ubeaud, C.; Lambert, P.-H.; Bertin, S.; Cogé, F.; Chomarat, P.; Delagrange, P.; Serkiz, B.; Bouchet, J.-P.; Truscott, R.J.W.; et al. Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: Investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. *Biochem. J.* 2005, 388, 205–215. [CrossRef]

Biomolecules **2023**, 13, 943 22 of 26

59. Pond, S.M.; Tozer, T.N. First-pass elimination. Basic concepts and clinical consequences. *Clin. Pharmacokinet.* **1984**, *9*, 1–25. [CrossRef]

- 60. Rowland, M. Influence of route of administration on drug availability. J. Pharm. Sci. 1972, 61, 70–74. [CrossRef]
- 61. Domínguez-Rodríguez, A.; Abreu-González, P.; Báez-Ferrer, N.; Reiter, R.J.; Avanzas, P.; Hernández-Vaquero, D. Melatonin and Cardioprotection in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Front. Cardiovasc. Med.* **2021**, *8*, 635083. [CrossRef]
- 62. Ekeloef, S.; Halladin, N.; Fonnes, S.; Jensen, S.E.; Zaremba, T.; Rosenberg, J.; Jonsson, G.; Aarøe, J.; Gasbjerg, L.S.; Rosenkilde, M.M.; et al. Effect of Intracoronary and Intravenous Melatonin on Myocardial Salvage Index in Patients with ST-Elevation Myocardial Infarction: A Randomized Placebo Controlled Trial. *J. Cardiovasc. Transl. Res.* 2017, 10, 470–479. [CrossRef]
- 63. Dominguez-Rodriguez, A.; Abreu-Gonzalez, P.; de La Torre-Hernandez, J.M.; Consuegra-Sanchez, L.; Piccolo, R.; Gonzalez-Gonzalez, J.; Garcia-Camarero, T.; Del Mar Garcia-Saiz, M.; Aldea-Perona, A.; Reiter, R.J. Usefulness of Early Treatment with Melatonin to Reduce Infarct Size in Patients With ST-Segment Elevation Myocardial Infarction Receiving Percutaneous Coronary Intervention (From the Melatonin Adjunct in the Acute Myocardial Infarction Treated with Angioplasty Trial). *Am. J. Cardiol.* 2017, 120, 522–526. [CrossRef]
- 64. Espezel, H.; Jan, J.E.; O'Donnell, M.E.; Milner, R. The Use of Melatonin to Treat Sleep-Wake-Rhythm Disorders in Children who are Visually Impaired. *J. Vis. Impair. Blind.* **1996**, *90*, 43–50. [CrossRef]
- 65. Jan, J.E.; Espezel, H.; Appleton, R.E. The treatment of sleep disorders with melatonin. *Dev. Med. Child Neurol.* **1994**, *36*, 97–107. [CrossRef] [PubMed]
- 66. Jan, J.E.; O'Donnell, M.E. Use of melatonin in the treatment of paediatric sleep disorders. *J. Pineal Res.* **1996**, 21, 193–199. [CrossRef] [PubMed]
- 67. Goldman, R.D.; Bongiorno, P.B.; Olcese, J.M.; Witt-Enderby, P.A.; Shatkin, J.P. Myths and Evidence Regarding Melatonin Supplementation for Occasional Sleeplessness in the Pediatric Population. *Pediatr. Ann.* **2021**, *50*, e391–e395. [CrossRef] [PubMed]
- 68. Williams Buckley, A.; Hirtz, D.; Oskoui, M.; Armstrong, M.J.; Batra, A.; Bridgemohan, C.; Coury, D.; Dawson, G.; Donley, D.; Findling, R.L.; et al. Practice guideline: Treatment for insomnia and disrupted sleep behavior in children and adolescents with autism spectrum disorder: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. *Neurology* 2020, 94, 392–404. [CrossRef]
- 69. Lelak, K.; Vohra, V.; Neuman, M.I.; Toce, M.S.; Sethuraman, U. Pediatric Melatonin Ingestions—United States, 2012–2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 725–729. [CrossRef]
- 70. Poeggeler, B.; Reiter, R.J.; Tan, D.X.; Chen, L.D.; Manchester, L.C. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: A hypothesis. *J. Pineal Res.* **1993**, *14*, 151–168. [CrossRef]
- 71. Forman, H.J.; Davies, K.J.A.; Ursini, F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. *Free Radic. Biol. Med.* **2014**, *66*, 24–35. [CrossRef]
- 72. Forman, H.J.; Augusto, O.; Brigelius-Flohe, R.; Dennery, P.A.; Kalyanaraman, B.; Ischiropoulos, H.; Mann, G.E.; Radi, R.; Roberts, L.J.; Vina, J.; et al. Even free radicals should follow some rules: A guide to free radical research terminology and methodology. *Free Radic. Biol. Med.* **2015**, *78*, 233–235. [CrossRef]
- 73. Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. *Nat. Rev. Drug Discov.* **2021**, 20, 689–709. [CrossRef]
- 74. Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [CrossRef]
- 75. Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. *Compr. Rev. Food Sci. Food Saf.* **2016**, 15, 720–738. [CrossRef] [PubMed]
- 76. Kostov, R.V.; Knatko, E.V.; McLaughlin, L.A.; Henderson, C.J.; Zheng, S.; Huang, J.T.-J.; Honda, T.; Dinkova-Kostova, A.T. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action. *Biochem. Biophys. Res. Commun.* 2015, 465, 402–407. [CrossRef] [PubMed]
- 77. Dinkova-Kostova, A.T.; Talalay, P.; Sharkey, J.; Zhang, Y.; Holtzclaw, W.D.; Wang, X.J.; David, E.; Schiavoni, K.H.; Finlayson, S.; Mierke, D.F.; et al. An exceptionally potent inducer of cytoprotective enzymes: Elucidation of the structural features that determine inducer potency and reactivity with Keap1. *J. Biol. Chem.* 2010, 285, 33747–33755. [CrossRef]
- 78. Couch, R.D.; Browning, R.G.; Honda, T.; Gribble, G.W.; Wright, D.L.; Sporn, M.B.; Anderson, A.C. Studies on the reactivity of CDDO, a promising new chemopreventive and chemotherapeutic agent: Implications for a molecular mechanism of action. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 2215–2219. [CrossRef]
- 79. Balogun, E.; Hoque, M.; Gong, P.; Killeen, E.; Green, C.J.; Foresti, R.; Alam, J.; Motterlini, R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. *Biochem. J.* **2003**, *371*, 887–895. [CrossRef]
- 80. Shahcheraghi, S.H.; Salemi, F.; Peirovi, N.; Ayatollahi, J.; Alam, W.; Khan, H.; Saso, L. Nrf2 Regulation by Curcumin: Molecular Aspects for Therapeutic Prospects. *Molecules* **2021**, 27, 167. [CrossRef]
- 81. Auf Dem Keller, U.; Kümin, A.; Braun, S.; Werner, S. Reactive oxygen species and their detoxification in healing skin wounds. *J. Investig. Dermatol. Symp. Proc.* **2006**, *11*, 106–111. [CrossRef]
- 82. Amoroso, R.; Maccallini, C.; Bellezza, I. Activators of Nrf2 to Counteract Neurodegenerative Diseases. *Antioxidants* **2023**, 12, 778. [CrossRef]

Biomolecules **2023**, 13, 943 23 of 26

83. Wang, Z.; Ma, C.; Meng, C.-J.; Zhu, G.-Q.; Sun, X.-B.; Huo, L.; Zhang, J.; Liu, H.-X.; He, W.-C.; Shen, X.-M.; et al. Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. *J. Pineal Res.* **2012**, *53*, 129–137. [CrossRef]

- 84. Kryl'skii, E.D.; Popova, T.N.; Safonova, O.A.; Stolyarova, A.O.; Razuvaev, G.A.; de Carvalho, M.A.P. Transcriptional Regulation of Antioxidant Enzymes Activity and Modulation of Oxidative Stress by Melatonin in Rats Under Cerebral Ischemia/Reperfusion Conditions. *Neuroscience* 2019, 406, 653–666. [CrossRef]
- 85. Kang, J.-W.; Lee, S.-M. Melatonin inhibits type 1 interferon signaling of toll-like receptor 4 via heme oxygenase-1 induction in hepatic ischemia/reperfusion. *J. Pineal Res.* **2012**, *53*, *67*–76. [CrossRef]
- 86. Zhou, X.; Zhang, Y.; Hou, M.; Liu, H.; Yang, H.; Chen, X.; Liu, T.; He, F.; Zhu, X. Melatonin Prevents Cartilage Degradation in Early-Stage Osteoarthritis Through Activation of miR-146a/NRF2/HO-1 Axis. *J. Bone Miner. Res.* **2022**, *37*, 1056–1072. [CrossRef] [PubMed]
- 87. Becker-André, M.; Wiesenberg, I.; Schaeren-Wiemers, N.; André, E.; Missbach, M.; Saurat, J.H.; Carlberg, C. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. *J. Biol. Chem.* **1994**, 269, 28531–28534. [CrossRef]
- 88. Wiesenberg, I.; Missbach, M.; Kahlen, J.P.; Schräder, M.; Carlberg, C. Transcriptional activation of the nuclear receptor RZR alpha by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. *Nucleic Acids Res.* **1995**, 23, 327–333. [CrossRef]
- 89. Becker-André, M.; Wiesenberg, I.; Schaeren-Wiemers, N.; André, E.; Missbach, M.; Saurat, J.H.; Carlberg, C. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. *J. Biol. Chem.* **1997**, 272, 16707. [CrossRef]
- 90. Pierrefiche, G.; Topall, G.; Courboin, G.; Henriet, I.; Laborit, H. Antioxidant activity of melatonin in mice. *Res. Commun. Chem. Pathol. Pharmacol.* **1993**, *80*, 211–223. [PubMed]
- 91. Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a mitochondria-targeted antioxidant: One of evolution's best ideas. *Cell. Mol. Life Sci.* **2017**, 74, 3863–3881. [CrossRef] [PubMed]
- 92. Que, Z.; Ma, T.; Shang, Y.; Ge, Q.; Zhang, Q.; Xu, P.; Zhang, J.; Francoise, U.; Liu, X.; Sun, X. Microorganisms: Producers of Melatonin in Fermented Foods and Beverages. *J. Agric. Food Chem.* **2020**, *68*, 4799–4811. [CrossRef] [PubMed]
- 93. Hardeland, R.; Balzer, I.; Fuhrberg, B.; Behrmann, G. Melatonin in Unicellular Organisms and Plants1. In *Melatonin: A Universal Photoperiodic Signal with Diverse Actions*; Pang, S.F., Reiter, R.J., Tang, P.L., Eds.; S. Karger AG: Basel, Switzerland, 1996; pp. 1–6. ISBN 978-3-8055-6344-4.
- 94. Hardeland, R.; Poeggeler, B. Non-vertebrate melatonin. J. Pineal Res. 2003, 34, 233–241. [CrossRef] [PubMed]
- 95. Byeon, Y.; Back, K. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase. *Appl. Microbiol. Biotechnol.* **2016**, *100*, 6683–6691. [CrossRef]
- 96. Manchester, L.C.; Poeggeler, B.; Alvares, F.L.; Ogden, G.B.; Reiter, R.J. Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: Implications for an ancient antioxidant system. *Cell. Mol. Biol. Res.* **1995**, 41, 391–395. [PubMed]
- 97. Jiao, J.; Ma, Y.; Chen, S.; Liu, C.; Song, Y.; Qin, Y.; Yuan, C.; Liu, Y. Melatonin-Producing Endophytic Bacteria from Grapevine Roots Promote the Abiotic Stress-Induced Production of Endogenous Melatonin in Their Hosts. *Front. Plant Sci.* **2016**, *7*, 1387. [CrossRef] [PubMed]
- 98. Tan, D.-X.; Hardeland, R.; Manchester, L.C.; Rosales-Corral, S.; Coto-Montes, A.; Boga, J.A.; Reiter, R.J. Emergence of naturally occurring melatonin isomers and their proposed nomenclature. *J. Pineal Res.* **2012**, *53*, 113–121. [CrossRef]
- 99. Tilden, A.R.; Becker, M.A.; Amma, L.L.; Arciniega, J.; McGaw, A.K. Melatonin production in an aerobic photosynthetic bacterium: An evolutionarily early association with darkness. *J. Pineal Res.* **1997**, 22, 102–106. [CrossRef] [PubMed]
- 100. Martin, W.F.; Garg, S.; Zimorski, V. Endosymbiotic theories for eukaryote origin. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **2015**, 370, 20140330. [CrossRef]
- 101. Dipasquale, V.; Palermo, L.; Barbalace, A.; Tumminello, G.; Romano, C. Randomised controlled trial of melatonin for paediatric functional abdominal pain disorders. *J. Paediatr. Child Health* **2023**, *59*, 458–463. [CrossRef]
- 102. Park, Y.S.; Kim, S.H.; Park, J.W.; Kho, Y.; Seok, P.R.; Shin, J.-H.; Choi, Y.J.; Jun, J.-H.; Jung, H.C.; Kim, E.K. Melatonin in the colon modulates intestinal microbiota in response to stress and sleep deprivation. *Intest. Res.* **2020**, *18*, 325–336. [CrossRef]
- 103. Atroshi, F.; Rizzo, A.; Westermarck, T.; Ali-vehmas, T. Effects of tamoxifen, melatonin, coenzyme Q10, and L-carnitine supplementation on bacterial growth in the presence of mycotoxins. *Pharmacol. Res.* **1998**, *38*, 289–295. [CrossRef]
- 104. Kennaway, D.J. Can we believe results obtained from plasma melatonin ELISA kits? Chronobiol. Int. 2021, 38, 616-619. [CrossRef]
- 105. Chen, X.; Zhao, Y.; Laborda, P.; Yang, Y.; Liu, F. Molecular Cloning and Characterization of a Serotonin N-Acetyltransferase Gene, xoSNAT3, from Xanthomonas oryzae pv. oryzae. *Int. J. Environ. Res. Public Health* **2023**, 20, 1865. [CrossRef] [PubMed]
- 106. Coon, S.L.; Klein, D.C. Evolution of arylalkylamine N-acetyltransferase: Emergence and divergence. *Mol. Cell. Endocrinol.* **2006**, 252, 2–10. [CrossRef] [PubMed]
- 107. Ferry, G.; Loynel, A.; Kucharczyk, N.; Bertin, S.; Rodriguez, M.; Delagrange, P.; Galizzi, J.P.; Jacoby, E.; Volland, J.P.; Lesieur, D.; et al. Substrate specificity and inhibition studies of human serotonin N-acetyltransferase. *J. Biol. Chem.* 2000, 275, 8794–8805. [CrossRef] [PubMed]
- 108. Ferry, G.; Ubeaud, C.; Dauly, C.; Mozo, J.; Guillard, S.; Berger, S.; Jimenez, S.; Scoul, C.; Leclerc, G.; Yous, S.; et al. Purification of the recombinant human serotonin N-acetyltransferase (EC 2.3.1.87): Further characterization of and comparison with AANAT from other species. *Protein Expr. Purif.* **2004**, *38*, 84–98. [CrossRef]

Biomolecules **2023**, 13, 943 24 of 26

109. Venegas, C.; García, J.A.; Escames, G.; Ortiz, F.; López, A.; Doerrier, C.; García-Corzo, L.; López, L.C.; Reiter, R.J.; Acuña-Castroviejo, D. Extrapineal melatonin: Analysis of its subcellular distribution and daily fluctuations. *J. Pineal Res.* 2012, 52, 217–227. [CrossRef]

- 110. Xing, D.; Meng, Y.; Yuan, X.; Jin, S.; Song, X.; Zare, R.N.; Zhang, X. Capture of Hydroxyl Radicals by Hydronium Cations in Water Microdroplets. *Angew. Chem. Int. Ed. Engl.* **2022**, *61*, e202207587. [CrossRef] [PubMed]
- 111. Zhang, D.; Gong, C.; Wang, J.; Xing, D.; Zhao, L.; Li, D.; Zhang, X. Unravelling Melatonin's Varied Antioxidizing Protection of Membrane Lipids Determined by its Spatial Distribution. *J. Phys. Chem. Lett.* **2021**, 12, 7387–7393. [CrossRef]
- 112. Lee, H.Y.; Back, K. 2-Hydroxymelatonin Promotes Seed Germination by Increasing Reactive Oxygen Species Production and Gibberellin Synthesis in Arabidopsis thaliana. *Antioxidants* **2022**, *11*, 737. [CrossRef]
- 113. Semak, I.; Korik, E.; Antonova, M.; Wortsman, J.; Slominski, A. Metabolism of melatonin by cytochrome P450s in rat liver mitochondria and microsomes. *J. Pineal Res.* **2008**, *45*, 515–523. [CrossRef]
- 114. Pérez-González, A.; Galano, A.; Alvarez-Idaboy, J.R.; Tan, D.X.; Reiter, R.J. Radical-trapping and preventive antioxidant effects of 2-hydroxymelatonin and 4-hydroxymelatonin: Contributions to the melatonin protection against oxidative stress. *Biochim. Biophys. Acta Gen. Subj.* 2017, 1861, 2206–2217. [CrossRef]
- 115. Szabò, I.; Zoratti, M. Membrane Transport | Potassium Channels in the Inner Membrane of Mitochondria in Various Organisms: From Unicellular Eukaryotes to Higher Plants and Mammals. In *Encyclopedia of Biological Chemistry III*; Elsevier: Amsterdam, The Netherlands, 2013; pp. 986–989. ISBN 9780128220405.
- 116. Arendt, J.; Aulinas, A. Endotext: Physiology of the Pineal Gland and Melatonin; Endotext: South Dartmouth, MA, USA, 2000.
- 117. Legros, C.; Chesneau, D.; Boutin, J.A.; Barc, C.; Malpaux, B. Melatonin from cerebrospinal fluid but not from blood reaches sheep cerebral tissues under physiological conditions. *J. Neuroendocrinol.* **2014**, *26*, 151–163. [CrossRef] [PubMed]
- 118. Yu, H.; Dickson, E.J.; Jung, S.-R.; Koh, D.-S.; Hille, B. High membrane permeability for melatonin. *J. Gen. Physiol.* **2016**, 147, 63–76. [CrossRef] [PubMed]
- 119. Suofu, Y.; Li, W.; Jean-Alphonse, F.G.; Jia, J.; Khattar, N.K.; Li, J.; Baranov, S.V.; Leronni, D.; Mihalik, A.C.; He, Y.; et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. *Proc. Natl. Acad. Sci. USA* **2017**, 114, E7997–E8006. [CrossRef]
- 120. Duncan, M.J.; Takahashi, J.S.; Dubocovich, M.L. 2-125liodomelatonin binding sites in hamster brain membranes: Pharmacological characteristics and regional distribution. *Endocrinology* **1988**, *122*, 1825–1833. [CrossRef]
- 121. Dubocovich, M.L. Melatonin receptors: Are there multiple subtypes? Trends Pharmacol. Sci. 1995, 16, 50–56. [CrossRef]
- 122. Molinari, E.J.; North, P.C.; Dubocovich, M.L. 2-125Iiodo-5-methoxycarbonylamino-N-acetyltryptamine: A selective radioligand for the characterization of melatonin ML2 binding sites. *Eur. J. Pharmacol.* **1996**, 301, 159–168. [CrossRef] [PubMed]
- 123. Nosjean, O.; Ferro, M.; Coge, F.; Beauverger, P.; Henlin, J.M.; Lefoulon, F.; Fauchere, J.L.; Delagrange, P.; Canet, E.; Boutin, J.A. Identification of the melatonin-binding site MT3 as the quinone reductase 2. *J. Biol. Chem.* **2000**, 275, 31311–31317. [CrossRef]
- 124. Boutin, J.A.; Ferry, G. Is There Sufficient Evidence that the Melatonin Binding Site MT3 Is Quinone Reductase 2? *J. Pharmacol. Exp. Ther.* **2019**, *368*, 59–65. [CrossRef]
- 125. Tan, D.-X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Tamura, H.; Reiter, R.J. Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT3 melatonin membrane receptor: Hypothesis and significance. *J. Pineal Res.* 2007, 43, 317–320. [CrossRef]
- 126. Boutin, J.A.; Marcheteau, E.; Hennig, P.; Moulharat, N.; Berger, S.; Delagrange, P.; Bouchet, J.-P.; Ferry, G. MT3/QR2 melatonin binding site does not use melatonin as a substrate or a co-substrate. *J. Pineal Res.* **2008**, *45*, 524–531. [CrossRef]
- 127. Sinha, B.; Wu, Q.; Li, W.; Tu, Y.; Sirianni, A.C.; Chen, Y.; Jiang, J.; Zhang, X.; Chen, W.; Zhou, S.; et al. Protection of melatonin in experimental models of newborn hypoxic-ischemic brain injury through MT1 receptor. *J. Pineal Res.* 2018, 64, e12443. [CrossRef] [PubMed]
- 128. Feng, T.; Schutz, L.F.; Morrell, B.C.; Perego, M.C.; Spicer, L.J. Effect of melatonin on bovine theca cells in vitro. *Reprod. Fertil. Dev.* **2018**, *30*, 643–650. [CrossRef] [PubMed]
- 129. Chen, L.; Liu, L.; Li, Y.; Gao, J. Melatonin increases human cervical cancer HeLa cells apoptosis induced by cisplatin via inhibition of JNK/Parkin/mitophagy axis. *In Vitro Cell. Dev. Biol. Anim.* **2018**, *54*, 1–10. [CrossRef]
- 130. Liu, Z.; Gan, L.; Zhang, T.; Ren, Q.; Sun, C. Melatonin alleviates adipose inflammation through elevating α-ketoglutarate and diverting adipose-derived exosomes to macrophages in mice. *J. Pineal Res.* **2018**, *64*, e12455. [CrossRef]
- 131. Zhou, H.; Cheang, T.; Su, F.; Zheng, Y.; Chen, S.; Feng, J.; Pei, Z.; Chen, L. Melatonin inhibits rotenone-induced SH-SY5Y cell death via the downregulation of Dynamin-Related Protein 1 expression. *Eur. J. Pharmacol.* 2018, 819, 58–67. [CrossRef] [PubMed]
- 132. Díaz-Casado, M.E.; Rusanova, I.; Aranda, P.; Fernández-Ortiz, M.; Sayed, R.K.A.; Fernández-Gil, B.I.; Hidalgo-Gutiérrez, A.; Escames, G.; López, L.C.; Acuña-Castroviejo, D. In Vivo Determination of Mitochondrial Respiration in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Treated Zebrafish Reveals the Efficacy of Melatonin in Restoring Mitochondrial Normalcy. *Zebrafish* 2018, 15, 15–26. [CrossRef]
- 133. Shen, Y.-Q.; Guerra-Librero, A.; Fernandez-Gil, B.I.; Florido, J.; García-López, S.; Martinez-Ruiz, L.; Mendivil-Perez, M.; Soto-Mercado, V.; Acuña-Castroviejo, D.; Ortega-Arellano, H.; et al. Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. *J. Pineal Res.* **2018**, *64*, e12461. [CrossRef]

Biomolecules **2023**, 13, 943 25 of 26

134. Proietti, S.; Catizone, A.; Masiello, M.G.; Dinicola, S.; Fabrizi, G.; Minini, M.; Ricci, G.; Verna, R.; Reiter, R.J.; Cucina, A.; et al. Increase in motility and invasiveness of MCF7 cancer cells induced by nicotine is abolished by melatonin through inhibition of ERK phosphorylation. *J. Pineal Res.* **2018**, *64*, e12467. [CrossRef]

- 135. Wang, M.-L.; Wei, C.-H.; Wang, W.-D.; Wang, J.-S.; Zhang, J.; Wang, J.-J. Melatonin attenuates lung ischaemia-reperfusion injury via inhibition of oxidative stress and inflammation. *Interact. Cardiovasc. Thorac. Surg.* 2018, 26, 761–767. [CrossRef]
- 136. Xu, Y.; Lu, X.; Hu, Y.; Yang, B.; Tsui, C.-K.; Yu, S.; Lu, L.; Liang, X. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α-VEGF pathway in oxygen-induced retinopathy mice. *J. Pineal Res.* **2018**, *64*, e12473. [CrossRef]
- 137. Tao, L.; Zhu, Y. Melatonin regulates CRE-dependent gene transcription underlying osteoblast proliferation by activating Src and PKA in parallel. *Am. J. Transl. Res.* **2018**, *10*, 86–100. [PubMed]
- 138. Li, T.; Ni, L.; Zhao, Z.; Liu, X.; Lai, Z.; Di, X.; Xie, Z.; Song, X.; Wang, X.; Zhang, R.; et al. Melatonin attenuates smoking-induced hyperglycemia via preserving insulin secretion and hepatic glycogen synthesis in rats. *J. Pineal Res.* 2018, 64, e12475. [CrossRef] [PubMed]
- 139. Zhang, Y.; Ji, H.; Wang, J.; Sun, Y.; Qian, Z.; Jiang, X.; Snutch, T.P.; Sun, Y.; Tao, J. Melatonin-mediated inhibition of Cav3.2 T-type Ca²⁺ channels induces sensory neuronal hypoexcitability through the novel protein kinase C-eta isoform. *J. Pineal Res.* **2018**, *64*, e12476. [CrossRef] [PubMed]
- 140. Ge, J.; Zhou, Q.; Niu, J.; Wang, Y.; Yan, Q.; Wu, C.; Qian, J.; Yang, H.; Zou, J. Melatonin Protects Intervertebral Disc from Degeneration by Improving Cell Survival and Function via Activation of the ERK1/2 Signaling Pathway. *Oxid. Med. Cell. Longev.* **2019**, 2019, 5120275. [CrossRef]
- 141. Li, H.-R.; Wang, C.; Sun, P.; Liu, D.-D.; Du, G.-Q.; Tian, J.-W. Melatonin attenuates doxorubicin-induced cardiotoxicity through preservation of YAP expression. *J. Cell. Mol. Med.* **2020**, *24*, 3634–3646. [CrossRef]
- 142. Hsieh, M.-J.; Lin, C.-W.; Su, S.-C.; Reiter, R.J.; Chen, A.W.-G.; Chen, M.-K.; Yang, S.-F. Effects of miR-34b/miR-892a Upregulation and Inhibition of ABCB1/ABCB4 on Melatonin-Induced Apoptosis in VCR-Resistant Oral Cancer Cells. *Mol. Ther. Nucleic Acids* 2020, 19, 877–889. [CrossRef]
- 143. Lee, J.; Yoo, Y.-M.; Lee, Y.H.; Kim, C.H. Melatonin Induces Apoptotic Cell Death in 3T3-L1 Preadipocytes. *Mol. Biol.* 2020, 54, 233–243. [CrossRef]
- 144. Lee, S.; Byun, J.-K.; Park, M.; Woo Kim, S.; Lee, S.; Kim, J.-G.; Lee, I.-K.; Choi, Y.-K.; Park, K.-G. Melatonin inhibits vascular smooth muscle cell proliferation and apoptosis through upregulation of Sestrin2. *Exp. Ther. Med.* **2020**, *19*, 3454–3460. [CrossRef]
- 145. Xu, C.-N.; Kong, L.-H.; Ding, P.; Liu, Y.; Fan, Z.-G.; Gao, E.-H.; Yang, J.; Yang, L.-F. Melatonin ameliorates pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. *Biochim. Biophys. Acta Mol. Basis Dis.* **2020**, *1866*, 165848. [CrossRef]
- 146. Wu, J.; Yang, Y.; Gao, Y.; Wang, Z.; Ma, J. Melatonin Attenuates Anoxia/Reoxygenation Injury by Inhibiting Excessive Mitophagy through the MT2/SIRT3/FoxO3a Signaling Pathway in H9c2 Cells. *Drug Des. Devel. Ther.* **2020**, *14*, 2047–2060. [CrossRef]
- 147. He, M.; Zhou, C.; Lu, Y.; Mao, L.; Xi, Y.; Mei, X.; Wang, X.; Zhang, L.; Yu, Z.; Zhou, Z. Melatonin Antagonizes Nickel-Induced Aerobic Glycolysis by Blocking ROS-Mediated HIF-1α/miR210/ISCU Axis Activation. *Oxid. Med. Cell. Longev.* **2020**, 2020, 5406284. [CrossRef] [PubMed]
- 148. Fang, Y.; Zhao, C.; Xiang, H.; Jia, G.; Zhong, R. Melatonin improves cryopreservation of ram sperm by inhibiting mitochondrial permeability transition pore opening. *Reprod. Domest. Anim.* **2020**, *55*, 1240–1249. [CrossRef] [PubMed]
- 149. Bu, S.; Wang, Q.; Sun, J.; Li, X.; Gu, T.; Lai, D. Melatonin suppresses chronic restraint stress-mediated metastasis of epithelial ovarian cancer via NE/AKT/β-catenin/SLUG axis. *Cell Death Dis.* **2020**, *11*, 644. [CrossRef]
- 150. Özşimşek, A.; Nazıroğlu, M. The involvement of TRPV4 on the hypoxia-induced oxidative neurotoxicity and apoptosis in a neuronal cell line: Protective role of melatonin. *Neurotoxicology* **2021**, *87*, 136–148. [CrossRef] [PubMed]
- 151. Liu, Z.; Sang, X.; Wang, M.; Liu, Y.; Liu, J.; Wang, X.; Liu, P.; Cheng, H. Melatonin potentiates the cytotoxic effect of Neratinib in HER2+ breast cancer through promoting endocytosis and lysosomal degradation of HER2. *Oncogene* **2021**, *40*, 6273–6283. [CrossRef] [PubMed]
- 152. Wu, J.; Tan, Z.; Li, H.; Lin, M.; Jiang, Y.; Liang, L.; Ma, Q.; Gou, J.; Ning, L.; Li, X.; et al. Melatonin reduces proliferation and promotes apoptosis of bladder cancer cells by suppressing O-GlcNAcylation of cyclin-dependent-like kinase 5. *J. Pineal Res.* 2021, 71, e12765. [CrossRef]
- 153. Qin, D.-Z.; Cai, H.; He, C.; Yang, D.-H.; Sun, J.; He, W.-L.; Li, B.-L.; Hua, J.-L.; Peng, S. Melatonin relieves heat-induced spermatocyte apoptosis in mouse testes by inhibition of ATF6 and PERK signaling pathways. *Zool. Res.* **2021**, *42*, 514–524. [CrossRef]
- 154. Zhang, Y.; Cong, P.; Tong, C.; Jin, H.; Liu, Y.; Hou, M. Melatonin pretreatment alleviates blast-induced oxidative stress in the hypothalamic-pituitary-gonadal axis by activating the Nrf2/HO-1 signaling pathway. *Life Sci.* **2021**, 280, 119722. [CrossRef]
- 155. Wang, L.; He, C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. *Front. Immunol.* **2022**, *13*, 967193. [CrossRef]
- 156. Sadoughi, F.; Dana, P.M.; Asemi, Z.; Shafabakhash, R.; Mohammadi, S.; Heidar, Z.; Mirzamoradi, M.; Targhazeh, N.; Mirzaei, H. Molecular and cellular mechanisms of melatonin in breast cancer. *Biochimie* 2022, 202, 26–33. [CrossRef]
- 157. Zhao, C.-N.; Wang, P.; Mao, Y.-M.; Dan, Y.-L.; Wu, Q.; Li, X.-M.; Wang, D.-G.; Davis, C.; Hu, W.; Pan, H.-F. Potential role of melatonin in autoimmune diseases. *Cytokine Growth Factor Rev.* **2019**, *48*, 1–10. [CrossRef] [PubMed]

158. Liu, L.; Labani, N.; Cecon, E.; Jockers, R. Melatonin Target Proteins: Too Many or Not Enough? Front. Endocrinol. 2019, 10, 791. [CrossRef] [PubMed]

26 of 26

- 159. Srinivasan, V.; Spence, D.W.; Trakht, I.; Pandi-Perumal, S.R.; Cardinali, D.P.; Maestroni, G.J. Immunomodulation by melatonin: Its significance for seasonally occurring diseases. *Neuroimmunomodulation* **2008**, *15*, 93–101. [CrossRef]
- 160. Cecon, E.; Izabelle, C.; Le Poder, S.; Real, F.; Zhu, A.; Tu, L.; Ghigna, M.R.; Klonjkowski, B.; Bomsel, M.; Jockers, R.; et al. Therapeutic potential of melatonin and melatonergic drugs on K18-hACE2 mice infected with SARS-CoV-2. *J. Pineal Res.* 2022, 72, e12772. [CrossRef] [PubMed]
- 161. Cecon, E.; Fernandois, D.; Renault, N.; Coelho, C.F.F.; Wenzel, J.; Bedart, C.; Izabelle, C.; Gallet, S.; Le Poder, S.; Klonjkowski, B.; et al. Melatonin drugs inhibit SARS-CoV-2 entry into the brain and virus-induced damage of cerebral small vessels. *Cell. Mol. Life Sci.* 2022, 79, 361. [CrossRef]
- 162. Cecon, E.; Legros, C.; Boutin, J.A.; Jockers, R. Journal of pineal research guideline for authors: Defining and characterizing melatonin targets. *J. Pineal Res.* **2021**, *70*, e12712. [CrossRef]
- 163. Hornedo-Ortega, R.; Da Costa, G.; Cerezo, A.B.; Troncoso, A.M.; Richard, T.; Garcia-Parrilla, M.C. In Vitro Effects of Serotonin, Melatonin, and Other Related Indole Compounds on Amyloid-β Kinetics and Neuroprotection. *Mol. Nutr. Food Res.* **2018**, *62*, 1700383. [CrossRef] [PubMed]
- 164. Wölfler, A.; Abuja, P.M.; Schauenstein, K.; Liebmann, P.M. N-acetylserotonin is a better extra- and intracellular antioxidant than melatonin. FEBS Lett. 1999, 449, 206–210. [CrossRef]
- 165. Lezoualc'h, F.; Sparapani, M.; Behl, C. N-acetyl-serotonin (normelatonin) and melatonin protect neurons against oxidative challenges and suppress the activity of the transcription factor NF-kappaB. *J. Pineal Res.* **1998**, 24, 168–178. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.