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Abstract: Although alcohol is a well-known causal factor associated with liver diseases, challenges
remain in inducing liver fibrosis in experimental rodent models. These challenges include rodents’
natural aversion to high concentrations of alcohol, rapid alcohol metabolism, the need for a prolonged
duration of alcohol administration, and technical difficulties. Therefore, it is crucial to establish an
experimental model that can replicate the features of alcoholic liver fibrosis. The objective of this study
was to develop a feasible rat model of alcoholic liver fibrosis that emulates human drinking patterns
and combines low-dose chemicals within a relatively short time frame. We successfully developed
an 8-week rat model of alcoholic liver fibrosis that mimics chronic and heavy drinking patterns.
Rats were fed with a control liquid diet, an alcohol liquid diet, or alcohol liquid diet combined
with multiple binges via oral gavage. To accelerate the progression of alcoholic liver fibrosis, we
introduced low-dose carbon tetrachloride (CCl4) through intraperitoneal injection. This model allows
researchers to efficiently evaluate potential therapeutics in preclinical studies of alcoholic liver fibrosis
within a reasonable time frame.
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1. Introduction

Alcohol abuse is a significant health problem that contributes to numerous metabolic
and liver diseases [1]. The liver, as a major organ for alcohol metabolism, plays a crucial
role in converting alcohol to acetaldehyde via alcohol dehydrogenase and cytochrome
P450 2E1 (CYP2E1), which is further oxidized to acetate by acetaldehyde dehydrogenase [2].
Alcohol use disorder causes severe liver injury and inflammation, ultimately resulting in
the development of steatohepatitis (>90%), liver fibrosis (20–40%), cirrhosis (8–20%), and
hepatocellular carcinoma (HCC) (3–10%) [3,4]. Chronic consumption of alcohol not only
increases the permeability of endotoxins in the intestines but also increases the levels of
oxidative stress and the production of acetaldehyde and cytokines, all of which cause liver
damage [5,6]. In addition, acute alcohol intake, also known as binge drinking, can induce
acute alcoholic hepatitis and accelerate the progression of liver pathogenesis in individuals
with chronic alcoholism [7].

Rodent models of liver fibrosis can be generated by a variety of etiologic factors.
Among them, chemical-induced liver fibrosis models are widely used because of their
high reproducibility [8]. Particularly, carbon tetrachloride (CCl4) is the most commonly
employed hepatotoxin to study liver fibrosis and cirrhosis in rodents. However, the CCl4-
induced liver fibrosis model is not able to fully replicate the pathology and mechanism
of alcohol-induced liver fibrosis [9]. Although alcohol is a well-known etiologic factor and
exhibits a synergistic effect with other risk factors in the development of liver diseases [10,11],
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there is currently no rodent model that can easily perform and accurately recapitulate
all of the features of alcohol-induced liver fibrosis [12]. The establishment of an animal
model for alcoholic liver fibrosis is a technically challenging, labor-intensive, and time-
consuming process. Maintaining high blood alcohol levels in rodents is difficult compared
to humans, primarily due to their inadequate intake of alcohol and their high rate of alcohol
metabolism [12]. Gradually increasing the amount of alcohol in drinking water (A-DW) is
the simplest way to administer alcohol and mimic human drinking behavior. Although
the A-DW model can initiate steatosis, it requires additional stimulators to induce further
inflammation and fibrotic development [13]. The Tsukamoto–French model is considered
the most effective approach for inducing liver fibrosis and administering large amounts of
alcohol to maintain high blood alcohol levels in mice [14]. However, this model requires
surgical implantation of intragastric alcohol administration, which has a higher mortality
rate and is not a true physiological model [15].

Alternatively, the Lieber–DeCarli liquid diet model is widely used for long-term
chronic alcohol consumption in rodents. This model forces rodents to consume an isocaloric
alcohol-containing liquid diet as their only source of food and drink [15,16]. Although
it is not a perfect physiological model, administering the Lieber–DeCarli liquid diet is
a milder approach that induces mild steatosis, low-grade inflammation, but no fibrosis
in the liver. This is suitable for studying the early stages of alcoholic liver diseases [16].
To simulate advanced liver pathogenesis, Dr. Bin Gao’s group developed a modified
version of the Lieber–DeCarli liquid diet, known as the National Institute of Alcohol
Abuse and Alcoholism (NIAAA) model. In contrast to the chronic alcohol feeding or binge
alone models, the NIAAA model combines chronic Lieber–DeCarli liquid diet feeding and
multiple binge alcohol sessions. This model closely resembles the clinical features of human
alcoholic steatohepatitis, including elevated serum levels of alanine transaminase (ALT),
aspartate transaminase (AST), blood alcohol levels, and neutrophil infiltration [15,17].

Rats are genetically and physiologically closer to humans than mice. This makes
rat a preferred animal model for biomedical research, especially studies related to gene
modulation. Therefore, it is critical to develop a highly reproducible rat model that can
recapitulate alcohol-associated liver diseases in humans. Previous reports have suggested
that combining an alcohol liquid diet or a western diet and secondary hepatotoxic sub-
stances, such as CCl4 and diethylnitrosamine (DEN), can induce the progression of liver
fibrosis and the development of HCC [9,16,18–20]. In this study, we established a rapid and
feasible rat model of alcoholic liver fibrosis that simulates patterns of chronic and heavy
drinking observed in humans. Considering alcohol as the primary etiologic factor, we
decreased the dose and frequency of CCl4 administration compared to the conventional
CCl4-induced liver fibrosis model [8]. The addition of low-dose CCl4 (0.1 mL/kg) signifi-
cantly enhances the fibrogenic effect of alcohol. By combining alcohol and low-dose CCl4,
we were able to rapidly induce a consistent and reproducible liver fibrosis model within an
8-week timeframe.

2. Materials and Methods
2.1. Ethics Statement

The alcoholic liver fibrosis model was conducted using Sprague Dawley rats, which
were purchased from the Jackson Laboratory and housed in a temperature- and humidity-
controlled room on a 12 h light/dark cycle. The animal research protocol (protocol num-
ber: 1110) was approved by the University of Missouri-Kansas City (UMKC) Institutional
Animal Care and Use Committee (IACUC), and all experiments conformed to the relevant
regulatory standards.

2.2. Dietary and CCl4 Treatment

Eight-week-old male Sprague Dawley rats were used to establish the rat model of
alcoholic liver fibrosis. The diets and administration schedule of alcohol binge and CCl4
are illustrated in Figure 1A. The rats were randomly assigned to the following groups:
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control liquid diet, control liquid diet with CCl4 administration four times (once weekly,
QW), alcohol liquid diet, alcohol liquid diet with CCl4 administration four times (QW),
alcohol liquid diet with CCl4 administration four times (once every 2 weeks, Q2W), alcohol
liquid diet plus binge, alcohol liquid diet plus binge with CCl4 administration twice
(Q2W), and alcohol liquid diet plus binge with CCl4 administration four times (Q2W).
Each group consisted of 7–9 rats. The Lieber–DeCarli 82 control liquid diet (F1259) and
alcohol liquid diet (F1258) were prepared according to the manufacturer’s protocol (Bio-
Serv, Frenchtown, NJ). To mimic human chronic alcohol consumption and binge drinking
patterns, the rats were administered the alcohol liquid diet containing 5% alcohol on a
daily basis. Additionally, alcohol binges (5 g alcohol per kg of body weight) were given
twice every week (TIW). A mixture of CCl4 and olive oil (1:4) was intraperitoneally (i.p.)
injected at a dose of CCl4 0.1 mL/kg. The injections were given once a week for 4 weeks
(QW) or once every 2 weeks for 8 weeks (Q2W). All rats were euthanized after 8 weeks.
Blood samples were collected for serological analysis, and the livers were harvested for
histological examination, cytokine analysis, and mRNA expression analysis.
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Figure 1. Procedures for animal models and general characteristics. (A) The types of diets and
schedules of ethanol binge and CCl4 administrations: (a) control liquid diet; (b) control liquid
diet and four doses of CCl4 (QW); (c) alcohol liquid diet; (d) alcohol liquid diet and four doses of
CCl4 (QW); (e) alcohol liquid diet and four doses of CCl4 (Q2W); (f) alcohol liquid diet plus binge;
(g) alcohol liquid diet plus binge and two doses of CCl4 (Q2W); (h) alcohol liquid diet plus binge and
four doses of CCl4 (Q2W). (B) Body weight. (C) Liver weight and (D) liver-to-body weight ratio at
the endpoint of the study. Results are presented as the mean ± SEM (n = 7–9; * p < 0.05; ** p < 0.01).
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2.3. Serum Analysis

Whole blood samples were collected using heparinized tubes. These tubes were
centrifuged for 10 min at 1500× g and 4 ◦C to separate the plasma. The plasma samples
were sent to the Clinical Pathology Laboratory at the University of Missouri for analysis
of various parameters, including glucose, urea nitrogen, creatinine, albumin, total protein,
globulin, cholesterol, total bilirubin, ALT, AST, alkaline phosphatase (ALP), and glutamate
dehydrogenase (GLDH).

2.4. Liver Histology

Liver biopsy specimens were fixed with formalin, embedded in paraffin, and sectioned
into 5 µm thick slices. The tissue slides were stained with hematoxylin and eosin (H&E)
for histopathological assessment and with Sirius Red for fibrosis assessment. The Sirius
Red-positive areas were quantified using ImageJ software. To evaluate the degree of fibrosis
in the liver specimens, fibrosis scores were assigned based on the Ishak stage score ranging
from 0 to 6, as previously reported [21].

2.5. Hydroxyproline Assay

The hepatic collagen content was measured using the hydroxyproline assay as pre-
viously reported [22]. Briefly, 50 mg of liver tissue was homogenized in 250 µL of PBS.
Then, 250 µL of the tissue homogenate was transferred to a glass vial containing 500 µL of
12 N HCl and incubated overnight at 120 ◦C in a dry bath incubator. The acid hydrolyzed
homogenate was filtered using a 0.45 polyvinylidene fluoride (PVDF) filter. Then, 20 µL of
sample and hydroxyproline standards were added to a 96-well plate and mixed thoroughly
with 100 µL of Chloramine T solution at room temperature for 30 min. Finally, 100 µL of
Ehrlich’s solution (Sigma-Aldrich, St. Louis, MO, USA) was added to each well and incu-
bated at 65 ◦C for 15–20 min. The photometric product was determined using a microplate
reader at wavelength 550 nm. The amount of hydroxyproline (µg) was calculated relative
to the liver weight (g).

2.6. Immunohistochemistry

The formalin-fixed paraffin-embedded liver sections were deparaffinized and incu-
bated in a citric acid antigen retrieval solution (10 mM citric acid, 0.05% Tween 20, pH 6)
for 45 min at 95–100 ◦C to expose the epitope. The presence of specific markers on liver
sections was evaluated according to the protocol of the immunohistochemistry kit (ab64261,
Abcam, Chou City, Tokyo). The liver sections were incubated with primary antibodies
against α-smooth muscle actin (α-SMA) (#19245, Cell Signaling Technology, Danvers, MA,
USA), suppressor of mothers against decapentaplegic 2/3 (Smad2/3) (#8685, Cell Signaling
Technology), poly (rC) binding protein 2 (Pcbp2) (GWB-3815A, GenWay Biotech), and Ki-67
(#D3B5, Cell Signaling Technology) overnight at 4 ◦C. All of the antibodies were diluted as
suggested by the manufacturer’s instructions.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA)

Liver tissues weighing approximately 100–200 mg were homogenized in RIPA Lysis
and Extraction Buffer containing Protease Inhibitor Cocktail (Thermo Scientific, Rockford,
IL, USA). The levels of various cytokines and chemokines in the liver tissues, including
interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-18, transformation growth factor-β (TGF-β),
tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), monocyte chemoattractant protein-
1 (MCP-1), regulated upon activation, normal T cell expressed and secreted (RANTES)
(R&D Systems Inc., Minneapolis, MN, USA), and programmed death-ligand 1 (PD-L1)
(MyBioSource, San Diego, CA, USA), were measured by corresponding commercial ELISA
kits according to the manufacturer’s protocol.
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2.8. Quantitative Real-Time Polymerase Chain Reaction (PCR)

Approximately 50–100 mg of liver tissue was homogenized in 1 mL TRIzol™ Reagent
(Invitrogen, Carlsbad, CA, USA), and the total RNA was isolated and purified according to
the manufacturer’s protocol. The extracted RNA samples were analyzed with a real-time
PCR detection system (Bio-Rad, Hercules, CA, USA) using the iTaq™ Universal SYBR®

Green One-Step Kit according to the manufacturer’s protocol. The expression of type
I collagen (Col1a1) gene at mRNA levels was determined using the comparative cycle
threshold method with 18S as the reference [23].

2.9. Statistical Analysis

The statistical analysis was performed using Excel and GraphPad Prism 6.0 software.
All data are presented as mean ± SEM. The difference in significance was determined using
one-way analysis of variance (ANOVA), followed by Dunnett’s multiple comparison test.
p < 0.05 was considered statistically significant.

3. Results
3.1. General Characteristics of the Animal Models

Body weight was recorded to assess the impact of types of different diets, alcohol binge,
and low-dose CCl4 treatment on the biological conditions of the rats. At the end of the study,
rats fed with alcohol liquid diet (c–h) exhibited significantly lower weight gain compared
to the control diet feeding groups (a,b) (Figure 1B). Furthermore, the administration of
alcohol binge twice a week further decreased weight growth (f–h) compared to rats fed
with alcohol diet alone (c–e).

While low-dose CCl4 had little effect on weight gain in the control diet feeding
group (b), a significant body weight loss was observed after low-dose CCl4 was given in
the alcohol diet feeding groups (d,e,g,h). Rats treated with low-dose CCl4 at once weekly
and once every 2 weeks (d,e) did not show differences in body weight gain at the end
of the study. As expected, increasing the frequency of CCl4 administrations resulted in
reduced body weight gain (g,h). The fluctuation in body weight reflected the combined
effect of alcohol binge and CCl4 administration, which significantly reduced the activity
and food intake of the rats. Additionally, the toxicity of alcohol feeding and the combined
chemical toxin was assessed using the liver-to-body weight ratio [24]. The alcohol diet
feeding groups did not exhibit increased liver weight compared to the control diet feeding
groups (Figure 1C). However, the groups that received alcohol diet plus binge and CCl4
demonstrated the highest liver weight to body weight ratio (Figure 1D).

3.2. Plasma Analysis for Liver Injury and Metabolism

The metabolic profiles of the animals are presented in Figure 2. There were no signifi-
cant differences in blood glucose levels (Figure 2A), urea nitrogen (Figure 2B), creatinine
(Figure 2C), total bilirubin (Figure 2D), and ALP (Figure 2J) among all groups. However,
in rats treated with the alcohol diet plus binge and CCl4 × 4 (Q2W), albumin and total
protein levels showed significant decreases (Figure 2E,F), indicating the presence of chronic
conditions that affected the liver or kidney. Rats fed with the alcohol diet plus binge exhib-
ited a significant decrease in plasma levels of globulin (Figure 2G). Cholesterol levels were
significantly increased in rats treated with the alcohol diet plus CCl4 × 4 (QW) (Figure 2H),
while no statistical differences were observed in the remaining groups treated with the
alcohol diet. Liver enzyme activities are commonly used as biomarkers for liver damage.
In this study, ALT was significantly increased in rats fed with alcohol diet, particularly in
rats treated with low-dose CCl4 (Figure 2I), which is consistent with the features of the
alcohol liquid diet plus binge/secondary hit models [25]. Interestingly, we did not observe
elevated AST levels in any of the treated groups (Figure 2K). This could be because AST is
not specific for the liver because the heart has the highest concentration of AST. Moreover,
AST is present in various other tissues including muscles, kidneys, brain, pancreas, and
erythrocytes [26]. Another potential reason is that ALT and AST levels primarily indicate
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acute liver injury. Consequently, their levels in cases of chronic liver injury are lower than
those observed in acute liver injury. For example, Gao et al. observed that in chronic liver
injury induced by chronic alcohol feeding plus multiple binges of alcohol, the serum ALT
and AST levels were lower when compared to chronic alcohol consumption combined with
a single binge [17].
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On the other hand, GLDH is widely employed as a specific alternative biomarker
for liver injury. This mitochondrial enzyme is mainly located within the liver lobule and
is released into the blood from damaged hepatocytes [27,28]. GLDH has shown better
sensitivity and specificity compared to ALT in the detection of liver injuries. Compared to
rats fed with the control diet, plasma levels of GLDH were significantly increased in rats
fed with alcohol diets (Figure 2L), which is consistent with hepatocyte necrosis observed in
patients with alcoholic liver diseases [29,30].

3.3. Liver Histology and Liver Fibrosis Assessment for the Animal Models

The histological characteristics of representative livers from each group are shown in
Figure 3. In the control diet group (a), normal cellular integrity was observed. However,
small-droplet and large-droplet fat were found in rats fed with alcohol diet (c–e) and alcohol
diet plus binge (f–h). Although the two control diet groups (a,b) showed no differences in
general features, exposure to low-dose CCl4 could induce the accumulation of lipid droplets
in the liver. Specifically, rats treated with a combination of alcohol and a low-dose CCl4
were more susceptible to fat accumulation, which resulted in mild to moderate steatosis.
Additionally, lobular inflammation was found in rats fed with alcohol diet.
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Figure 3. Histological features of liver tissues. H&E staining of representative rats treated with
(a) control liquid diet; (b) control liquid diet and four doses of CCl4 (QW); (c) alcohol liquid diet;
(d) alcohol liquid diet and four doses of CCl4 (QW); (e) alcohol liquid diet and four doses of CCl4
(Q2W); (f) alcohol liquid diet plus binge; (g) alcohol liquid diet plus binge and two doses of CCl4
(Q2W); (h) alcohol liquid diet plus binge and four doses of CCl4 (Q2W). The scale bar represents
100 µm.

Sirius Red staining is a useful method for detecting collagen in liver tissue sections.
Figure 4A,B demonstrate the Sirius Red staining of representative rats and quantification
of the Sirius Red-positive area for each group. Table 1 summarizes the fibrosis stage of
each group based on the Ishak stage score (0–6) [31]. In rat groups fed with control liquid
diet (a,b), collagen was expressed at normal levels, and no fibrosis or short fibrosis septa
was observed in rats receiving additional low-dose CCl4 administration. By contrast, the
expression levels of collagen significantly increased in the alcohol diet groups and alcohol
diet groups with additional low-dose CCl4 treatment (d, e, g, and h). Fibrosis expansion
and bridging fibrosis developed in all rats treated with the combination of alcohol and
CCl4, but not in rats treated with alcohol alone. Moreover, the expression levels of Col1a1
mRNA were elevated in all rats fed with alcohol liquid diet and subjected to four doses of
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CCl4 treatment (d, e, and h), reaching eight-fold higher than the control liquid diet group
(Figure 4C). The hydroxyproline content in the liver consistently showed increased collagen
accumulation in rats treated with the combination of alcohol and CCl4 (Figure 4D).
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** p < 0.01).

Table 1. Fibrosis scores of liver specimens.

Model Liver Fibrosis Models Fibrosis Scores

a Control liquid diet 0–1
b Control liquid diet + CCl4 × 4 (QW) 1
c Ethanol liquid diet 0–1
d Ethanol liquid diet + CCl4 × 4 (QW) 3–4
e Ethanol liquid diet + CCl4 × 4 (Q2W) 3
f Ethanol liquid diet + Binge 1–2
g Ethanol liquid diet + Binge + CCl4 × 2 (Q2W) 2–3
h Ethanol liquid diet + Binge + CCl4 × 4 (Q2W) 3–4

3.4. Cytokine and Chemokine Assessments for Alcohol and CCl4 Treated Animal Models

Cytokines, namely IL-6, IL-10, and TNF-α, are strongly associated with the develop-
ment of alcoholic liver diseases according to previous research [6]. Compared to the control
diet group, the levels of IL-6 declined slightly in rats fed with alcohol diet (Figure 5A). The
addition of CCl4 further decreased the levels of IL-6, suggesting a reduced protective effect
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of IL-6 during the early stage of alcohol-induced liver diseases. IL-10, an anti-inflammatory
cytokine, was remarkably decreased in rats treated with an alcohol diet plus binge and
CCl4 administration every 2 weeks (Q2W) (Figure 5B). In general, levels of the systemic
inflammatory cytokine TNF-α are known to be elevated in the serum during the progres-
sion of both nonalcoholic steatohepatitis and alcoholic liver diseases [32,33]. However,
no statistically significant changes were observed in the liver (Figure 5C). Furthermore,
pro-inflammatory cytokines (IL-18, IL-4, IFN-γ, and IL-1β) as well as chemokines (MCP-1
and RANTES) did not show significant elevation in the liver (Figure 5D–I).
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3.5. Synergistic Effect of Alcohol and CCl4 on Activation of Hepatic Stellate Cells

The activation of hepatic stellate cells (HSCs) is the primary factor that facilitates the
progression of liver fibrosis, playing a critical role in the production and accumulation of
extracellular matrix (ECM) [34]. Figure 6 shows the immunostaining and quantification of
markers for activated HSCs in the liver tissue sections. Rats fed with the control diet (a),
alcohol diet (c), and alcohol diet plus binge (f) feeding alone did not increase the α-SMA
staining area (Figure 6A,D). However, all rats fed with the alcohol diet and four administra-
tions of low-dose CCl4 (d,e,h) showed a broad α-SMA-positive area, indicating that HSCs
can be efficiently activated by the combination of alcohol and low-dose CCl4 treatment
within 8 weeks. In addition, the upregulation of the TGF-β/Smad signaling pathway
indicated the progression of liver fibrosis (Figure 6B,E,G). In accordance with the previous
report, alcohol and cytokines can upregulate the mRNA levels of PCBP2 in primary rat
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HSCs [35]. The immunostaining results demonstrated that PCBP2 was upregulated in all
rats treated with either alcohol or low-dose CCl4 alone, and the combination of alcohol and
low-dose CCl4 promoted the higher expression levels of PCBP2 (Figure 6C,F).
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Figure 6. Evaluation of HSC activation in animal models. Immunostaining for (A) α-SMA,
(B) Smad2/3, and (C) PCBP2 in liver sections from representative rats treated with (a) control liquid
diet; (b) control liquid diet and four doses of CCl4 (QW); (c) alcohol liquid diet; (d) alcohol liquid
diet and four doses of CCl4 (QW); (e) alcohol liquid diet and four doses of CCl4 (Q2W); (f) alcohol
liquid diet plus binge; (g) alcohol liquid diet plus binge and two doses of CCl4 (Q2W); (h) alcohol
liquid diet plus binge and four doses of CCl4 (Q2W). The scale bar represents 100 µm. Quantification
of (D) α-SMA staining area, (E) Smad2/3 staining area, and (F) PCBP2 staining area. (G) Levels of
TGF-β1 in the liver. The results are presented as mean ± SEM (n = 7–9; * p < 0.05, ** p < 0.01).
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3.6. Effect of Alcohol and CCl4 on Cell Proliferation and PD-L1 Expression

The nuclear protein Ki-67 is commonly used as a marker for identifying cell prolif-
eration. Based on the immunostaining results, the number of Ki-67-positive nuclei was
significantly increased with the combination of alcohol and low-dose CCl4 stimulation
compared to the control diet group (a), especially in rats treated with four doses of CCl4
(d,e,h) (Figure 7A,B). The increased abundance of hepatocyte and non-parenchymal cell
proliferation indicates chronic liver inflammation and fibrosis and serves as a potential
indicator for the development of hepatic carcinogenesis [36]. Although the levels of PD-L1
expression in rats treated with alcohol/CCl4 showed a slight suppression compared to the
control diet group, there were no statistical differences in all groups (Figure 7C).
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Figure 7. Hepatocyte proliferation and PD-L1 expression in the liver. Immunostaining for (A) Ki-67
in liver sections from representative rats treated with (a) control liquid diet; (b) control liquid diet and
four doses of CCl4 (QW); (c) alcohol liquid diet; (d) alcohol liquid diet and four doses of CCl4 (QW);
(e) alcohol liquid diet and four doses of CCl4 (Q2W); (f) alcohol liquid diet plus binge; (g) alcohol
liquid diet plus binge and two doses of CCl4 (Q2W); (h) alcohol liquid diet plus binge and four
doses of CCl4 (Q2W). The scale bar represents 100 µm. (B) The number of Ki67-positive hepatocytes
per high power field (HPF), and (C) relative levels of PD-L1 expression in the liver. The results are
presented as mean ± SEM (n = 7–9; ** p < 0.01).

4. Discussion

In this study, we established easily operated rat models for alcoholic liver fibrosis
and evaluated the fibrotic features of the designed models. Rats were administered a
chronic alcohol liquid diet and multiple binges via oral gavage to mimic chronic and heavy
alcohol consumption in humans. There were no significant differences between rats fed
with an alcohol diet and rats fed with an alcohol diet plus multiple binges in terms of the
development of liver fibrosis. This finding is consistent with previous reports [15]. Dr. Gao’s
group suggested that multiple binges are considered as chronic alcohol administration
for mice fed with an alcohol diet, which showed lower elevations of serum AST and ALT
compared to mice treated with alcohol feeding plus a single binge [17]. Moreover, the
technical challenges associated with oral gavage, such as the risk of the gavage needle and
liquid entering the trachea, could increase the mortality rate.

Steatosis is the most common histological appearance of liver diseases caused by
alcohol intake in the initial stage. The consumption and metabolism of alcohol contribute
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to the upregulation of lipogenic enzymes, which leads to increased synthesis of triglyceride
and phospholipid, resulting in excessive lipid accumulation [37,38]. On the other hand,
CCl4 is a potent hepatotoxin that is metabolized by CYP450 enzymes in the liver. Its free
radical metabolites, trichloromethyl radical (CCl3•) and trichloromethylperoxy radicals
(CCl3OO•), exhibit high reactivity with proteins, nucleic acids, and lipids, leading to
fat accumulation and the advanced pathogenic development in the liver [39,40]. The
histological structure of our alcoholic liver fibrosis models, induced by alcohol and low-dose
CCl4, reproduced the characteristic features of lipid accumulation and lobular inflammation
observed in patients with alcoholic liver diseases [41].

To increase reproducibility and accelerate the progression of alcoholic liver fibrosis,
the addition of a secondary hepatotoxin such as CCl4 may be an optimal approach. Several
studies have utilized chronic alcohol feeding along with CCl4 to induce liver injury and
fibrosis, as well as to evaluate the hepatoprotective effect of potential therapeutics in
rodent models [9,42–52]. However, CCl4, as a secondary hit or accelerating agent, does not
directly correspond to human disease. CCl4 is highly impacted by other hepatotoxins and
diets, which may not perfectly resemble the features of human alcoholic liver fibrosis [53].
Therefore, we aimed to minimize the impact of CCl4 on the initiation of liver fibrosis by
using four doses of low-dose of CCl4 (0.1 mL/kg). By comparison, 8–12 i.p. injections of
CCl4 (1 mL/kg) are needed to establish liver fibrosis in rats without alcohol feeding. CCl4
can be administered through either vapor inhalation [44,45] or i.p. injection [46,47], but i.p.
injection is more convenient and consistent. While rodent models co-administered with
alcohol and CCl4 have been employed in previous research, only a very limited number of
studies have examined the pathophysiological patterns of these combined treatments.

Our models of alcohol and CCl4 co-administration revealed that the interval of low-
dose CCl4 treatment did not show remarkable differences in the development of liver
fibrosis. By contrast, the number of low-dose CCl4 treatments had a significant impact on
the progression of liver fibrosis (Figure 1). The combination of alcohol and low-dose CCl4
exhibited a synergistic effect, leading to accelerated liver damage, steatosis, inflammation,
and fibrosis. As expected, markers of liver injury and fibrosis, including liver enzyme
activities, accumulation of lipid droplets, expression of collagen, activation of HSCs, and
cell proliferation, were significantly elevated following stimulation with alcohol and low-
dose CCl4. Notably, it was observed that the fibrotic levels were consistently similar among
rats within each group, indicating a high level of reproducibility in the animal models. The
increased mRNA level of the Col1a1 gene was found to be associated with the induction of
PCBP2 expression by alcohol. PCBP2 is an RNA binding protein that can stabilize the Col1a1
mRNA, thereby contributing to ECM accumulation in the liver [35]. In addition, a study
suggested that PCPB2 overexpression was found in HCC patients with poor prognosis,
indicating its potential as a prognostic marker for HCC [54]. Overall, the combination of
alcohol and four doses of low-dose CCl4 i.p. injection effectively enhanced the progression
of liver fibrosis in rats within 8 weeks, thus providing a reliable alcoholic liver fibrosis
model for future studies.

In addition to HSCs, chronic alcohol exposure has significant effects on other liver cells.
This includes inducing organelle stress in hepatocytes, altering the structure of hepatic
sinusoidal endothelial cells, and influencing the population and functions of immune
cells [55,56]. Natural killer (NK) cells are believed to play an important role in eliminating
activated HSCs, but alcohol consumption can reduce the number of NK cells [57]. Moreover,
alcohol intake enhances the activity of Kupffer cells, which is closely associated with
fibrogenesis in the liver. A study demonstrated that combined treatment with alcohol and
CCl4 in a rat model increased the number of Kupffer cells [50]. Following alcohol and CCl4
treatment, the activated Kupffer cells upregulated the production of profibrotic factors such
as TGF-β and inflammatory cytokines [56,58].

Our rats treated with alcohol and CCl4 exhibited a significant increase in cell prolifera-
tion. The expression level of Ki-67, a marker for cell proliferation, is associated with the
degree of inflammation and the stage of fibrosis, but it does not increase proportionally [36].
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Ki-67 positive hepatocytes and bile ductal cells were significantly suppressed in the end-
stage of alcoholic cirrhotic liver [59]. The programmed cell death 1 (PD-1)/PD-L1 pathway
plays a critical role in maintaining immune tolerance [60]. PD-L1 is associated with pro-
tective immunity, but its expression is suppressed during liver damage [61,62]. Studies
have demonstrated abundant expression of PD-L1 on Kupffer cells and liver sinusoidal
epithelial cells [63,64]. In patients with chronic hepatitis B, elevated expression of PD-L1
and PD-L2 was observed compared to non-viral hepatitis cases, where no upregulation of
PD-L1 and PD-L2 was found [63]. Furthermore, PD-L1 overexpression has been observed
in HCC tumors and surrounding tissues, and it is correlated with tumor aggressiveness
and overall survival rate [63,65–67].

In summary, we have developed rat models for alcoholic liver fibrosis by utilizing a
combination of hepatotoxic agents, alcohol, and low-dose CCl4. The inclusion of a low-dose
CCl4 proved to be highly effective in accelerating the progression of liver fibrosis in rats fed
with alcohol within an 8 week time frame. Among all models, the combination of an alcohol
liquid diet and binge drinking with low-dose CCl4 administration four times (model h,
Figure 1A) showed the best effect in inducing liver injury and fibrosis. On the other hand,
using an alcohol liquid diet with low-dose CCl4 administration four times (models d and
e, Figure 1A) could be an easier and alternative procedure to induce a similar degree of
chronic liver injury and fibrosis. These models provide novel experimental platforms
for the study of pathological mechanisms and drug screening in the context of alcoholic
liver fibrosis.
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