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Abstract: The biosynthesis of silver nanoparticles (Ag NPs) could play a significant role in the
development of commercial antimicrobials. Herein, the biosynthesis of Ag NPs was studied using
the edible mushroom Pleurotus floridanus, and following its formation, spectrophotometry was used
to detect the best mushroom content, pH, temperature, and silver concentration. After that, the
morphology was described via transmission electron microscopy (TEM), and nanoscale-size particles
were found ranging from 11 to 13 nm. The best conditions of Ag content and pH were found at
1.0 mM and 11.0, respectively. In addition, the best mushroom extract concentration was found at
30 g/L. According to XRD analysis, the crystal structure of the formed amorphous Ag NPs is cubic
with a space group of fm-3m and a space group number of 225. After that, the function groups at
the surface of the prepared Ag NPs were studied via FTIR analysis, which indicated the presence of
C=O, C-H, and O-H groups. These groups could indicate the presence of mushroom traces in the Ag
NPs, which was confirmed via the amorphous characteristics of Ag NPs from the XRD analysis. The
prepared Ag NPs have a high impact against different microorganisms, which could be attributed to
the ability of Ag NPs to penetrate the cell bacterial wall.

Keywords: silver nanoparticles; Pleurotus floridanus; spectrophotometric follow-up; antimicrobial
agent; biosynthesis

1. Introduction

Given the medical concerns related to the antibacterial resistance and biocompatibility
of commercial antimicrobials, there is considerable interest in materials with a high an-
timicrobial behavior that could be obtained from edible foods [1,2]. Among edible foods,
mushrooms attracted many researchers in different applications, including food packag-
ing [3], pharmaceuticals [4], as a protein source [5], lactic acid production [6], agri-food
supply [7], and as a potential prostate cancer retardant [8]. Additionally, edible mush-
rooms were studied for their antioxidant, antitumor, and antimicrobial qualities [9,10]. In
addition, edible mushrooms are widely available worldwide compared to other precious
antimicrobial agents. Therefore, the interest in using edible mushrooms for the design of
a novel antimicrobial is high in recent research [11]. Mushrooms have a wide range of
necessary biomolecules, including vitamins, steroids, polyphenols, polysaccharides, and
amino acids [12–14]. These biomolecules could play a role as capping and reducing agents
for the bio-fabrication of nanoparticles (NPs) [15]. Therefore, its extract could reduce the
expected aggregation and so develop a new methodology for the large-scale production
of NPs.

Among the reported methods to use microorganisms for the design of NPs, fungi are
one of the best options for most NPs [16–18], such as Ag [19], ZnO [20], gold (Au) [21],
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selenium (Se) [22], iron (Fe) [23], nickel (Ni) [24], copper oxide [25], TiO2 [26], and iron-
oxide [27]. From these NPs, silver nanoparticles (Ag NPs) were reported to possess excellent
antibacterial [28], antifungal [29], antitumor [30], and anti-inflammatory qualities [31] and
were useful in a range of different biomedical applications [32]. The biosynthesis of Ag
NPs has various merits, including being low-cost, eco-friendly, and having a simple-step
methodology, as well as a high level of biosafety in human therapeutic use. In contrast,
the chemical methods to prepare Ag NPs using different hazardous chemicals affect their
biocompatibility and biosafety. In addition, there is an expected high cost and deficiency of
some utilized chemicals as reducing or capping agents. Since these chemical techniques
have clear demerits, it is time to replace them with more bio-suitable techniques, such as
edible fungi-assisted methodology. In this regard, with this synthetic strategy to produce
Ag NPs, there are no special requirements, such as the use of high temperature, abnormal
pressure, or toxic materials [33].

Up to now, a lot of reported work on having Ag NPs as antibacterial agents has
been introduced to the literature [34], as well as their use in catalytic [35] or biomedical
applications [36]. So far, limited reports have followed Ag NP formation, which is an
important factor in the identification of the optimum conditions for the commercialization
of Ag NPs in biomedical fields. This work presents the spectrophotometric follow-up of
the formation of Ag NPs using the edible macrofungi-assisted methodology. The edible
macrofungi act as both capping and reducing agents. The aim of this study was to introduce
the best conditions to bio-fabricate Ag NPs and investigate this prepared material as an
antimicrobial agent against various microorganisms, including Gram-positive (+) and
Gram-negative (-) bacteria, candidiases, and fungi. In particular, the prepared Ag NPs
in this study were evaluated against Bacillus subtilis, Staphylococcus aureus, Bacillus cereus,
Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Candida
albicans, C. glabrata, C. stellatoidea, C. parapsilosis, Aspergillus niger, and Fusarium oxysporum.
Additionally, the prepared Ag NPs have been characterized by transmission electron
microscopy (TEM), X-ray diffraction analysis (XRD), zeta potential, and Fourier-transform
infrared spectroscopy (FTIR). The introduced Ag was tested at different concentrations
to find the minimum inhibition concentration (MIC) against all previously mentioned
microorganisms. Subsequently, the effects of different conditions on the biosynthesis of Ag
NPs have been investigated.

2. Materials and Methods
2.1. Collection of Mushroom Spawn and Other Chemicals

Silver nitrate (AgNO3) was used without purification as a silver source after dissolving
it in distilled water and was provided by Sigma–Aldrich. The utilized mushroom spawns
of Pleurotus floridanus (PF strain) were purchased from the Agricultural Research Center,
Cairo, Egypt. The mushroom was cultivated as described in Supplementary Material and
as reported in recent studies [37,38].

2.2. Myco-Synthesis and Purification of Ag NPs

The mushroom extract was obtained by dissolving 30 g of fresh mushroom in 1 L of
pure water after washing the cultivated mushroom with water and cutting it into small
pieces, followed by soaking it overnight and then filtering using Whatman filter paper
No. 1. The source of silver ions [AgNO3] was added to the filtrate (1 mM) to promote the
formation of Ag NPs under room conditions. The silver/mushroom extraction mixture was
stored at 30 ◦C for one day. The first indication for the formation of silver nanoparticles
is the color change from colorless to brown [39,40]. The obtained Ag NP mixture was
centrifuged at 15,000 rpm for 15 min. The synthesized Ag NPs were purified by washing
using sterilized H2O to eliminate any adsorbed impurities.
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2.3. Microorganism Source

This study used human clinical pathogens: three Gram (+) Bacillus subtilis; Staphylo-
coccus aureus ACCB 136, and Bacillus cereus ACCB 135, four Gram (-) including Escherichia
coli, Klebsiella pneumonia ACCB 202, Pseudomonas aeruginosa, and Salmonella typhi, and four
pathogen yeasts (Candida albicans, C. glabrata, C. stellatoidea, and C. parapsilosis), and other
fungus species (Aspergillus niger and Fusarium oxysporum AUMC 3191) were found in the
Bacteriological Laboratory, Sohag University, Egypt.

2.4. Spectrophotometric Follow for the Ag NPs Formation

There are different factors that could play a significant role in NPs preparation from
biosources, such as pH media, temperature, and concentration of metal substrate, in
addition to the effect of biosource contents (mushroom extraction in this study) [41–43].
Therefore, spectrophotometric follow-up for the Ag NPs formation was studied at different
AgNO3 concentrations, pH media, temperatures, and mushroom extraction concentrations.
Each factor was studied deeply by following the highest absorption peak in UV-visible
spectroscopy. Different AgNO3 concentrations (0.5 mM, 1.0 mM, and 2.0 mM AgNO3),
temperatures (30 ◦C, 40 ◦C, 60 ◦C, 80 ◦C, and 100 ◦C), pH medium (3, 5, 7, 9, and 11),
and different mushroom extraction concentrations (10 g/L, 30 g/L, 50 g/L, 70 g/L, and
100 g/L) were investigated.

2.5. Characterization of the Ag NPs Formation

The silver ion reduction was affirmed via spectrophotometric scan using ultraviolet
(UV)-visible spectroscopy (JENWAY 7315 spectrophotometer, Staffordshire, UK) in the
λ range of 300–700 nm. Transmission electron microscopy (TEM) analysis was applied
to investigate the morphology and particle size of the prepared Ag NPs (TEM, Electron
Microscope Unit, Assiut University, Egypt). The TEM images of the synthesized Ag NPs
were captured randomly. Fourier-transform infrared (FTIR) analysis was carried out to
understand the chemistry of the synthesized Ag NPs by knowing the function/chemical
groups at the surface of Ag particles. FT-IR of the prepared Ag NPs was monitored by
using a range from 400 to 4000 cm−1 (ALPHA II, with platinum ATR, Ettlingen, Germany)
by the pure potassium bromide pellet method. The crystallinity nature of Ag NPs was
checked by X-ray diffraction (XRD) technique and evaluated at 2θ = 30–80◦ at 40 keV using
model D8 Advanced Bruker (λ = 1.54056 Å).

2.6. Antimicrobial Investigation

The antimicrobial activity of the prepared Ag NPs from mushroom extraction was
assayed against Gram-positive and Gram-negative pathogens, yeast, and fungus species.
The utilized bacteria were grown on nutrient agar (2.5 g NaCl, 2.5 g peptone, 1.5 g yeast,
and 8.5 g agar in 500 mL H2O), which was saved in an autoclave and left to cool before
being poured into Petri dishes. Then, these dishes were stored at 25 ◦C for 1 h. After that,
the applied bacteria were spread onto separated agar using sterile cotton swabs. Wells
were carried out on the prepared agar to permit the investigated material to interact with
the applied bacteria. A total of 100 µL of the Ag NPs were used at different concentrations
to find the minimum inhibition concentration (MIC) for each microorganism. Then, the
formed plates were incubated at 37 ◦C for one day, followed by measuring the formed
inhibition zones in mm. These assays were done three times to confirm the estimated
inhibition zone [44,45].

3. Results and Discussion

In this work, Ag nanoparticles (NPs) were prepared via a simple, green, and biocom-
patible method using macrofungi (edible mushroom Pleurotus floridanus). Then, spectropho-
tometric follow-up was studied to find the best conditions for metal concentration, pH
media, temperature, and mushroom concentration.
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3.1. Spectrophotometric Follow-Up of Ag NPs Formation at Different AgNO3 Concentrations

The optical scans of the Ag NPs formation at different reaction times from 24 h to
60 days, including the spectrophotometric scan of the mushroom substrate (control) and
Ag ions, were shown in Figure 1. The fastest sign of the successful biosynthesis of Ag NPs
is the change of color of the mixture (mushroom extract and silver ions) from colorless
to yellowish-brown. The investigation of spectrophotometric analysis confirms what was
observed by direct visual observation. The spectrophotometric study was conducted
at three different silver nitrate concentrations, from 0.5 mM to 2.0 mM. Figure 1A–C
displayed the spectrophotometric analysis in the presence of 0.5 mM, 1.0 mM, and 2.0 mM,
respectively. The mixture of mushroom extract and silver ions has a new peak related to the
successful formation of Ag NPs at λmax = 420 nm [46,47] with different absorbance values
according to the progressive reaction time. As the reaction time went up, the absorbance
value increased up to 14 days at 0.5 mM silver ion. After 14 days, the coagulation of Ag
NPs was observed in both visual and spectrophotometric analysis, which could be the main
reason for absorbance decay after 14 days [48]. Interestingly, the time of Ag NPs stability
sharply increased after increasing the Ag ions contents from 0.5 mM to 1.0 mM, as shown
in Figure 1B. In general, the absorbance value increased up to 60 days at 1.0 mM silver ion.
After that, the higher concentration of Ag ions leads to a decrease in the nanoparticle’s
stability, as displayed in Figure 1C. In particular, the absorbance value increased up to
60 days at 2.0 mM silver ion, with lower absorbance values if compared with 1.0 mM silver
ion. The direct comparison between the studied Ag concentrations to form Ag NPs by
visual observation and absorbance values was described in Figure 1D. As seen, the best one
is 1.0 mM, which has the darkest color in visual observation and the highest absorbance in
spectrophotometric analysis. In short, the best AgNO3 molarity during the biosynthesis of
Ag NPs is 1.0 mM.
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3.2. Spectrophotometric Follow-Up of Ag NPs Formation at Different pH Values

The second factor in its effect on the biosynthesis of Ag NPs was the pH of the utilized
medium. The reported optimal pH value for the preparation of Ag NPs has varied using
different microbial strains [49]. Herein, different pH conditions at 3, 5, 7, 9, and 11 at
different times (24 h, 48 h, 72 h, five days, and seven days) as shown in Figure 2 (Figure 2A–D
and Figure S1 (Supplementary Material), respectively) were investigated in this work,
which led to proving that the optimum pH could be at 11 as the clear spectrophotometric
peak of Ag NPs could be seen only in the case of pH 11. Additionally, no clear color could
be detected at low pH (3–7); brown color formation began at pH 9 beside the optimum
one (pH 11). Consequently, the pH media should be adjusted to 11 to prepare Ag NPs.
This result could be attributed to the availability of more hydroxide ions at pH 11, which
could provide electrons for reducing Ag+ ions to Ag0 [45]. This conclusion agrees with
earlier publications that the existence of hydroxide as a negative ion is necessary for the
reduction of Ag ions [50–52]. In neutral media, the time required to reduce Ag+ ions was
longer, confirming the considerable role of OH− ions in reducing silver ions. An increase
in alkalinity could lead to the aggregation of Ag particles. Therefore, the optimum or best
pH medium is 11 in the case of the biosynthesis of Ag NPs using edible mushrooms.
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48 h (B), 72 h (C), and five days (D).

3.3. Spectrophotometric Follow-Up of Ag NPs Formation at Different Temperatures

The influence of temperature on the reduction of silver ions using mushroom extract
was investigated by incubating the mixture of silver ions and mushroom extract at variable
temperatures (30, 40, 60, 80, and 100 ◦C), as shown in Figure 3A–D, respectively. After
30 min, the increasing temperature led to higher absorbance values in the range of Ag NPs
absorbance, and similar results were seen after 60 and 120 min. In contrast, the scan at
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100 ◦C starts to decrease after 180 min, which confirms the start of Ag NPs aggregation.
Thus, the required time to accomplish the maximum production of silver NPs decreased as
the temperature increased, as reported before [53,54]. This result could be interpreted as
higher reaction kinetics associated with higher temperature conditions. Therefore, it could
be expected that at lower temperatures (25 ◦C or 30 ◦C), the required reaction time for
the initial synthesis of Ag NPs goes up, and the rate-determining step becomes slower, in
addition to the higher mobility of silver ions at higher temperatures (80 ◦C and 100 ◦C) [55].
In short, higher temperatures lead to the formation of Ag NPs in a short time, and the
required time to reduce Ag ions increases with decreasing the applied temperature.
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3.4. Spectrophotometric Follow of Ag NPs Formation at Different Mushroom Contents

The effect of mushroom extract concentration was studied, as shown in Figure 1, using
different concentrations: 10 g/L, 30 g/L, 50 g/L, and 70 g/L in Figure 4A–D, respectively.
As the reaction time went up, the absorbance value increased up to 14 days at 10 g/L
mushroom extract, as displayed in Figure 4A. After 14 days, the coagulation of Ag NPs
was observed in both visual and spectrophotometric analysis, which could be the main
reason for absorbance decay after 14 days [48]. Interestingly, increasing the mushroom
concentration extract to 30 g/L could lead to more stability, especially after a longer time
(30 days), as shown in Figure 4B. More mushroom contents could lead to faster kinetics,
and high absorbance values were seen in the case of 70 g/L (Figure 4D). In particular, the
absorbance value increased over equipment measurements at 70 g/L mushroom concen-
tration. The direct visual observation was investigated, as shown in Figure 4E, and agrees
with what was seen in the spectrophotometric study. Therefore, the best mushroom extract
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concentration was found at 30 g/L, as longer time curves were stable compared to other
mushroom concentrations.
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3.5. Characterization of the Synthesized Ag NPs by Edible Macrofungi

The synthesized Ag NPs from edible mushrooms were characterized by TEM analysis
to study morphology. The TEM images were captured at a magnification of 140 KX, as
shown in Figure 5A. The morphology of the prepared material is spherical with a nanoscale
size of 11–13 nm, which indicates the nano characteristics of the prepared Ag NPs. This
result could be due to the use of mushroom extract, which has the characteristics of both
a stabilizing agent and a reducing agent, in addition to the reported interaction between
protein and silver ions [56–59]. The stability of the prepared Ag NPs was checked via
zeta potential measurements, as displayed in Figure 5B. This investigation could provide
information about charges on the nanomaterial surface [60]. Interestingly, the fabricated
Ag NPs have an acceptable negative zeta potential of −30.70 mV. This result confirmed the
physical and chemical stability of silver NPs suspensions, which could be interpreted by the
electrostatic repulsion of the investigated particles [61]. Additionally, the nanoscale-sized
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particles having negative zeta potential could influence the microbial cells through the
possible interaction between their surface and positively charged ions at the cell surface [62].
In short, the edible mushroom was successfully applied to prepare Ag NPs with nano
characteristics and negative zeta potential.
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The crystallinity of the studied Ag NPs was investigated via the XRD pattern, as
displayed in Figure 6A. Experimentally, there are two diffraction peaks at 2θ equal to
38.01◦ and 44.11◦, which correspond to crystal planes of (111) and (200), respectively [63].
Additionally, these data are in accordance with the reported JCPDS card no. 01-089-3722 [64],
and the crystal structure is cubic with space group fm–3m and space group number
225. The experimental peaks have low-intensity values, which could be due to traces of
mushroom content, which could play a considerable role in increasing the amorphous
character of the synthesized Ag NPs. The investigation of function groups at the surface of
the prepared Ag NPs was studied via FT-IR analysis (Figure 6B) to indicate the chemistry
of active functional groups that could play a considerable role during the reduction of Ag
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ions and their stability after reduction. Figure 6B represents the FT-IR spectrum of the
synthesized Ag NPs. The FT-IR diagram clearly shows variable peaks seen at 1033.65 cm−1,
1399.10 cm−1, 1626.66 cm−1, 2916.80 cm−1, and 3409.5 cm−1 in the studied FT-IR region
400–4000 cm−1. These peaks could be interpreted via the vibration of C-C, C=C, C=O,
C-H, and O-H, respectively [65–68], which indicates the existence of traces from mushroom
contents at the surface of Ag NPs, which was confirmed via XRD behavior and FT-IR
characteristics. To conclude, edible mushroom extraction could reduce silver ions to silver
zero valent by interaction with it, and traces of it were found at the surface of cubic Ag
NPs, as discussed in XRD and FT-IR analysis.
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3.6. Antibacterial Activity of the Synthesized Ag NPs by Edible Macrofungi

The synthesized Ag NPs material was evaluated as an antimicrobial agent against
bacteria and fungi. Firstly, the antibacterial activity of the fabricated silver was investigated
against seven bacteria. The inhibition zones of the studied bacterial plates against Bacillus
subtilis, Staphylococcus aureus, and Bacillus cereus are displayed in Figure 7A–C, respectively.
These plates were chosen after testing variable concentrations from 1.25 µM to 187.5 µM,
and these plates were selected to have the minimum inhibition concentration (MIC). The
inhibition zones of all investigated concentrations were drawn as a bar graph, as described
in Figure 7D. The studied Ag NPs have a considerable impact on the bacterial growth of all
studied bacteria with different MICs, which was evaluated by measuring the inhibition
zones of different concentrations up to the concentration that has no observable zone.
Additionally, the increase in the prepared Ag NPs concentration enhanced the inhibition
zone at all studied concentrations. The highest-studied concentration (187.5 µM) has an
inhibition zone of 27 mm, 30 mm, and 24 mm versus Bacillus subtilis, Staphylococcus aureus,
and Bacillus cereus, respectively. Additionally, the lowest-studied concentrations (1.25 µM
and 2.5 µM) have no inhibition zone. After that, the concentration of 3.25 µM has an
inhibition zone of 6.0 mm against Bacillus subtilis and no observable inhibition zone for
Staphylococcus aureus, or Bacillus cereus. Then, the following molar concentration (12.5 µM)
has an inhibition zone of 10 mm, 5 mm, and 10 mm versus Bacillus subtilis, Staphylococcus
aureus, and Bacillus cereus, respectively. Therefore, the MIC of the fabricated Ag NPs was
estimated at 3.25 µM, 12.0 µM, and 12.0 µM against Bacillus subtilis, Staphylococcus aureus,
and Bacillus cereus, respectively. Currently, the fabrication of silver NPs is an acceptable way
to replace traditional antibiotics for mucosal and skin infections, and so has considerable
potential to solve the problem of bacterial resistance [69–72]. The prepared Ag NPs in this
study have a high impact against Bacillus subtilis, Staphylococcus aureus, and Bacillus cereus,
which could be attributed to the active surface area that helps silver penetrate or interact
with the cell bacterial wall better than bulk antibacterial material and leading at last to
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bacterial cell death [34,73–75]. In short, the prepared Ag NPs material has an excellent
inhibition zone against Bacillus subtilis, Staphylococcus aureus, and Bacillus cereus at low
concentrations (around 12.5 µM).
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After that, the synthesized Ag NPs were evaluated as an antibacterial agent against
Gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa,
and Salmonella typhi, as displayed in Figure 8A–C and Figure S3 (Supplementary Material),
respectively. These plates were chosen after testing variable concentrations from 1.25 µM to
187.5 µM, and these plates were selected to have the MIC. The inhibition zones of all inves-
tigated concentrations were drawn as a bar graph, as described in Figure 8D. The prepared
Ag NPs material has a negative impact on the bacterial growth of all studied Gram-negative
bacteria with different MICs. Additionally, a higher silver concentration could improve the
observed inhibition zone at all investigated concentrations. The highest silver concentration
(187.5 µM) has an inhibition zone of 20, 21, 19, and 17 mm against Escherichia coli, Klebsiella
pneumoniae, Pseudomonas aeruginosa, and Salmonella typhi, respectively. In addition, the
lowest silver concentration (1.25 µM) has no inhibition zone. Then, the concentration of
2.50 µM has an inhibition zone of 6.0 mm against Pseudomonas aeruginosa and no zone for
Escherichia coli, Klebsiella pneumoniae, or Salmonella typhi. After that, the concentration of
3.25 µM has an inhibition zone of 5.0 mm, 7.0 mm, and 4.0 mm against Escherichia coli,
Pseudomonas aeruginosa, and Salmonella typhi, respectively, in addition to no observable zone
for Klebsiella pneumoniae. Then, the next studied concentration (12.5 µM) has an inhibition
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zone of 6.0, 4.0, 8.0, and 5.0 mm against Escherichia coli, Klebsiella pneumoniae, Pseudomonas
aeruginosa, and Salmonella typhi, respectively. Thus, the MIC of the biosynthesized silver
NPs was estimated at 3.25 µM, 12.5 µM, 2.50 µM, and 3.25 µM against Escherichia coli,
Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella typhi, respectively. From these
results, the prepared silver NPs material in this work has a strong influence against Es-
cherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella typhi using the
low silver concentration of at least 12.5 µM.
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3.7. Antifungal Activity of the Synthesized Ag NPs

The prepared silver NPs were studied as an antifungal agent against four Candida
species, including Candida albicans, C. glabrata, C. stellatoidea, and C. parapsilosis, as de-
scribed in Figure 9A–C and Figure S4 (Supplementary Material), respectively, in addition
to two fungi, including Aspergillus niger and Fusarium oxysporum, as shown in Figure 10A,B,
respectively. The shown plates were selected after testing variable Ag contents from 750 µM
to 975 µM, and these plates were selected to have the MIC value. The measured inhibition
zones of all prepared concentrations were drawn, as shown in Figures 9D and 10C for
Candida and fungi, respectively. The synthesized silver NPs have a negative impact on
the Candida and fungus growth of all studied microorganisms. In addition, more silver
content could enhance the measured inhibition zone at all tested concentrations. The
highest silver concentration (975 µM) has an inhibition zone of 11.0, 10.0, 9.0, and 10.0 mm
against Candida albicans, C. glabrata, C. stellatoidea, and C. parapsilosis, respectively, in ad-
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dition to 18.0 and 24.0 mm against Aspergillus niger and Fusarium oxysporum. The lowest
silver content (750 µM) has no observed inhibition zone against all studied fungi. After
that, the concentration of 800 µM has an inhibition zone of 6.0 mm, 5.0 mm, and 11.0 mm
against Candida albicans, C. parapsilosis, and Aspergillus niger, respectively. At this concentra-
tion (800 µM), no inhibition zone was detected for C. glabrata, C. stellatoidea, or Fusarium
oxysporum. After that, a higher concentration was tested (850 µM), and there was a clear
inhibition zone against all studied fungi except C. stellatoidea, which started to be inhibited
in growth by 900 µM (Its MIC). Therefore, the MIC of the biosynthesized Ag NPs was
found at 800 µM, 850 µM, 900 µM, 800 µM, 800 µM, and 850 µM against Candida albicans,
C. glabrata, C. stellatoidea, C. parapsilosis, Aspergillus niger, and Fusarium oxysporum, respec-
tively. Therefore, the prepared Ag NPs stabilized by mushroom extract exhibited con-
siderable antifungal performance as a result of their improved aggregate stability [76,77].
Moreover, the size of NPs could disrupt the yeasts, which improves their sensitivity to Ag
NPs [78,79]. Such data and conclusions are in considerable agreement with the previously
reported studies introducing the effect of the stabilization of Ag NPs on antimicrobial
activity [77,80,81]. In short, the biosynthesized Ag NPs in this work have a considerable
influence against different microorganisms using a low Ag concentration of at least 0.8 mM.
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4. Conclusions

This study presented the biosynthesis of Ag NPs with nanosized particles (11–13 nm),
which would play a considerable role in finding novel antimicrobial agents with biocompat-
ible characteristics from the preparation strategy using edible mushrooms. The biosynthesis
of Ag NPs was followed by spectrophotometric techniques for optimization of the chemical
conditions, including pH, mushroom, and Ag concentration, in addition to the temperature
of the mixture during Ag NPs preparation. The results indicate that the best Ag content is
1.0 mM, which has the highest absorbance in the formed spectrophotometric peak analysis.
Additionally, the optimum or best pH medium in the case of the biosynthesis of Ag NPs
using edible mushrooms is 11, according to the spectrophotometric peak analysis. Regard-
ing mushroom contents, the best mushroom extract concentration was found at 30 g/L, as
longer time curves were stable if compared with other studied mushroom concentrations
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(from 10 g/L to 100 g/L). The Ag concentration of 187.5 µM has an inhibition zone of
27 mm, 30 mm, and 24 mm against Bacillus subtilis, Staphylococcus aureus, and Bacillus cereus,
respectively; in addition, an inhibition zone of 20, 21, 19, and 17 mm against Escherichia
coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella typhi, respectively. The
Ag concentration of 975 µM has an inhibition zone of 11.0, 10.0, 9.0, and 10.0 mm against
Candida albicans, C. glabrata, C. stellatoidea, and C. parapsilosis, respectively, in addition to
18.0 and 24.0 mm against Aspergillus niger and Fusarium oxysporum. This performance of Ag
NPs could be due to the active surface area that helps Ag interact with components of the
cell bacterial wall better than the bulk antibacterial agent. To conclude, edible mushrooms
could be presented to the biomedical and commercial society to design novel antimicrobial
agents with Ag NPs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom13071102/s1, Figure S1: Spectrophotometric study of the formed Ag
NPs at different pH medium after seven days, Figure S2: Spectrophotometric study of the formed
Ag NPs at different times and using mushroom extract concentration of 100 g/L, Figure S3: The
inhibition zone using the lowest concentrations from the studied Ag NPs of the studied bacterial
plates against Salmonella typhi, Figure S4: The inhibition zone using the lowest concentrations from
the studied Ag NPs of the studied Candida plates against C. parapsilosis.
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