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Abstract: Sepsis-associated acute kidney injury (SA-AKI) is a severe and life-threatening condition
with high morbidity and mortality among emergency patients, and it poses a significant risk of chronic
renal failure. Clinical treatments for SA-AKI remain reactive and non-specific, lacking effective
diagnostic biomarkers or treatment targets. In this study, we established an SA-AKI mouse model
using lipopolysaccharide (LPS) and performed proteomics and metabolomics analyses. A variety of
bioinformatic analyses, including gene set enrichment analysis (GSEA), weighted gene co-expression
network analysis (WGCNA), protein and protein interactions (PPI), and MetaboAnalyst analysis,
were conducted to investigate the key molecules of SA-AKI. Integrated proteomics and metabolomics
analysis revealed that sepsis led to impaired renal mitochondrial function and metabolic disorders.
Immune-related pathways were found to be activated in kidneys upon septic infection. The catabolic
products of polyamines accumulated in septic kidneys. Overall, our integrated analysis provides a
multidimensional understanding of SA-AKI and identifies potential pathways for this condition.

Keywords: SA-AKI; proteomics; metabolomics; biomarker; mitochondrial dysfunction

1. Introduction

Sepsis is characterized as organ malfunction derived from the harmful reaction of
a host to an infection. Sepsis-associated acute kidney injury (SA-AKI) is a severe and
common complication of sepsis defined as an acute kidney injury (AKI) occurring in the
presence of sepsis without any other significant contributing factors or characterized by
the simultaneous presence of both Sepsis-3 and Kidney Disease Improving Global Out-
comes (KDIGO) criteria [1,2]. The incidence of AKI is approximately 40–50% among septic
patients [3]. Individuals suffering from AKI have an increased likelihood of progressing to
chronic kidney disease and end-stage renal disease along with facing a higher long-term
mortality rate following sepsis, making an early assessment of septic AKI probability and
the accurate prediction of clinical outcomes crucial [4,5]. However, the pathogenesis of
SA-AKI is complex, involving various factors such as inflammation, microvascular dys-
function, metabolic reprogramming, and cellular injury [6]. Despite the extensive research
conducted in this regard, the diagnostic and therapeutic importance of the physiological
changes observed in SA-AKI remains poorly understood.

Traditional biomarkers like serum creatinine are commonly employed for diagnosing
and predicting AKI in clinical settings; however, their effectiveness is hampered by limited
sensitivity and specificity, which can be further complicated by factors such as age, gender,
muscle mass, and hydration status [7]. Current clinical treatments for SA-AKI are often
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reactive and non-specific. Among the newer biomarkers for AKI, neutrophil gelatinase-
associated lipocalin (NGAL) has failed to differentiate between patients with or without
AKI in the presence of sepsis [8,9], while the kidney injury molecule-1 (KIM-1) has not been
thoroughly studied in the context of SA-AKI [10]. Specific biomarkers for diagnosis and
effective targets for SA-AKI remain limited [11].

Proteins are essential functional molecules in organisms, and identifying and quanti-
fying large numbers of proteins simultaneously through proteomics is necessary to gain
insights into the pathogenesis of diseases. On the other hand, metabolomics is used to
quantitatively analyze small molecules in organisms and yields a direct pathophysiologi-
cal state [12]. With the advancements in mass spectrometry technology, proteomics and
metabolomics have emerged as powerful tools for investigating pathogenesis and identify-
ing potential biomarkers [13,14]. It has been reported that acute-phase response proteins are
predominantly upregulated in septic mouse kidneys [15]. The plasma proteome of patients
with sepsis has shown that endothelial molecules are associated with the development of
SA-AKI [16]. The global proteome of mouse kidneys has revealed that kidneys modulate
oxidative stress and mitochondrial energetics upon the induction of sepsis [17]. Although
there have been single-omic analysis studies of SA-AKI, integrated multi-omics analysis
still needs to be improved [18]. Integrating proteomics and metabolomics analyses could
allow researchers to draw a multidimensional map of SA-AKI [19].

Herein, we integrated proteomics and metabolomics analysis approaches to provide
a relatively comprehensive landscape of SA-AKI with mutual validation. This multi-
omics analysis of septic kidneys applied various bioinformatic analyses, including gene set
enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA),
protein and protein interactions (PPI), and MetaboAnalyst analysis. Our study revealed
evidence of mitochondrial dysfunction, metabolic disorders, an activated immune response,
and the accumulation of catabolic products from polyamines in septic kidneys. Our study
offers valuable insights into the pathogenesis of SA-AKI along with potential diagnostic
and therapeutic targets.

2. Materials and Methods
2.1. Animal Model

Male wild-type C57BL6 mice, aged 6–8 weeks and weighing 20–25 g, were obtained
from Beijing Vital River Laboratory Animal Technology Company. The mice were housed
at the Peking Union Medical College Hospital animal center in a temperature-controlled
room (22 ◦C) with a 12 h light/dark cycle. After acclimatizing for 1 week, the animals were
randomized into two groups (n = 5) to create the SA-AKI models via the intraperitoneal in-
jection of 9 mg/kg of lipopolysaccharide (LPS, E. coli O111:B4, Sigma, St. Louis, MO, USA)
and the control mice injected with 0.9% saline. After 24 h, the mice were euthanized
to collect blood and kidney samples. All animal experiments were conducted follow-
ing the National Institutes of Health Guide for the Care and Use of Laboratory Animals
and approved by the Ethics Committee of the Peking Union Medical College Hospital
(NO. XHDW-2022-017, 16 March 2022).

2.2. Analysis of Renal Function

The renal function markers of serum creatinine and blood urea nitrogen (BUN) were
assessed using a commercial assay kit produced by Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). Briefly, the samples were mixed with reagent A and incubated
in a 37 ◦C water bath for 5 min (or 10 min for BUN), and the absorbance, A1, was recorded
at 546 nm (or 640 nm for BUN); then, reagent B was added to the reaction mixture and
incubated in a 37 ◦C water bath for 5 min (or 10 min for BUN) to record the absorbance (A2).
The serum creatinine and BUN values were calculated according to the manufacturer’s
instructions.
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2.3. Quantitative Real-Time PCR (qPCR)

Total RNA was extracted from the kidneys using Trizol reagent (Invitrogen, Waltham,
MA, USA). Next, total RNA was used to synthesize cDNA with a reverse transcription kit
(Vazyme, Nanjing, China). qPCR was carried out on a CFX96 RT-PCR system (Bio-Rad,
Hercules, CA, USA) with SYBR Green dye (Vazyme, Nanjing, China). Actb was the internal
control, and primers were from Primer-Blast [20], as listed in Table S1.

2.4. Proteomics Analysis

Proteins were extracted from 10 mg of kidney tissue using an 8 M urea solution.
The tissue was then homogenized five times at 4 ◦C, employing a tissue grinder with a
frequency of 60 Hz for each 15 s run, followed by a 10 s pause. Subsequently, centrifugation
was performed to collect the supernatants. The protein concentrations of the samples
were measured using a BCA protein assay kit. In-solution digestion was carried out by
reducing 100 µg of protein using 5 mM of dithiothreitol (DTT) and, subsequently, alkylating
the resulting product with 12.5 mM of iodoacetamide (IAM) away from a light source.
The proteins were diluted and digested with trypsin (Promega, Madison, WI, USA) for
16 h at 37 ◦C. Following desalination, tryptic peptides were labeled with tandem mass
tags (TMT) 10-plex reagents (Thermo Fisher Scientific, Waltham, MA, USA). TMT-labeled
peptides were combined, desalted and then separated using a UPLC system (Thermo
Fisher Scientific, Waltham, MA, USA). The fractions were dissolved in formic acid (FA) and
analyzed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS).

2.5. LC-MS/MS Analysis

Peptides were separated using a high-performance liquid chromatography (HPLC)
system coupled with a Q Exactive HFX mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) in the data-dependent acquisition mode. The parameters were as
follows: a single full-scan mass spectrum was generated using Orbitrap (300–1800 m/z;
resolution of 60,000), with an automatic gain control (AGC) target of 3 × 106; the MS/MS
spectra acquisition settings corresponded to 45,000 for resolution with an AGC target of
1 × 105 and a maximum injection time of 100 ms; the isolation window width was 0.4 Da;
and the normalized collision energy for dissociation was 35%.

2.6. Peptide and Protein Identification

Relative protein quantification was performed using the Proteome Discoverer (PD)
2.1 software (Thermo Fisher Scientific, Waltham, MA, USA), which accessed the UniProt
mouse database. The searching process used the following criteria: full tryptic specificity
was required, a tolerance of two missed cleavages was set, carbamidomethylation and TMT
10-plex were fixed modifications, and variable modification corresponded to oxidation.
The searched data were further processed using the percolator function in Proteome Dis-
coverer to allow for filtering with a 1% peptide false discovery rate (FDR). Relative protein
quantification was carried out using PD 2.1 according to the intensities of reporter ions per
peptide. The MS proteomics data are available in the ProteomeXchange [21] library via
the PRIDE repository [22] under the identifier PXD044371. All proteins identified and the
relative abundance values are listed in Table S2.

2.7. Metabolomics Analysis

A total of 20 mg of renal tissue was homogenized in pre-chilled 80% methanol five
times using a tissue grinder at 4 ◦C, with each run lasting 15 s at a frequency of 60 Hz,
followed by a 10 s pause. Subsequently, the homogenates were centrifuged to collect the
supernatants. Firstly, the metabolites were wholly dried with a lyophilizer. Then, dissolved
metabolites were analyzed using LC-MS/MS. The profiling of targeted and untargeted
metabolites was conducted using a TSQ Quantiva™ Triple Quadrupole Mass Spectrome-
ter and a Q-Exactive Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA),
respectively. Metabolites were identified based on retention time and quantitated using
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Trace-Finder 3.2 (Thermo Fisher Scientific, Waltham, MA, USA). For untargeted profiling,
metabolites were identified based on MS/MS matching with the standard library. Two
levels of identification were achieved in the analysis, one of which was through MS/MS
confirmation and the other via potential assignment according to precursor ion masses.
Missing values were imputed using the mean imputation method. The MS metabolomics
data are available at www.ebi.ac.uk/metabolights/MTBLS8350 [23]. All metabolites identi-
fied and the relative abundance values are listed in Table S3.

2.8. Statistical Methods and Bioinformatics Analysis

Statistical analysis was conducted using GraphPad Prism 9.1.2 software (GraphPad,
La Jolla, CA, USA). Approximately normal distribution of relative abundance was con-
firmed, and differences between two groups were analyzed using a two-tailed Student’s
t-test. Multiple testing was performed using the Benjamini–Hochberg procedure. The
threshold for statistical significance was a p-value of less than 0.05. The STRING database
was utilized, for which a high confidence score of 0.9 was set as the cut-off value to gen-
erate protein–protein interaction (PPI) networks [24]. The constructed networks were
visualized using Cytoscape 3.9.1 [25,26]. GSEA was performed based on the Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases using the
“clusterProfiler v4.6.2” R package [27]. GOChord, GOHeat, and GOCluster plots were visu-
alized using the “GOplot” R package [28]. Weighted gene co-expression network analysis
(WGCNA) was performed and visualized by the “WGCNA” R package [29]. Metabolite
set enrichment analysis and multivariate exploratory ROC analysis were carried out using
MetaboAnalyst 5.0 [30,31].

3. Results
3.1. The Global Proteomic View of the Septic Kidneys

We created an SA-AKI mouse model with LPS stimulation, which significantly in-
creased serum creatinine and BUN levels after 24 h of treatment (Figure 1A,B). We inves-
tigated the mRNA expression levels of several kidney injury marker genes and found
that neutrophil gelatinase-associated lipocalin protein (Lcn2) and kidney injury molecule-1
(Kim-1) levels were significantly higher in the SA-AKI kidneys; we also found elevated
expression of tumor necrosis factor (TNFa) and interleukin-6 (Il6) (Figure 1C). To further
elucidate the molecular mechanisms of SA-AKI, we carried out a quantitative proteomics
analysis to characterize the proteome changes of renal tissue after SA-AKI. A total of
5185 proteins were identified, for which there was a less than 1% false discovery rate (FDR)
(Table S2). A threshold cut-off was established using percentage variations corresponding
to 88% coverage [32]. Proteins exhibiting ratios of ≥1.33 or ≤0.75 and p-values < 0.05
compared to the controls were considered upregulated or downregulated, respectively.
There were 353 upregulated proteins and 166 downregulated proteins in the SA-AKI tis-
sue compared with the control tissue (Figure 1D,E). We then constructed proteomaps
to visually cluster the differentially expressed proteins according to their KEGG path-
way annotations to highlight proteome composition conservation after SA-AKI [33]. The
proportions of organismal system categories (such as complement and coagulation cas-
cades, antigen presentation, and the cytosolic DNA-sensing pathway) and environmental-
information-processing categories (such as the nuclear factor-kB pathway and the cluster
of differentiation molecules) were higher in the SA-AKI group. In contrast, the changes
in metabolic categories were prominent. The SA-AKI group had lower proportions of
proteins related to oxidative phosphorylation, lipid metabolism, amino acid metabolism,
and glycan metabolism. Along with the metabolic changes, we also observed lower levels
of mitochondrial biogenesis and ribosome proteins in the SA-AKI group (Figure 1F). The
results regarding proteome composition conservation indicated that there were dynamic
changes after septic injury.

www.ebi.ac.uk/metabolights/MTBLS8350
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Figure 1. A global proteomic view of the septic kidneys. (A) Serum creatinine and (B) blood
urea nitrogen (BUN) levels in the sepsis-associated acute kidney injury (SA-AKI) mice com-
pared with the control mice (n = 5; mean ± SEM). (C) mRNA expression of Lcn2, Kim1, Tnfa,
and Il6 in SA-AKI kidney tissue compared to that of the control kidneys (n = 5; mean ± SEM).
(D) Experimental variations of proteomics analysis of kidney tissue in mice with SA-AKI and control
mice. (E) A volcano plot was created to visualize the differences in the protein expression levels
between the kidney tissues of the SA-AKI and control mice, with blue and red dots representing
downregulated and upregulated proteins, respectively. The proteins exhibiting significant differences
(p-value < 0.05; ratios of ≤0.75 or ≥1.33) are highlighted. (F) Proteomaps of SA-AKI kidney tissue
compared with the control group. The polygons in proteomaps consist of proteins, with the size
representing protein abundance. Proteins belonging to the same category are placed in adjacent
locations [33]. **** p < 0.0001, *** p < 0.001, and ** p < 0.01.

3.2. Septic Injury Impaired Mitochondrial Function in Kidneys

To further understand the proteomic changes in the SA-AKI kidneys, we performed
a GO analysis of the differentially expressed proteins using DAVID 2021 [34]. The bi-
ological process enrichment result showed that downregulated proteins in the SA-AKI
kidneys were primarily involved in mitochondrial functions such as mitochondrial trans-
lation; mitochondrial respiratory chain complex assembly; energy metabolism processes
including ATP metabolic process, oxidation–reduction process, cellular respiration, and
purine and nucleoside metabolism (Figure 2A). Most remarkably, cellular component
ontology analysis showed that downregulated proteins were mainly enriched in mito-
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chondrion proteins, respiratory chain complex, and oxidoreductase complex (Figure 2B),
with nearly 67% of the downregulated organelle proteins being enriched in mitochondria
(Figure S1). To further investigate the interactions between the differentially expressed
proteins, we constructed PPI networks using STRING [24]. We then utilized the Cyto-
hubba and Molecular Complex Detection (MCODE) plug-in of Cytoscape 3.9.1 to find hub
modules in the PPI networks [25,26]. The top 10 hub proteins identified using Cytohubba
were mainly involved in the mitochondrial electron transport chain (Figure 2C). MCODE
analysis revealed that the top two PPI networks were mainly composed of mitochondrial-
respiratory-chain-related proteins and mitochondrial ribosomal proteins (Figure 2D,E).
Our findings suggested that septic infection disrupted mitochondrial homeostasis in the
kidneys, which is consistent with previous research findings [17].

Figure 2. Mitochondrial homeostasis disordered in SA-AKI kidneys. (A) The biological process and
(B) cellular component enrichment of downregulated proteins in the SA-AKI kidneys analyzed by
Gene Ontology (GO) with DAVID 2021. (C) A total of 10 hub proteins were identified by Cytohubba
via the maximal clique centrality method (Red represents a higher score, while yellow represents a
lower score). (D,E) Top two PPI (protein and protein interaction) networks analyzed by MCODE. The
first cluster had 11 nodes and 47 edges (score = 9.4). The second cluster had 8 nodes and 47 edges
(score = 8).
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Gene set enrichment analysis (GSEA) is a powerful method that allows for the identifi-
cation of coordinated changes in groups of genes, which can identify subtle but coordinated
changes in gene expression that may be missed by other methods [35,36]. We conducted a
GSEA analysis of all of the identified proteins by clusterProfiler v4.6.2 [27]. Our analysis
showed that the top 20 pathways with significant differences in the GO database mainly
concerned mitochondrial respiratory chain complex assembly, energy derivation by the
oxidation of organic compounds, the innate immune response, and defense responses
against other organisms (Figure 3A). Specifically, ATP synthesis-coupled electron transport,
cellular respiration, mitochondrial respiratory chain complex assembly, NADH dehydro-
genase complex assembly, and oxidative phosphorylation pathways were significantly
downregulated. The top five pathways, according to the GSEA normalized enrichment
score (NES), were aerobic respiration, mitochondrial respiratory chain complex assembly,
oxidative phosphorylation, NADH dehydrogenase complex assembly, and mitochondrial
ATP synthesis coupled electron transport (Figure 3B). All five pathways were significantly
downregulated, and the cneplot revealed shared genes between the top five enrichment
pathways (Figure S2). Consistent with the GO analysis, the GSEA analysis using the KEGG
database also showed significant downregulation of the oxidative phosphorylation, citrate
cycle, and fatty acid metabolism pathways (Figure S3A–C). These results provided strong
evidence of mitochondrial dysfunction in sepsis renal injury. In addition, we found that
the peroxisome pathway, which is essential for the turnover of complex lipids and reactive
species, was downregulated (Figure S3D). Peroxisomes have been identified as regulators
of oxidative stress during infection [37]. Therefore, downregulated peroxisome metabolism
may contribute to oxidative stress and thus aggravate renal injury.

Biomolecules 2023, 13, x  3  of  9 
 

 

Figure 3. GSEA (gene set enrichment analysis) analysis of all identified proteins in the proteomics 

analysis of the SA‐AKI kidneys compared with the control group based on the GO database. (A)The 

top 20 pathways with significant differences in the GO database. (B) The top five pathways accord‐

ing to the GSEA normalized enrichment score in the GO database. 

3.3. Immune‐Related Pathways Were Significantly Activated in SA‐AKI Kidneys 

To investigate the upregulated proteins in the SA‐AKI kidneys, we performed bio‐

logical  process  enrichment  via GO  analysis.  The  results  showed  that  immune‐related 

pathways were significantly enriched in the SA‐AKI kidneys (Figure 4A), with the top 12 

terms  determined  according  to  the  GO  z‐score  and  visualized  using  the  GOChord, 

GOHeat, and GOCluster plots (Figure S4) [28]. Consistent with the GO analysis, the GSEA 

analysis revealed  that  the  top five upregulated pathways  in  the GO database were  the 

innate immune response and defense responses to other organisms, such as bacteria and 

viruses (Figure 4B). The top five upregulated pathways in the KEGG database included 

complement and coagulation cascades, herpes simplex virus‐1 infection, Epstein–Barr vi‐

rus infection, antigen processing and presentation, and phagosomes (Figure S5). Immune 

pathways were activated  to adapt  to  the  infection conditions upon septic  injury  in  the 

kidneys. 

Figure 3. GSEA (gene set enrichment analysis) analysis of all identified proteins in the proteomics
analysis of the SA-AKI kidneys compared with the control group based on the GO database.
(A)The top 20 pathways with significant differences in the GO database. (B) The top five path-
ways according to the GSEA normalized enrichment score in the GO database.

3.3. Immune-Related Pathways Were Significantly Activated in SA-AKI Kidneys

To investigate the upregulated proteins in the SA-AKI kidneys, we performed bi-
ological process enrichment via GO analysis. The results showed that immune-related
pathways were significantly enriched in the SA-AKI kidneys (Figure 4A), with the top
12 terms determined according to the GO z-score and visualized using the GOChord,
GOHeat, and GOCluster plots (Figure S4) [28]. Consistent with the GO analysis, the GSEA
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analysis revealed that the top five upregulated pathways in the GO database were the
innate immune response and defense responses to other organisms, such as bacteria and
viruses (Figure 4B). The top five upregulated pathways in the KEGG database included
complement and coagulation cascades, herpes simplex virus-1 infection, Epstein–Barr virus
infection, antigen processing and presentation, and phagosomes (Figure S5). Immune
pathways were activated to adapt to the infection conditions upon septic injury in the
kidneys.
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(A) The biological process enrichment of upregulated proteins in the SA-AKI kidneys analyzed
by GO with DAVID 2021. (B) The top five upregulated pathways according to the GSEA normalized
enrichment score in the GO database.

3.4. Construction of SA-AKI Protein Co-Expression Networks

Using the weighted gene co-expression network analysis (WGCNA) one-step net-
work construction method, we obtained 12 co-expression modules of all of the identified
proteins in the proteomics data of the SA-AKI kidneys compared to the control group
(Figures 5A and S6). These co-expression modules are clusters of genes with robust abso-
lute correlations, identified through unsupervised clustering methods within the WGCNA
framework. Co-expression modules play a pivotal role in identifying crucial genes or
pathways associated with specific biological processes or diseases [38]. Module–trait rela-
tionship analysis showed that the yellow module had the most negative correlation with
SA-AKI (Figure 5A), while the turquoise and blue modules had substantial correlations
with SA-AKI. Further analysis quantified the correlations between module membership
(MM) and gene significance (GS) in the three modules. Specifically, the correlations between
module membership and gene significance in the yellow, turquoise, and blue modules were
0.92, 0.86, and 0.6, respectively (Figure 5B–D). The high correlation between GS and MM
in a given module illustrates that proteins highly associated with SA-AKI are also pivotal
elements of that module. This indicated that the proteins in these three modules were im-
portant elements associated with SA-AKI. Consequently, we performed GO analyses of the
proteins found in the yellow, turquoise, and blue modules (Figure 5E). The proteins in the
yellow module, i.e., the module that was negatively correlated with SA-AKI, were mainly
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enriched in mitochondria-related processes, indicating that mitochondrial dysfunction was
an incredibly crucial facilitator for the development of SA-AKI. The correlation between
module membership and gene significance in the yellow module was the highest, further
supporting the importance of mitochondrial dysfunction in relation to SA-AKI. The pro-
teins in the turquoise module were mainly involved in mRNA processing, ribose phosphate
metabolism, ribonucleoprotein complex biogenesis, nucleocytoplasmic transport, nuclear
transport, etc. The proteins in the blue module were mainly related to protein stability, such
as Golgi vesicle transport, proteasome-mediated ubiquitin-dependent protein catabolic
processes, autophagy, and the regulation of protein-containing complex assembly.
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Figure 5. The co-expression network of proteins in SA-AKI kidneys constructed by weighted gene
co-expression network analysis. (A) Heatmap illustrates the relationships between modules and
the SA-AKI trait. Each row corresponds to a module, and each cell contains the correlation as
well as the corresponding p-value in the bracket. (B–D) A scatterplot of module membership
vs. gene significance with respect to SA-AKI in the yellow, turquoise, and blue modules. Gene
significance (the absolute value) represents associations of individual genes with the SA-AKI trait.
Module membership represents the correlation between each module and the gene expression profile.
(E) GO analyses of the proteins in yellow, turquoise, and blue modules.
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3.5. SA-AKI Induced Metabolic Disorders

We conducted metabolomics analysis on five biological replicates to comprehensively
profile SA-AKI and identify key metabolites associated with the condition. Principal
component analysis (PCA) identified the differences between the metabolites of the SA-AKI
and control kidneys (Figure 6A). Metabolites exhibiting ratios of ≥1.33 or ≤0.75 and
p-values < 0.05 compared to the controls were considered upregulated or downregulated,
respectively. The SA-AKI group displayed a rise in 111 metabolite levels and a reduction in
66 metabolites (Figure 6B). To elucidate the underlying metabolic disruptions of SA-AKI,
we conducted an enrichment analysis using MetaboAnalyst 5.0. The results pointed
to significant disturbances in central carbon metabolism, including processes such as
the transfer of acetyl groups into mitochondria, the Warburg effect, and the citric acid
cycle. Moreover, amino acid metabolism, nucleotide metabolism, as well as nicotinate and
nicotinamide metabolism were also notably impacted, as demonstrated in Figure 6C. In an
effort to elucidate the intricate connections between the proteins and metabolites associated
with SA-AKI, we performed an integrated analysis of proteomics and metabolomics data
using MetaboAnalyst. This analysis uncovered enriched metabolic pathways primarily
centered around amino acid metabolism, including pathways such as alanine, aspartate,
and glutamate metabolism, as well as arginine and proline metabolism, and histidine
metabolism. Additionally, there were significant enrichments observed in nucleotide
metabolism, butanoate metabolism, pantothenate and CoA biosynthesis, and glyoxylate
and dicarboxylate metabolism, as illustrated in Figure 6D.
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Figure 6. Metabolomic profiling of the septic kidneys. (A) Principal component analysis (PCA) of
metabolites showed that metabolites in SA-AKI and control kidneys were different. QC, quality
control. (B) A volcano plot was generated to visualize the differences in metabolite levels between
SA-AKI kidney tissue and control kidney tissue, with blue and red dots representing downregu-
lated and upregulated metabolites, respectively. The metabolites exhibiting significant differences
(p-value < 0.05; ratios of ≤0.75 or ≥1.33) were highlighted. (C) The top 25 enriched metabolite sets
were analyzed by MetaboAnalyst 5.0. (D) The integrated analysis of proteomics and metabolomics
data was performed by MetaboAnalyst 5.0.
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We constructed a metabolite co-expression network using weighted gene co-expression
network analysis (WGCNA) and identified seven co-expression modules, among which
the turquoise, green, and brown modules were further analyzed (Figure 7A). Enrichment
analysis via MetaboAnalyst revealed that the metabolites in the turquoise module were
most enriched in nucleotide metabolism, amino acid metabolism, glyoxylate and dicarboxy-
late metabolism, nicotinate and nicotinamide metabolism, and glutathione metabolism
(Figure 7B). Notably, nicotinate and nicotinamide metabolism were significantly enriched
in the green module (Figure 7C). Consistent with the turquoise module, purine and amino
acid metabolism were enriched in the brown module. In addition, thiamine metabolism
and citrate cycle were also enriched in the brown module (Figure 7D). These metabolic
disorders were closely related to SA-AKI and could serve as potential biomarkers.
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Figure 7. The co-expression network of metabolites in SA-AKI kidneys was constructed by weighted
gene co-expression network analysis. (A) Heatmap shows module–SA-AKI trait associations. Each
row corresponds to a module, and each cell contains the correlation as well as the corresponding
p-value in the bracket. (B–D) Enrichment analysis with MetaboAnalyst 5.0 of the metabolites in
turquoise, green, and brown modules.

3.6. Catabolic Products of Polyamines Accumulated in SA-AKI Kidneys

Metabolomics and multivariate exploratory receiver operating characteristic (ROC)
analysis showed that N-acetylspermidine and N-acetylputrescine had high average impor-
tance scores as vital features of SA-AKI (Figure 8A). Via polyamine catabolism,
N-acetylspermidine can be converted back to putrescine and then further catalyzed by SAT1
to generate N-acetylputrescine (Figure 8B). Both the N-acetylspermidine and
N-acetylputrescine levels increased more than 10 times with upregulated putrescine
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(Figure 8C–E). Moreover, the mRNA expression of Sat1, the rate-limiting enzyme of
polyamine catabolism, increased in the SA-AKI kidneys (Figure 8F). These results showed
that the catabolic products of polyamines accumulated in the SA-AKI kidneys.
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Figure 8. Catabolic products of polyamines increased in septic kidneys. (A) Multivariate exploratory
receiver operating characteristic (ROC) analysis was performed with MetaboAnalyst 5.0. Candidate
biomarker metabolites were ranked according to their average importance scores. (B) Schematic
graph of polyamine catabolism. ODC, ornithine decarboxylase; SMS, spermine synthase; SRM, sper-
midine synthase; SAT1, diamine acetyltransferase 1; SMOX, spermine oxidase; PAOX, peroxisomal
N (1)-acetyl-spermine/spermidine oxidase. Metabolites in red fonts represent those upregulated in
the SA-AKI kidneys. (C–E) Metabolite intensity of N1-acetylspermidine, N-acetylputrescine, and
putrescine in the SA-AKI and control kidneys. (F) mRNA expression of Sat1, Srm, and Sms in SA-AKI
kidney tissue compared with the control group. n = 5, mean ± SEM; *** p < 0.001, ** p < 0.01, and
* p < 0.05; ns: no significance.

4. Discussion

SA-AKI is a common and severe complication of sepsis characterized by acute kidney
insufficiency that accounts for 41% of mortality in ICUs; this figure was especially high
during the coronavirus disease 2019 (COVID-19) pandemic [11,39]. Besides serum creati-
nine and urine output, no well-accepted diagnostic marker of SA-AKI has been determined
despite decades of research, thus limiting early diagnosis and treatment. However, pro-
teomics and metabolomics have provided a possibility of identifying novel biomarkers and
potential targeted therapies with which to improve the outcomes of patients afflicted by
this dangerous condition.
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In this study, we carried out proteomics and metabolomics analyses to gain a broader
landscape of SA-AKI. Our results demonstrated that septic kidneys exhibited a decrease in
the proportions of proteins related to oxidative phosphorylation, lipid metabolism, amino
acid metabolism, and glycan metabolism. Furthermore, our GO enrichment and GSEA
analyses revealed disrupted mitochondrial homeostasis in septic kidneys. Additionally,
we identified 10 hub proteins within the PPI networks of differentially expressed proteins
primarily involved in the mitochondrial respiratory chain and mitochondrial ribosomal
proteins. Both proteomics and metabolomics weighted gene co-expression network analy-
ses (WGCNAs) revealed a significant enrichment of mitochondrial proteins and related
metabolites. Our multi-omics approach provided an integrated and simultaneously derived
profile ranging from proteins to metabolites in septic kidneys, highlighting mitochondrial
dysfunction as a crucial pathophysiological hallmark of SA-AKI. The kidneys have high
densities of mitochondria, facilitating the dynamic process of actively reabsorbing nutrients
and electrolytes [40]. The priority shift in energy utilization during sepsis is considered an
evolutionarily conservative defense response that limits non-essential functions to avoid
excessive energy consumption [41]. However, persistent decreased oxidative phosphory-
lation also leads to the cell cycle arrest of tubular epithelial cells (TECs), progressing to a
risk factor for organ damage after acute reactions [42]. Our previous study additionally
demonstrated that renal injury can be exacerbated by impaired mitochondrial function in
tubular epithelial cells [43]. Thus, the identified 10 hub proteins related to mitochondria
in the SA-AKI kidneys might provide clues with regard to finding potential therapeutic
targets.

The accumulation of the catabolic products of polyamines (N-acetylspermidine,
N-acetylputrescine, and putrescine) with an increased mRNA level of Sat1 indicated that
there was enhanced polyamine catabolism in the septic kidneys. Unraveling the impli-
cations of catabolic products derived from polyamines in SA-AKI remains a relatively
uncharted area. The role of polyamine catabolism is involved in diverse cellular pro-
cesses, including gene expression, protein synthesis, and oxidative stress regulation [44],
as well as the genesis of disorders like cerebral ischemia and acute liver injury [45,46].
Recent studies have even highlighted increased levels of acetylpolyamine in the context
of COVID-19 and trauma-related infections [47,48], further supporting the potential util-
ity of polyamine catabolic products as non-invasive diagnostic markers. Moreover, the
polyamine spermidine has been linked to enhanced mitochondrial respiratory function via
eIF5A hypusination [49–51]. We speculate that the enhanced polyamine catabolism and
subsequent reduction in spermidine might impair mitochondrial function in SA-AKI. The
accumulation of the catabolic products of polyamines has been less well studied in SA-AKI,
and our study provides new insights into this area. The intricacies of polyamine catabolism
in SA-AKI, however, remain elusive and warrant in-depth exploration.

The MetaboAnalyst enrichment analysis also revealed significant enrichment in
nucleotide metabolism, amino acid metabolism, glyoxylate metabolism, dicarboxylate
metabolism, and glutathione metabolism, with a remarkable enrichment in nicotinate
and nicotinamide metabolism in SA-AKI. Since nicotinamide (NAM) and nicotinamide
adenine dinucleotide (NAD) act as core effectors in protecting against oxidative stress
and preventing kidney ischemia/reperfusion (I/R) injury [52], they could also serve as a
potential therapeutic target for SA-AKI; in this regard, the renoprotective effect of nicoti-
namide (NAM) supplementation against acidosis-induced acute kidney injury has been
reported [53]. Together, these findings have important therapeutic implications for SA-AKI.

The weighted gene co-expression network analysis of proteomics revealed that the
turquoise module was related to mRNA processing and stability. Existing research indicates
that some bacteria can manipulate host gene expression, mRNA procession, and mRNA
stability to modulate innate immune response [54]. Similarly, the blue module’s association
with protein stability aligns with the findings that viral infections like severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) can influence host protein stability [55,56]. Our
results draw attention to the roles of RNA and protein stability in the context of SA-AKI.
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Nonetheless, an in-depth exploration is indispensable to explore the precise regulatory
mechanisms underlying this phenomenon, potentially offering novel avenues for inter-
vention. An integrated analysis of proteins and metabolites suggested that amino acid
metabolism was mainly enriched, which is consistent with characteristics of septic patients’
serum samples [19]. Amino acid metabolism has been found to be a pivotal regulator of
innate and adaptive immunity [57,58]. These data suggested that characteristic proteins
and metabolites related to the immune response could serve as potential therapeutic targets
for SA-AKI.

5. Study Limitations

Our study offers a multidimensional overview of SA-AKI derived directly from septic
kidney tissue. Our data broadly agree with previous discoveries in the context of mito-
chondrial dysfunction [17]. Moreover, we observed an increase in the levels of the catabolic
products of polyamines, an area less explored in S-AKI research. However, the current
study could be more flawless. One of its limitations is the small specimen encompassing
only five mice from a single animal model. A larger specimen and finer grouping can
be used to investigate changes in the early and late phases of SA-AKI in future work.
Additionally, more mouse models of SA-AKI (such as cecal ligation puncture) and human
samples are needed to increase generalizability. Obtaining human kidney samples for AKI
proves to be challenging, with fluid samples predominantly used due to their accessibility.
This underlines the indispensable role of murine models in advancing AKI research. Nev-
ertheless, translating insights from murine models to human samples remains a persistent
challenge. This emphasizes the necessity for subsequent validation of findings observed in
mouse models through human studies. Although the current study identified potential
proteins, metabolites, and pathways involved in SA-AKI, experiments conducted in vivo
and in vitro are required to investigate the precise molecular mechanisms and validate the
individual biomarkers of SA-AKI in further studies. Furthermore, omics techniques employ
high-throughput methodologies to provide a relatively comprehensive understanding of
disease pathogenesis. However, due to sample complexity, low protein concentrations, and
various technical limitations, certain proteins or metabolites might prove challenging to
detect or identify. Hence, it remains crucial to complement these outcomes with additional
methods for biological validation.

6. Conclusions

In summary, multi-omics analysis provides new insights and a multi-faceted under-
standing of the pathophysiology of SA-AKI with mitochondrial dysfunction, metabolic dis-
orders, the activation of immune-related pathways, and the catabolic products of polyamine
accumulation, which might contribute to the development of new diagnostic biomarkers
and therapeutic targets of SA-AKI.
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on the GO database. Figure S3. GSEA analysis of all identified proteins in proteomics analysis of
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