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Abstract: One of the contributors to atherogenesis is enzymatically modified LDL (eLDL). eLDL
was detected in all stages of aortic valve sclerosis and was demonstrated to trigger the activation of
p38 mitogen-activated protein kinase (p38 MAPK), which has been identified as a pro-inflammatory
protein in atherosclerosis. In this study, we investigated the influence of eLDL on IL-6 and IL-33
induction, and also the impact of eLDL on calcification in aortic valve stenosis (AS). eLDL upregulated
phosphate-induced calcification in valvular interstitial cells (VICs)/myofibroblasts isolated from
diseased aortic valves, as demonstrated by alizarin red staining. Functional studies demonstrated
activation of p38 MAPK as well as an altered gene expression of osteogenic genes known to be
involved in vascular calcification. In parallel with the activation of p38 MAPK, eLDL also induced
upregulation of the cytokines IL-6 and IL-33. The results suggest a pro-calcifying role of eLDL in AS
via induction of IL-6 and IL-33.

Keywords: enzymatically modified LDL (eLDL); calcification; aortic valve stenosis; VICs/myofibroblasts;
p38 MAPK; IL-6; IL-33

1. Introduction

Aortic valve stenosis (AS) constitutes an immense clinical and economic burden,
which is expected to increase with the aging population in the near future [1,2]. Despite
its high prevalence, the underlying pathophysiological pathways from inflammation to
calcification, finally leading to severe stenosis, remain incompletely understood [3]. AS
is characterized by fibrocalcific remodeling of the valve leaflets resulting in progressive
narrowing of the aortic valve opening, restriction of blood flow, and consecutive pressure
load on the left ventricle. The consequences are far-reaching, with symptoms ranging from
angina pectoris or syncope to sudden cardiac death [4,5]. To date, no medical treatment
has proven to be effective in halting or reducing the disease’s progression [6,7]. Therefore,
conventional surgical or transcatheter aortic valve replacement (AVR) remains the only
available treatment option for severe AS [8,9]. However, the risks of the surgical procedures
prevent elderly patients and patients with severe comorbidities from undergoing optimal
treatment. It is, therefore, important to investigate the underlying mechanisms of AS, which
could provide new insights for the development of pharmacological interventions.

AS has long been considered a passive degenerative disease in which “wear and tear”
over the years leads to a gradual accumulation of calcium in the valve leaflets. It is now clear
that AS is rather the result of an actively regulated and complex cellular process [4,5,10].
The pathophysiology of AS is considered to occur in two phases: the initiation phase,
similar to atherosclerosis, is characterized by lipid infiltration and deposition and accompa-
nied by inflammation, and the propagation phase, in which myofibroblastic/osteoblastic
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differentiation of valvular interstitial cells (VICs), fibrosis, and calcification are responsible
for disease progression [11–13].

The presence of common risk factors and genetic dispositions of atherosclerosis and
AS highlights the existence of shared mechanisms for disease initiation. In both diseases,
endothelial injury due to increased mechanical and shear stress, followed by insudation
and accumulation of lipoproteins in the intima and fibrosa, respectively, are thought to
be the initiating events [14]. These lipoproteins can undergo several modifications and
become cytotoxic, which are then capable of stimulating inflammatory activity. Amongst
others, in particular the widespread oxidation hypothesis, we propagated the less common
eLDL hypothesis, which proposes that modification of LDL occurs through the action
of ubiquitous hydrolytic enzymes (enzymatically modified LDL or eLDL) rather than
oxidation [15,16]. Initially, enzymatic modification of LDL in vitro was performed by se-
quential treatment with trypsin, cholesterol esterase, and neuraminidase [17], although
the former was later on replaced by several other proteases [18]. Unlike the respective
shortcomings of the oxidation hypothesis, our work indicated that eLDL is present already
in early atherosclerotic lesions [19] and activates the complement via CRP-dependent and
-independent pathways distinguished between atherosclerotic lesion initiation with rever-
sion or lesion initiation with progression, respectively [15,20]. Moreover, in our previous
work, eLDL was detected in all stages of aortic valve sclerosis, thus, providing evidence
that modified lipoproteins are linked to the pathogenesis of AS, just as in atherosclero-
sis [21]. In the context of chronic inflammation, the p38 mitogen-activated protein kinase
(p38 MAPK) signalling pathway has gained attention from researchers in the fields of both
atherosclerosis and aortic valve sclerosis. Due to their presence in atherosclerosis and aortic
valve sclerosis, native LDL and its modification product eLDL may represent important
triggers for p38 MAPK signalling [14]. Previous studies have shown that incubation of
vascular endothelial cells with either native LDL [22] or eLDL [23] results in p38 MAPK
phosphorylation. Furthermore, eLDL was demonstrated to induce the phosphorylation of
p38 MAPK in human monocytes and macrophages associated with atherosclerotic plaques.
Human monocytes and macrophages take up eLDL, leading to subsequent activation of
the p38 MAPK pathway [24]. p38 MAPK activation in macrophages has been shown to
induce the expression of pro-inflammatory cytokines in response to modified LDL [25,26].

Regarding the pro-inflammatory cytokines IL-6 and IL-33, there is initial evidence of
an association with calcific AS [27,28]. However, with regard to IL-33, the data seem to
be contradictory, especially when taking a comparative look at atherogenesis. On the one
hand, a protective effect of IL-33 has been observed in animal models [29,30]. On the other
hand, an inverse association of IL-33 serum levels and the severity of CHD (coronary heart
disease) was found [31]. Likewise, the cytokines’ effect in the pathogenesis of AS remains
undiscovered. Accordingly, the current study investigates the interaction between eLDL
and VICs with particular attention to the p38 MAPK pathway and the pro-inflammatory
cytokines IL-6 and IL-33.

2. Materials and Methods
2.1. Human Aortic Valvular Tissue

Human aortic valves were obtained from 36 patients undergoing aortic valve replace-
ment surgery. Table 1 shows the detailed characteristic of the patients. Data are expressed
as median (minimum difference, maximum difference, interquartile range) or (percentage)
number of subjects. All patients gave written informed consent, and the study was ap-
proved by the local Ethics Committee of the Medical Faculty and the University Hospital
of Tuebingen, Germany. Immediately after surgical removal, the valves were immersed in
PBS and stored at 4 ◦C until transport to the laboratory.
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Table 1. Relations of clinical variables (n = 23).

Characteristic Value

Age, y 66 (6)
BMI, kg/m2 25.15 (5.38)
Cholesterol, mg/dL 186 (65.25)
Creatinine, mg/dL 0.9 (0.3)
CRP, mg/dL 0.2 (0.35)
HbA1c, %Hb 5.8 (0.4)
LDL, mg/dL 79.0 (65.0)
N-terminal of the prohormone brain natriuretic peptide, pg/mL 496.0 (890.5)
Gender

Male 14 (60.87%)
Female 9 (39.13%)

Risk Factor
Hypertension 12 (52.17%)
Smoking 6 (26.09%)
Hyperlipidemia 4 (17.39%)
Hypercholesterolemia 5 (21.74%)
Diabetes mellitus 5 (21.74%)

Data are presented as median and interquartile range or number and percentage. BMI indicates body mass index;
CRP, C-reactive protein; LDL, low-density lipoprotein.

2.2. Histological and Immunhohistochemical Analysis

Sections of formalin-fixed non-rheumatic stenotic aortic valves with varying degrees
of macroscopic disease were taken vertically through Grade 1 to 4 lesions according to
Warren and Young [32]. For histochemistry, paraffin-embedded specimens were stained
with Elastica van Gieson (EvG) and Masson–Goldner to illustrate the layered architectural
pattern. Immunohistochemistry was performed using the Dako RealTM EnvisionTM detec-
tion system, rabbit/mouse kit (Dako, Glostrup, Denmark). Serial 3 µm thick sections of
paraffin-embedded aortic valve leaflets were deparaffinized and treated with Dako RealTM

peroxidase-blocking solution for 10 min to block endogenous peroxidase activity. After
blocking, slides were incubated with the primary antibodies listed in Table 2. Antigen
retrieval of IL-6 (1:100 in Dako Real™ antibody diluent; Dako) and IL-33 (1:100 in Dako
Real™ antibody diluent; Dako) was achieved by heating the sections in pre-warmed target
retrieval solution pH 6 and pH 9 (Dako) in a steamer for 30 min. Application of the primary
antibody was followed directly by the secondary antibody for 30 min. The reaction prod-
ucts were detected by immersing the slides in diaminobenzidine tetrachloride (DAB) for
10 min, resulting in a brown reaction product. Finally, the slides were counterstained with
hemalaun (Papanicolaou’s solution 1a Harris’ hematoxylin; Merck, Darmstadt, Germany)
and mounted using Neo-Mount (Merck).

Table 2. The primary antibodies used for immunohistochemistry and Western blot analysis.

Antigen Name Application Dilution Source Company

p38 MAPK p38 MAPK (D13E1) mAb IHC-P
WB

1:1000
1:1000 Rabbit Cell Signaling Technology,

Danvers, MA, USA

p-p38 MAPK Phospho-p38 MAPK
(Thr180/Tyr182) (D3F9) mAb

IHC-P
WB

1:100
1:1000 Rabbit Cell Signaling Technology

Hsp27 HSP27 (G31) mAb IHC-P 1:200 Mouse Cell Signaling Technology

p-Hsp27 Phosopho-HSP27 (Ser82)
(D1H2F6) mAb IHC-P 1:200 Rabbit Cell Signaling Technology

IL-6 IL-6 Ab polyclonal IHC-P 1:100 Rabbit Affinity Biosciences,
Cincinnati, OH, USA

IL-33 IL-33 monoclonal antibody
(12B3C4) IHC-P 1:100 Mouse

Invitrogen by Thermo
Fisher Scientific, Waltham,

MA, USA
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Table 2. Cont.

Antigen Name Application Dilution Source Company

eLDL LDL-8 (AIL-3) mAb IHC-P 1:2000 Mouse Torzewski et al. [19]

Vinculin Vinculin monoclonal antibody
(2B5A7) WB 1:1000 Mouse

Proteintech,
Planegg-Martinsried,

Germany

β-actin Monoclonal anti-β-actin clone
AC-15 WB 1:1000 Mouse Sigma-Aldrich, St. Louis,

MO, USA

ENPP1
Ectonucleotide pyrophos-

phatase/phosphodiesterase 1
(ENPP1) antibody

IHC-P 1:25 Rabbit Antikörper-online (abbexa),
Aachen, Germany

SPP1 Osteopontin (SPP1) antibody IHC-P 1:500 Mouse Antikörper-online (abbexa)

2.3. VIC/Myofibroblast Isolation and Culture

VICs/myofibroblasts were isolated from stenotic aortic valves obtained from valve
replacement surgery. Isolation was performed immediately after surgical removal of the
human aortic valves via sequential collagenase digestions, using a modified method from
Schlotter et al. [33]. Briefly, both sides of the leaflet were scratched with a razor blade to
remove the endothelial cells. Tissue pieces were digested using a sterile filtered collagenase
solution, containing cell rinse buffer (120 mM NaCl, 15.6 mM glucose, 2.5 mM MgCl2 × 6
H2O, 5.4 mM KCl, 1 mM NaH2PO4, 20 mM HEPES (pH 7.2)), type I collagenase (125 U/mg;
Sigma-Aldrich) and protease (0.25 mg/mL; Sigma-Aldrich) for 90 min at 37 ◦C, 5% CO2,
with gentle mixing every 20 min. The digested valve was then passed through a 0.2 µm
filter, and the flowthrough was centrifuged at 1400 rpm for 5 min. VICs/myofibroblasts
were collected by centrifugation, resuspended in 5 mL Dulbecco’s modified Eagle’s medium
(DMEM; Fisher Scientific by Thermo Fisher Scientific) supplemented with 10% fetal calf
serum (FCS; Thermo Fisher Scientific), 1% penicillin–streptomycin (pen/strep; Fisher
Scientific) and 1% fungizone (Amphotericin B; Gibco by Thermo Fisher Scientific) and
plated in 25 cm2 culture flasks. After three days, the medium was changed to DMEM
supplemented with 10% FCS and 1% pen/strep and the isolated VICs/myofibroblasts
were grown to confluence before passage. Cells were then trypsinized (trypsin-EDTA;
Sigma-Aldrich), counted, and plated for each experiment. Cells between passages 2 and
4 were used for all experiments.

2.4. Treatment of VICs/Myofibroblasts

Experiments were performed on early passage cells (2–4) from several different pa-
tients (indicated by n number). VICs/myofibroblasts were plated on different cell culture
plates and serum-starved by culturing in fetal calf serum-free DMEM medium for 24 h
before experimental use. Cells were cultured in the absence or presence of inorganic
phosphate (1 mM) and treated with varying concentrations of eLDL (2.5–40 µg/mL), IL-6
(100 ng/mL) or IL-33 (100 ng/mL). The doses of eLDL, IL-6, and IL-33 used in this study
were determined based on various preliminary experiments and previously published
in vitro experiments (cf. Chellan et al. (2.5 and 5 µg/mL eLDL), Zhu and Carver and
Wang et al. (100 ng/mL IL-33)) [34–36]. DMEM supplemented with inorganic phosphate
(NaH2PO4) was used to promote calcification in VICs/myofibroblasts. Cells were incu-
bated with the respective reagents and harvested after the indicated time points. DMEM
served as a control treatment.

2.5. Lipoprotein Isolation and Modifications

Human LDL was isolated via preparative ultracentrifugation in KBr gradients fol-
lowed by extensive dialysis against buffer containing 150 mM NaCl, 5 mM Tris-Base,
2.7 mM EDTA × 2 H2O, pH 7.3–7.4, and filter sterilization. Enzymatically modified LDL
(eLDL) was prepared as previously described with some modifications [37]. For enzymatic
modification, 1 mL samples of native LDL containing 3 mg/mL cholesterol were digested
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with plasmin (0.1 U/mL; Merck) and incubated on a shaker overnight at 37 ◦C. Then, 40 µL
25× CPI (complete proteinase inhibitor; Roche, Basel, Switzerland) and CE (cholesterol
esterase, 35 U/mg; Sigma-Aldrich) were added to cleave the cholesterol inside the LDL
particle and incubated for another 24 h at 37 ◦C in a shaker until the eLDL preparation
appeared cloudy. To monitor the reactions, the turbidity was measured at 595 nm [18]. Pro-
tein content was determined by the Bradford method before aliquots of eLDL were stored
at 4 ◦C. eLDL was tested for endotoxins using the Kit Endonext (Biomerieux, Nuertingen,
Germany), and only negative samples were used for experiments.

2.6. Calcification Assay

VICs/myofibroblasts were cultured in pro-calcifying medium (termed PM, Chel-
lan et al. [34]). Cells between passages 2 and 4 were used from different batches of
VICs/myofibroblasts. Cells were grown to confluency in 24-well dishes using DMEM
supplemented with 10% FCS; 1% pen/strep at 37 ◦C, and 5% CO2. After confluence,
VICs/myofibroblasts were incubated overnight in FCS-free DMEM. The next day, the
medium was replaced with PM containing DMEM with 0.1% FCS, 1% pen/strep, and
0.5–1 mM of inorganic phosphate (NaH2PO4). Regular advanced DMEM contains 1 mM
phosphate. As indicated, eLDL (2.5–5 µg/mL) or IL-6 (100 ng/mL) were added, and
cells were cultured for 3 to 7 days. PM was replaced every 3 days. After PM removal,
VICs/myofibroblasts monolayers were rinsed with PBS and fixed in 4% formaldehyde for
10 min at room temperature. Calcium deposits were visualized via staining with alizarin
red solution. Fixed cells were incubated in an aqueous solution of 1% alizarin red solution
(pH 4.1–4.4; Roth, Karlsruhe, Germany) for 10 min and washed three times with distilled
water to remove unbound stain. Quantification of the alizarin–calcium complexes was
carried out according to a method described by Prosdocimo et al. [38]. Briefly, the deposited
alizarin–Ca2+ complexes were extracted by adding a 100 mM cetylpyridinium chloride
solution (CPC). The optical density (OD) of the samples was measured at 570 nm and
normalized to total cellular protein (Bradford [39]).

2.7. RNA Isolation and Real-Time Quantitative PCR

Total RNA from VICs/myofibroblasts of human aortic valves was isolated using a
glass fiber filter-based method (mirVana miRNA Isolation Kit; Invitrogen by Thermo Fisher
Scientific) according to the manufacturer’s instructions. Cells were loaded with eLDL
(5–40 µg/mL) or IL-33 (100 ng/mL) in 12-well plates and incubated for the indicated times
(1/2 h, 1 h, 6 h, 8 h, 12 h, 24 h, 48 h, 6 days, and 7 days). For the p38 MAPK inhibition assay,
VICs/myofibroblasts were pre-treated with skepinone-L (0.1 µM) or SB203580 (20 µM) and
further incubated with 40 µg/mL eLDL. Untreated cells were used as control. Extraction
of the RNA was performed using 300 µL lysis binding solution. The RNA was eluted
in 50µL of the elution buffer pre-warmed to 95 ◦C. The extracted RNA was stored in an
ultra-freezer at −80 ◦C for use in downstream analysis. The concentration of total RNA was
assessed using a NanoDrop spectrophotometer (peQLab Biotechnologie GmbH, Erlangen,
Germany). Total RNA from the VICs/myofibroblasts were reverse transcribed into cDNA
with a high-capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific). Relative
mRNA expression of target genes was measured by quantitative polymerase chain reaction
(qPCR) and normalized to housekeeping gene glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) according to the 2−ddCt method. qPCR was performed using the 7900 HT Fast
Real-Time PCR system with TaqMan Universal Master Mix II (Thermo Fisher Scientific).
The TaqMan Gene Expression Assays used for qPCR amplification are shown in Table 3.
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Table 3. List of TaqMan gene expression assays.

Protein Gene Assay ID

p38α MAPK MAPK14 Hs01051152_m1
p38β MAPK MAPK11 Hs00177101_m1
p38δ MAPK MAPK13 Hs00234085_m1
p38γ MAPK MAPK12 Hs00268060_m1

GAPDH GAPDH Hs02786624_g1
RUNX2 RUNX2 HS01047973_m1
BMP-2 BMP-2 Hs00154192_m1

SP7 SP7 Hs00541729_m1
ENPP1 ENPP1 Hs01054040_m1
MGP MGP Hs00969490_m1
SPP1 SPP1 Hs00959010_m1
ALPL ALPL Hs01029144_m1

ANGPTL4 ANGPTL4 Hs01101127_m1

2.8. Western Blot Analyses

Protein expression was semi-quantified by Western blotting in whole cell lysis extract
from VICs/myofibroblasts. Cells were plated in 6 cm cell culture dishes and incubated
with eLDL (10–20 µg/mL), IL-6 (100 ng/mL) or IL-33 (100 ng/mL) for 1/2 h, 24 h, and 48 h.
Cultured VICs/myofibroblasts were lysed directly on the culture plates in ice-cold cell sig-
naling buffer containing cell lysis buffer (CLP 1×; Cell Signaling Technology), PhosSTOP
phosphatase inhibitor (PI; Roche), cOmplete Mini protease inhibitor (CPI, Roche), and
phenylmethylsulfonyl fluoride (PMSF; Sigma-Aldrich) protease inhibitor. Suspended cells
were collected, and total cell proteins were extracted by centrifugation. Protein concentra-
tions were determined according to Bradford [39]. Equal amounts of the protein samples
(40 µg) were loaded onto 10% SDS gels, separated by electrophoresis and then transferred to
a nitrocellulose membrane (Hybon ECL, Amersham™ Protran™ 0,45 µm NC; Amersham
Pharmacia Biotech, Piscataway, NJ, USA) according to standard procedures. After blocking
nonspecific sites, the membranes were incubated with the primary antibodies against
total and phosphorylated p38 MAPK (Table 2) and vinculin or β-actin at a 1:1000 dilution
overnight at 4 ◦C. After washing, the membranes were stained with horseradish peroxidase
(HRP)-conjugated goat anti-rabbit and horse anti-mouse IgG secondary antibodies (Cell
Signaling Technology, Danvers, MA, USA) for 1 h. HRP-conjugated secondary antibod-
ies were used in conjunction with a lumino-based ECL (enhanced chemiluminescence)
horseradish peroxidase substrate kit (SuperSignal West Dura Extended Duration, Substrate;
Pierce Biotechnology, Rockford, IL, USA). Light emission was detected by the LAS1000
imaging system using STELLA and AIDA software (RayTest, Straubenhardt, Germany).
Protein expression was analyzed by AIDA software and normalized to vinculin or β-actin.

2.9. MTT Assay

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) viability
assay was performed as described by Mosmann et al. [40] with slight modifications. MTT
(Sigma) was prepared as a working solution of 10 mg/mL in phosphate-buffered saline
(PBS, pH 7.2). At the end of the different treatment periods (see above), 10 µL of MTT
solution was added to each well. After incubation at 37 ◦C for 2 h, 90 µL of lysis buffer
(15% sodium dodecyl sulfate (SDS) dissolved in dimethylformamide (DMF) water 1:1, pH
4.5, adjusted with 80% acetic acid) was added to each well and the plate was incubated
for 2 h at room temperature in the dark. The microtiter plate was placed on a shaker in
order to dissolve the formazan crystals. Unlike dead cells, viable cells produced a dark
purple formazan product. Cell viability was assessed by determining the absorbance at a
wavelength of 550 nm using a 96-well microplate reader (Enspire; Perkin Elmer, Waltham,
MA, USA).
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2.10. Statistical Analyses

Data are represented as mean values ± standard deviation (SD). An unpaired two-
tailed Student’s t test was used to determine statistical significance of differences in mean
values. p-values < 0.05 were considered statistically significant (* p < 0.05, ** p < 0.01 and
*** p< 0.001). Statistical analysis of the data were calculated and graphed using Excel and
Prism 9 software (GraphPad software Inc., San Diego, CA, USA). The p-values are indicated
in the individual figures.

3. Results
3.1. Estimation of Cell Viability in VICs/Myofibroblasts

First of all, the effect of eLDL on cell viability was measured by MTT assay.
VICs/myofibroblasts were treated with DMEM Ø FCS and eLDL (20 µg/mL) and in-
cubated for the indicated time periods. After each incubation period, an MTT assay was
performed and the absorbance at 550 nm was measured to determine the viability of the
cells. In general, the viability of the cells did not decrease over time. However, slight dif-
ferences were observed between the different treatments. VICs/myofibroblasts incubated
with 20 µg/mL eLDL tended to show a non-significant decrease in viability (Figure 1)
compared to treatment with DMEM Ø FCS.
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were seeded on 96-well plates. The cells were treated with DMEM Ø FCS or 20 µg/mL eLDL and
incubated for the indicated time periods. After each incubation period, an MTT assay was performed
and the absorbance at 550 nm was measured to determine the viability of the cells.

3.2. eLDL Upregulates Phosphate Induced Calcification in Cultured VICs/Myofibroblasts

To investigate the role of eLDL in triggering calcification of VICs/myofibroblasts, an
alizarin red-based assay was used [34]. Cells were exposed to a calcification medium con-
taining 1 mM inorganic phosphate (Na2HPO4; PM) wherein no spontaneous calcification
was observed. However, when VICs/myofibroblasts cultured in PM were treated with
eLDL (2.5 and 5 µg/mL), significantly increased mineralization of eLDL-treated cells was
detected as early as day 3 of incubation (Figure 2A).
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Figure 2. eLDL enhances phosphate-induced calcification in cultured human VICs/myofibroblasts.
(A) Representative example of confluent monolayers of human VICs/myofibroblasts treated with
1 mM phosphate containing pro-calcifying medium (PM) with (wells 11 & 33 containing 2.5 µg/mL
eLDL, wells 12 & 34 containing 5 µg/mL eLDL) or without eLDL (wells 10 & 32) as indicated. Cells
cultured in PM containing 1 mM inorganic phosphate (Pi) served as controls. Cells were fixed and
calcium phosphate deposits were stained with alizarin red pH 4.4. (B) For quantification of the
alizarin red staining, the alizarin–Ca2+ complexes were extracted by addition of CPC. The amount
of released dye was measured by spectrophotometry at 570 nm. (C) qPCR analysis of osteogenic
gene mRNA in cultured VICs/myofibroblasts incubated for 7 days in PM containing 1 mM inorganic
phosphate (Pi) in the presence (5 µg/mL) or absence of eLDL (control). The mRNA expression
levels were normalized to GAPDH according to the 2−ddCT method. Results from 12 independent
experiments are shown. Bar values are means ± SD. (D) eLDL induced ANGPTL4 gene expression
in VICs/myofibroblasts. ANGPTL4 gene expression was determined for cells exposed to eLDL
(5 µg/mL) in combination with PM 1 mM Pi for 7 days. Untreated cells (PM with 1 mM Pi) served
as control. Results are presented as means ± SD, n = 12, *** p < 0.001, ** p < 0.01, and * p < 0.05.
(E) Immunohistochemical analysis of osteogenic proteins in AS. Representative sections of Grade
4 aortic valve calcification for (a), ENPP1, and (b), SPP1. Note the predominant localization of the
different antigens around calcified areas. In all panels, the fibrosa with the aortic side of the valve is
to the top.
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3.3. eLDL and the Expression of Calcification-Related Genes

Next, qPCR analysis was performed to evaluate whether the enhanced calcification in
eLDL-treated VICs/myofibroblasts is associated with an alteration of the expression of genes
known to be involved in the process of vascular calcification. For this purpose, mRNA was
harvested from VICs/myofibroblasts cultured for 7 days in PM with and without eLDL (con-
trol). The expression levels of both genes known to promote calcification (alkaline phosphatase
(ALPL), bone morphogenic protein 2 (BMP-2), Runt-related transcription factor 2 (RUNX2),
Osterix/SP7 and osteopontin (OPN)/SPP1)) and genes known to inhibit calcification (matrix
Gla protein (MGP) and ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1)) were
investigated and normalized to the housekeeping gene (GAPDH) (Figure 2C). eLDL signifi-
cantly increased gene expression of ALPL (1.4-fold) and SP7 (5-fold). Interestingly, the mRNA
level of RUNX2 was reduced by eLDL. At the same time, the expression of ENPP1, a known
inhibitor of calcification [41,42], was markedly increased (1.7-fold). Furthermore, we found no
significant differences in the mRNA expression levels of the osteogenic factors BMP-2, MGP,
and SPP1 in eLDL-treated VICs/myofibroblasts compared to control cells.

Of note, our data showed a strong induction of ANGPTL4 mRNA in response to
eLDL-treatment in VICs/myofibroblasts. Exposure of cells to 5 µg/mL eLDL for 7 days
increased ANGPTL4 gene expression approximately 45-fold (Figure 2D) demonstrating
that eLDL is very potent in inducing ANGPTL4 mRNA.

3.4. eLDL and p38 MAPK in Human VICs/Myofibroblasts

The p38 MAPK is involved in inflammatory signaling in various settings and cell
types and has gained attention in the field of both atherosclerosis and CAVD (calcific
aortic valve disease) research, especially since these cardiovascular diseases have been
recognized as active, inflammation-driven processes [14]. Previous work has shown that
incubation of different cell types with either native LDL [43] or eLDL [23,24] resulted in
p38 MAPK phosphorylation. Accordingly, VICs/myofibroblasts were incubated with eLDL
(10 or 20 µg/mL) for 30 min. Medium alone served as a negative control. Sequential
WB analyses of cell lysates were performed to detect both p38 MAPK and phospho-p38
MAPK. Phosphorylation site-specific antibodies were used to investigate MAPK activation
in human VICs/myofibroblasts. The WB data showed that treatment with eLDL stimulated
p38 MAPK phosphorylation. While the amount of p38 protein remained the same, the
amount of phosphorylated p38 increased in a dose-dependent manner. Phospho-p38 MAPK
showed induction of the phosphorylated protein by eLDL after 30 min, with the signal
becoming strongly visible upon incubation with 10 µg/mL and increasing in intensity after
incubation with 20 µg/mL (Figure 3A). Thus, eLDL induces phosphorylation of p38 MAPK
in a dose-dependent manner. These findings were corroborated by immunohistochemical
staining of sclerotic aortic valves showing phosphorylation of p38 MAPK and its specific
downstream substrate heat shock protein 27 (Hsp27). Aortic valve immunostaining for
phosphorylated and total protein was performed with antibodies for p38 MAPK, phospho-
p38 MAPK, Hsp27, and phospho-Hsp27. Increased phosphorylation of p38 MAPK was
accompanied by the upregulation of the phosphorylated Hsp27 protein, a potential marker
of p38 MAPK activity (Figure 3D), indicating the presence of an activated p38 signaling
pathway in aortic valve sclerosis.
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Figure 3. p38 MAPK and eLDL in human aortic valves. (A) Detection of rapidly phosphorylated p38
MAPK upon treatment of VICs/myofibroblasts with eLDL. Cells were exposed to 10 or 20 µg/mL
eLDL for 30 min. Cells without treatment served as control. Phosphorylated p38 MAPK and
total p38 MAPK in whole-cell lysates were sequentially detected by Western blot analysis on the
same membrane. Blots were re-probed with β-actin antibody to confirm equal loading. (B) WB
quantification of the phosphorylation of p38 MAPK. (C) Expression of p38 MAPK isoforms in
VICs/myofibroblasts. Relative mRNA levels for p38 subtypes quantified in VICs/myofibroblasts
from 10 different patients using real-time PCR. Expression levels are given as RQ of target genes
(p38α/MAPK14, p38β/MAPK11, p38γ/MAPK12, p38δ/MAPK13) normalized to the reference gene
GAPDH. (D) Representative immunohistochemical staining of aortic valves sections stained with (a),
anti-p38; (b), anti-phospho-p38; (c), anti-Hsp27; (d), anti-phospho-Hsp27. The fibrosa with the aortic
side of the valve is on top.

The p38 MAPK family is composed of four p38 MAPK isoforms: p38α/MAPK14,
p38β/MAPK11, p38γ/MAPK12, and p38δ/MAPK13. To elucidate the role of p38 MAPK
signaling in the process of AS, we examined the mRNA expression pattern of each of the
four p38 MAPK isoforms in VICs/myofibroblasts. Expression of the different p38 MAPK
isoforms in human VICs/myofibroblasts was investigated by qPCR using isoform-specific
primers. Analysis of mRNA levels in cells from 10 different patients (Figure 3C) revealed a
consistent expression pattern, with p38α/MAPK14 showing the highest relative expression
of the p38 MAPK isoforms followed by both p38β/MAPK11 and p38γ/MAPK12, whereas
there was only weak expression of p38δ/MAPK13.

3.5. Induction of Both IL-6 and IL-33 by eLDL

Concomitant with the activation of p38 MAPK, an upregulation of the cytokines IL-6
and IL-33 was observed after eLDL treatment. Experiments were performed to investigate
the impact of eLDL on the mRNA expression pattern of the pro-inflammatory cytokines
IL-6 and IL-33 in VICs/myofibroblasts. Human VICs/myofibroblasts from three to four
healthy donors were treated with eLDL (20 µg/mL) and incubated for the indicated time
periods (Figure 4). Cells without treatment (DMEM) served as controls. The relative
expression levels of IL-6 and IL-33 were measured via qPCR analysis. The data showed
that cells treated with eLDL had significantly higher mRNA levels for both cytokines in
VICs/myofibroblasts than the untreated control (DMEM). Specifically, cytokine expression
increased with time, with IL-6 rising already after 30 min (Figure 4A) and IL-33 after 6 h
(Figure 4B).
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Figure 4. eLDL increases mRNA expression of (A) IL-6 and (B) IL-33 in cultured human
VICs/myofibroblasts. Confluent monolayers of VICs/myofibroblasts were exposed to 20µg/mL
eLDL for the indicated time periods. Cells cultured in DMEM alone were used as controls. Total
RNA was extracted, and levels of IL-6 and IL-33 mRNA were measured via qPCR analysis. The
expression levels of IL-6 and IL-33 mRNA were normalized to the housekeeping gene (GAPDH).
Data are represented as mean ± SD, ** p < 0.01, and * p < 0.05.

3.6. Colocalization of eLDL with IL-6 and IL-33

25 specimens of aortic lesions fulfilling the criteria of Grades 3 and 4 as defined [21]
were examined, and similar findings were made in all cases. With the use of a specific mAb,
eLDL was detectable in every lesion examined. Grade 3 and Grade 4 showed a predominant
extracellular localization of eLDL, mainly around calcified areas and/or cholesterol crystal
deposits (Figure 5B). Likewise, both IL-6 (Figure 5C) and IL-33 (Figure 5D) were detectable
in every lesion examined, with close intermingling and overlap of the different antigens
within and around calcified areas (colored red by Masson–Goldner, Figure 5A).
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(colored red by Masson–Goldner). In all panels, the fibrosa with the aortic side of the valve is to the
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3.7. IL-6 and IL-33 Activate the p38 MAPK Pathway

To elucidate the role of IL-6 and IL-33 in activating the p38 MAPK signaling pathway,
primary VICs/myofibroblasts from AS patients were incubated with recombinant IL-6
(100 ng/mL) and IL-33 (100 ng/mL) for 24 h and 48 h, respectively. Medium alone served
as the control. Western blot analyses of cell lysates were utilized to detect the activation of
the p38 MAPK pathway following the IL-6 and IL-33 treatments, respectively. Western blot
analyses showed that IL-6 and IL-33 stimulation markedly increased the phosphorylation
level of p38 MAPK as compared to the untreated control. While the amount of total p38
MAPK protein remained unchanged, there was an increase in the amount of phosphory-
lated p38 MAPK over time (Figure 6). The signal of phosphorylated protein became clearly
visible after 24 h incubation with IL-6 (100 ng/mL) or IL-33 (100 ng/mL) and increased in
intensity after incubation for 48 h. These results indicate that both cytokines IL-6 and IL-33
induce activation of the p38 MAPK signaling pathway in VICs/myofibroblasts.
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Figure 6. Activation of the p38 MAPK pathway in human VICs/myofibroblasts stimulated with IL-6
and IL-33. Cells from AS patients were treated with (A) 100 ng/mL IL-6 and (B) 100 ng/mL IL-33 for
24 h and 48 h. Cells without treatment served as controls. Phosphorylated p38 MAPK and total p38
MAPK protein expression were detected by WB analysis. The expression of vinculin was used for
loading control. The bar graphs show the relative quantification of phospho-p38 protein compared to
the untreated cells.

3.8. The p38 MAPK Pathway Is Involved in Increased IL-6 Cytokine Expression

Pharmacological inhibitors were used to investigate the impact of the p38 MAPK
signaling pathway on the expression of IL-6 and IL-33 in response to eLDL treatment.
VICs/myofibroblasts were treated with the p38 MAPK inhibitors skepinone-L and SB203580
for 2 h prior to treatment with 40 µg/mL eLDL for 24 h. The expression of IL-6 and IL-33
was evaluated by RT-PCR as performed in Figure 4. As shown by the RT-PCR data, pre-
treatment with skepinone-L (0.1 µM) and SB203580 (20 µM) prevented the stimulation of
IL-6 by eLDL (Figure 7A). On the other hand, neither inhibitor inhibited eLDL-induced
IL-33 gene expression (Figure 7B).
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Figure 7. Effect of skepinone-L and SB203580 on the eLDL-induced expression of IL-6 and IL-33 in
human VICs/myofibroblasts. Cells were incubated with skepinone-L (0.1 µM) or SB203580 (20 µM)
for 2 h and further exposed to 40 µg/mL eLDL for 24 h. mRNA expression levels of (A) IL-6
and (B) IL-33 were measured via qPCR analysis. The expression levels of IL-6 and IL-33 mRNA
were normalized to the housekeeping gene (GAPDH). The eLDL-stimulated cells were assigned an
arbitrary value of 100, and the other gene expression values are shown in proportion to this as a
percentage. Data are represented as mean ± SD, *** p < 0.001.

3.9. IL-33 Induces IL-6 Cytokine Expression in Primary VICs/Myofibroblasts

Experiments were performed to investigate the effects of IL-33 on the expression of the
inflammatory cytokine IL-6 in VICs/myofibroblasts. Cells were treated for 6 days with and
without IL-33 (100 ng/mL) in combination with PM at a concentration of 1 mM inorganic
phosphate. The expression of IL-6 was measured using qPCR. After treatment with human
recombinant IL-33 and PM containing 1 mM inorganic phosphate, VICs/myofibroblasts
isolated from AS patients showed a significant increase (3-fold) in the mRNA expression of
IL-6 (Figure 8A), demonstrating marked induction of IL-6 by IL-33.
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Figure 8. IL-6, IL-33, and calcification. (A) IL-33 induces IL-6 mRNA expression in human
VICs/myofibroblasts. qPCR analysis of IL-6 mRNA in cultured VICs/myofibroblasts incubated for
6 days in PM containing 1.0 mM inorganic phosphate (Pi) in the presence (100 ng/mL) or absence
of IL-33 (control). The mRNA expression level of IL-6 was normalized to GAPDH according to
the 2−ddCT method. Results from 7 independent experiments are shown. The bar values are mean
values ± SD, * p < 0.05. (B) Effects of IL-6 on phosphate-induced calcification in VICs/myofibroblasts.
Confluent monolayers of human VICS/myofibroblasts cultured in 1 mM phosphate containing PM
were treated with (well 3 containing 100 ng/mL IL-6) and without IL-6 (well 2) for 6 days. Calcium
phosphate deposits were visualized by alizarin red staining (pH 4.4). (C) To quantify calcium deposi-
tion, alizarin–Ca2+ complexes were extracted by adding CPC. The optical density of the extract was
measured at 570 nm and normalized to cellular protein content.
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3.10. Effects of IL-6 on Phosphate-Induced Calcification in VICs/Myofibroblasts

Based on the above observations, we wondered whether IL-6 promotes calcification
of the aortic valve. For this purpose, human VICs/myofibroblasts were incubated in PM
with inorganic phosphate (1 mM) and treated with and without IL-6 (100 ng/mL) for 6
days, respectively. Alizarin red staining was used to assess mineralization. Cells cultured
in PM containing solely 1 mM inorganic phosphate showed no spontaneous calcification.
However, treatment of VICs/myofibroblasts with IL-6 (100 ng/mL) incubated with PM
containing 1 mM phosphate resulted in positive calcium deposition of IL-6-treated cells
after 6 days of incubation (Figure 8B). For quantification, the deposited alizarin–Ca2+

complexes were extracted, and the OD was measured at 570 nm and normalized to total
cellular protein (Figure 8C).

4. Discussion

In the present study, we demonstrated that eLDL enhances phosphate-induced calcifi-
cation and alters osteogenic gene expression in VICs isolated from diseased aortic valves.
We have shown that eLDL induces the activation of p38 MAPK, which has been identified
as a pro-inflammatory protein in atherosclerosis [24]. Further analysis of the p38 MAPK
signaling pathway revealed that p38α/MAPK14 is the most abundantly expressed p38
isoform in isolated human VICs/myofibroblasts. In parallel to p38 MAPK activation, eLDL
also leads to upregulation of IL-6 and IL-33 expression. These findings were corroborated
by immunohistochemical staining of calcified aortic valves showing colocalization of eLDL
with IL-6 and IL-33. Since eLDL treatment resulted in increased IL-6 and IL-33 expres-
sion, we utilized specific p38 MAPK pathway inhibitors (skepinone-L and SB203580) to
determine whether activation of this pathway is important for eLDL-induced cytokine
production. Our data showed that inhibition of p38 MAPK decreases the expression of IL-6
but not IL-33 following eLDL treatment of VICs/myofibroblasts. Furthermore, our results
show that both cytokines IL-33 and IL-6 increase the phosphorylation level of p38 MAPK
in primary VICs/myofibroblasts. Moreover, we demonstrated for the first time that IL-33
stimulates IL-6 expression in cells isolated from AS patients. IL-6 in turn, like eLDL, is able
to promote calcification of VICs/myofibroblasts treated with inorganic phosphate. Thus,
one possible mechanism by which eLDL promotes calcification in VICs/myofibroblasts
could be IL-33-mediated IL-6 cytokine production through activation of the p38 MAPK
signaling pathway. Elucidating the pathological role of eLDL will contribute to a better
understanding of calcification and the development of therapeutic interventions to prevent
the disease’s progression.

To examine whether eLDL promotes calcification of VICs/myofibroblasts, cells were
cultured in calcification medium to increase susceptibility to calcification. A wide spectrum
of alizarin red staining, ranging from severe to almost no calcification, has been detected
for human VICs/myofibroblast cultured in PM (1 mM NaH2PO4) with the addition of
the pro-inflammatory stimulus eLDL. Our data demonstrate that VICs/myofibroblasts
cultured in PM exhibit donor-to-donor variation.

New evidence suggests that osteogenic differentiation of human VICs/myofibroblasts
plays a key role in valve calcification. VICs differentiate into activated myofibroblasts and
osteoblast-like cells in response to specific mediators [5,44]. It is likely that many signaling
networks interact to drive the pathological transformation of VICs in aortic valve sclerosis,
although the detailed molecular processes and their timing are not fully understood. We
demonstrated significant differences in the transcriptome of human VICs/myofibroblasts
when treated with eLDL. Our functional studies suggest a possible role for eLDL in altering
gene expression related to the calcification process by activating osteogenic genes or inhibit-
ing calcification inhibitors. Stimulation of VICs/myofibroblasts cultured in PM with eLDL
resulted in upregulation of the expression of the osteogenic marker alkaline phosphatase
(ALPL) (1.4-fold increase) and SP7/Osterix (5-fold increase). ALP is known to have a
calcification-promoting effect by decreasing levels of the mineralization inhibitor inorganic
pyrophosphate (PPi) [45–48]. The ability of ALP to regulate pyrophosphate levels in vivo
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has been demonstrated by the elevated pyrophosphate levels in ALP-deficient humans [49].
A logical conclusion is that ALP promotes calcification by reducing pyrophosphate levels.
SP7, on the other hand, is a transcription factor important for bone formation and osteogenic
differentiation [50,51]. It has been shown that a reduction in SP7 inhibits osteogenic differen-
tiation and calcification of human VICs [52]. Furthermore, our data showed that the mRNA
expression level of RUNX2 was significantly reduced by eLDL, although it is considered a
calcification-promoting gene [34,53]. RUNX2 is a transcription factor highly expressed in
calcified aortic valves. While RUNX2 is not normally expressed in aortic valves, numerous
studies have demonstrated the expression of RUNX2 in calcified human aortic valves and
its association with the pathogenesis of AS [54–56]. In comparison, the expression of ENPP1,
an established regulator of tissue mineralization and inhibitor of calcification [41,42,45],
was markedly increased after eLDL treatment. ENPP1 is an ectoenzyme that converts extra-
cellular ATP to adenosine and thereby generates inorganic pyrophosphate [42]. As stated
above, pyrophosphate itself is an important inhibitor of calcification [57]. Previous studies
have shown that homozygous ENPP1 deficiency in humans leads to loss of enzyme activity
and to a severe form of infantile arterial calcification [41,58]. Surprisingly, no reduction
in ENPP1 or MGP, another prominent calcification-inhibitor [59–61], was observed in our
study. Of all the genes examined, only RUNX2 showed a significant reduction in gene
expression. The direct molecular mechanisms by which eLDL promotes calcification of
VICs/myofibroblasts are at least partially associated with the acquisition of an osteoblastic
gene profile, as previously described for smooth muscle cells (SMCs) [34].

In agreement with previous findings in human coronary artery SMCs [34], another im-
portant result of our study shows that eLDL strongly induces ANGPTL4 mRNA expression
(45-fold increase). ANGPTL4 mRNA is induced by various types of lipids, including fatty
acids [62,63] and may serve to protect cells from excessive fat uptake [64]. Therefore, we hy-
pothesize that the uptake of eLDL into VICs/myofibroblasts [21] loads the cells with lipids,
such as cholesterol and fatty acids, and, thus, upregulates ANGPTL4 mRNA. ANGPTL4
is a potent inhibitor of the triglyceride-hydrolyzing enzyme lipoprotein lipase (LPL) [65]
and, thus, presumably prevents lipid toxicity in fat-loaded cells [62,64]. By repressing LPL
activity, ANGPTL4 functions as an important regulator of LPL-mediated lipid uptake into
cells [66]. Vice versa, ANGPTL4 deficiency increases the uptake of oxLDL into macrophages
and enhances lipid-induced stress [67]. Therefore, upregulation of ANGPTL4 mRNA in
VICs/myofibroblasts in response to eLDL may represent a mechanism that impairs lipid
uptake and, thus, protects cells from excess fat and lipid toxicity.

As an approach to investigate the effect of eLDL on the pro-inflammatory protein p38
MAPK, we analyzed the activation of the p38 MAPK signaling pathway in eLDL-treated
VICs/myofibroblasts. The fact that eLDL induces phosphorylation and activation of p38
MAPK in human epithelial cells [23], human coronary artery SMCs [34], human monocytes,
and monocyte-derived macrophages [24] as well as in human VICs/myofibroblasts, calls
for further investigation of the cellular response. Activation of the p38 MAPK pathway has
been demonstrated in macrophages associated with atherosclerotic lesions by immunohisto-
chemistry in patient derived tissues [24] and in animal models [68]. Several in vitro studies
have investigated the biological consequences of p38 MAPK activation in atherosclerosis-
associated macrophages. First, p38 MAPK was shown to be part of a positive feedback
mechanism that drives foam cell formation. OxLDL induces p38 MAPK activation in
macrophages, which in turn promotes LDL uptake by PPARγ-mediated upregulation of
LDL uptake receptors, such as CD36 [14,43]. The specific p38 inhibitor SB203580 prevents
oxLDL-exposed macrophages from becoming foam cells. p38α/MAPK14, the most abun-
dantly expressed isoform in human monocytes [24], is the physiologically relevant isoform
of p38 MAPK involved in inflammatory responses [69]. Interestingly, skepinone-L inhibits
eLDL-induced activation of p38α MAPK and expression of CD36, with no net effect on
foam cell formation [24]. However, the data concerning the role of p38 MAPK in lipoprotein
uptake by human monocytes and macrophages are generally sparse and contradictory.
Although other studies indicate that LDL uptake by monocytes [70] or cholesterol ester
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accumulation in macrophages [71] are promoted by p38 MAPK, a further report contradicts
this and suggests that inhibition of p38 MAPK has no apparent effect on lipid accumulation
in LDL-treated THP-1 cells [72]. In VICs/myofibroblasts, p38 MAPK seems to be involved
in important osteogenic signaling pathways and to support the osteogenic differentiation
of cells that drive tissue calcification [73,74].

Among the multiple downstream activities of phosphorylated p38 MAPK, cytokine
production is a critical component associated with atherosclerosis [75]. In the first instance,
we investigated whether eLDL treatment of VICs/myofibroblasts induces cytokines known
to be involved in the pathogenesis of AS.

As for the pro-inflammatory cytokines IL-6 and IL-33, there is initial evidence of an
association with calcific AS [27,28]. IL-33 is a newly discovered cytokine that belongs
to the IL-1 cytokine family [76] and has been demonstrated to play interesting roles in
various cardiovascular disease processes, including myocardial infarction, atherosclerosis,
and cardiac fibrosis [28,35,77]. On closer examination, however, the data seem to be
contradictory, especially when taking a comparative look at atherogenesis. On the one
hand, IL-33 is thought to have atheroprotective properties [29,30]. Several processes may
be responsible for these properties, including a change in T cell polarization from Th1
to Th2, induction of Th2-cytokines and of protective oxLDL antibodies [29], as well as
prevention of macrophage foam cell production [30]. On the other hand, pro-atherogenic
actions have also been described in experimental studies [78]. Clinically, serum IL-33
levels are increased in individuals with unstable angina pectoris and acute myocardial
infarction compared to stable angina and control groups [31]. Likewise, the effect of the
cytokine in the pathogenesis of AS is not yet clear. Many studies have proposed that
inflammation-associated factors can promote the unidirectional differentiation of VICs
into myofibroblasts or osteoblasts, thereby contributing to valve thickness and calcific
nodule formation [28]. In addition, p38 MAPK was recently shown to be involved in IL-33
signaling in macrophages [79]. Our work suggests that IL-33 leads to an upregulation
of the pro-inflammatory cytokine IL-6, potentially through stimulation of the p38 MAPK
pathway in human VICs/myofibroblasts. Several studies have demonstrated that IL-33
induces the expression of type-1 and -2 cytokines via the p38 MAPK pathway in innate
lymphoid cells [80], natural killer cells [81], and leukemia cells [36]. In other cell types, IL-33-
mediated expression of the type-2 cytokine IL-6 could be abolished by the pharmacological
p38 inhibitor SB203580, suggesting the involvement of p38 MAPK in this process [35,36].

IL-6 is a pro-inflammatory peptide associated with various aspects of cardiovascular
disease, but its role in AS in particular is still under debate. We have shown that treatment
of cells with both eLDL and IL-33 leads to an increase in IL-6 mRNA. High expression
of IL-6 in the aortic valve has been shown to promote mineralization [27]. Furthermore,
polymorphisms in the IL-6 gene are associated with AS [82] and also act as a promoter
of atherosclerosis [83]. In vitro studies have demonstrated the relationship of IL-6 with
BMP-2 and RUNX2, which are considered to be important regulators and promoters of
osteogenesis and key elements of the calcification process by controlling the osteogenic
transition of VICs in CAVD [27]. It is possible that IL-6, like eLDL, is able to enhance
calcification by mediating the osteogenic program in aortic valves.

In summary, our study shows that the expression of IL-6 and IL-33 is elevated in
primary VICs/myofibroblasts treated with the lipoprotein modification eLDL. Furthermore,
the data support a role for the p38 MAPK pathway in IL-33-induced cytokine release. Based
on these observations, we propose that IL-33 is an important regulator of eLDL-mediated
calcification by activating p38 MAPK pathways, which in turn promotes increased IL-6
expression. Thus, collectively, our work suggests that targeting the IL-33/p38 MAPK/IL-6
axis has the potential to be an effective treatment for AS. The lack of success so far in
treating AS highlights the need for further research into the molecular pathways leading to
valve calcification in order to find new therapeutic targets.
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