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Abstract: To date, numerous aptamer-based biosensing platforms have been developed for sensitive
and selective monitoring of target analytes, relying on analyte-induced conformational changes in the
aptamer for the quantification of the analyte and the conversion of the binding event into a measurable
signal. Despite the impact of these conformational rearrangements on sensor performance, the
influence of the environment on the structural conformations of aptamers has rarely been investigated,
so the link between parameters directly influencing aptamer folding and the ability of the aptamer
to bind to the target analyte remains elusive. Herein, the effect a number of variables have on an
aptamer’s 3D structure was examined, including the pH of the buffering medium, as well as the
anchoring of the aptamer on a solid support, with the use of two label-free techniques. Circular
dichroism spectroscopy was utilized to study the conformation of an aptamer in solution along with
any changes induced to it by the environment (analyte binding, pH, composition and ionic strength
of the buffer solution), while quartz crystal microbalance with dissipation monitoring was employed
to investigate the surface-bound aptamer’s behavior and performance. Analysis was performed on
an aptamer against oxytetracycline, serving as a model system, representative of aptamers selected
against small molecule analytes. The obtained results highlight the influence of the environment
on the folding and thus analyte-binding capacity of an aptamer and emphasize the need to deploy
appropriate surface functionalization protocols in sensor development as a means to minimize the
steric obstructions and undesirable interactions of an aptamer with a surface onto which it is tethered.

Keywords: aptamer; single-stranded DNA; G-quadruplex; oxytetracycline; circular dichroism;
quartz crystal microbalance

1. Introduction

Aptamers are relatively short (~15–75 bases), single-stranded oligonucleotides (DNA
or RNA) that bind selectively and with high affinity to their respective targets, against
which they are artificially selected through the process of Systematic Evolution of Ligands
by Exponential Enrichment (SELEX) [1,2]. During this procedure, a random oligonucleotide
library is incubated with the target. The unbound sequences are washed away, while the
bound oligomers are eluted and amplified via polymerase chain reaction (PCR). These
steps are usually repeated 10 to 20 times with increasingly stringent conditions employed
in each round, resulting in the selection of aptamer sequences with enhanced affinity to
a target analyte. [3]. Counter selection is also often employed, during which sequences
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interacting with undesired targets (similar molecules, matrix elements, etc.) can be excluded
from the pool of the random oligonucleotides. The resulting aptamer sequences hold
great promise in substituting antibodies as biorecognition elements due to their improved
stability, simpler and more inexpensive production and the ease with which site-specific
chemical modification can be introduced. For these reasons, they have been commonly
employed in biosensors coupled with a diverse range of signal transduction principles,
such as colorimetric [4], fluorimetric [5,6], electrochemical [7,8] and acoustic [9,10].

Although significant progress has been made in the development of aptamer-based
sensors and their deployment in a diverse set of applications, little is known about the
ways with which they interact and bond with their target analytes, and their conformation
prior to and upon binding to a target analyte is still the subject of intense debate. Despite
the key roles that the knowledge of an aptamer’s 3D structure and any analyte-induced
changes to its conformation play to the rational design of aptamer-based assays, there
are little data on aptamer structural motifs, while there are even fewer resolved and
well-characterized aptamer-target analyte complexes. The scarcity of relevant information
hinders the development of robust aptamer-based assays, as well as the integration of assays
into new sensing platforms that could potentially enhance measurement sensitivity, both of
which ultimately prevent aptamers from realizing their full potential [11,12]. Furthermore,
the effect that the aptamer immobilization onto a solid support, such as a sensor surface,
has on its folding has not been adequately examined, despite the fact that the retainment
of an aptamer’s native conformation is crucial to its ability to recognize and interact with
its target analyte. The focus of most of the published work has been the enhancement of
the performance of electrochemical aptamer-based sensors, providing little insight into
how the aptamer itself is affected upon tethering to a surface [13]. Moreover, most of the
work has been undertaken with the use of the thrombin-binding aptamers [14–16], with
hardly any data being available on aptamers against small-molecule (<1 kDa) analytes [17].
Therefore, gaining insight into the impact of immobilization, or generally speaking, the
environment of an aptamer (temperature, pH) on its conformation directly, without the
need for tagging, is of paramount importance and especially so for aptamers whose targets
are of low molecular weight. Nevertheless, only a limited number of studies present data
on the structure of an aptamer in solution, as well as following its immobilization onto a
solid support. To this avail, circular dichroism spectroscopy (CD) complemented by quartz
crystal microbalance (QCM) measurements are ideally-suited for this purpose.

Circular dichroism spectroscopy is an analytical method used to examine optically
active chiral molecules by measuring the differential absorption of left- and right-handed
polarized light. Individual nucleotides are not chiral themselves, but oligonucleotides do
present a CD spectrum as an outcome of base stacking and the secondary and tertiary
structures that nucleotide sequences conform to. CD spectra of DNA have been empir-
ically assigned to the A-, B- and Z-form of the molecule, as well as some well-defined
tertiary structures such as the G-quadruplex, the cytosine-rich i-motif and also to stem–loop
motifs [18–21]. Nevertheless, CD spectroscopy has been rarely employed to follow the
conformational transitions of an aptamer upon exposure to different buffer solutions or
buffers with varying ionic compositions and pH values.

Quartz crystal microbalance is an acoustic technique that measures changes to the
resonance frequency of a piezoelectric quartz crystal resonator (QCR) due to the addition
or removal of mass on the surface. Dissipation (D) monitoring is equally important, as it
provides information on the viscoelastic properties of the adlayer, as well as any alteration
induced by the level of hydration or structural rearrangements of the surface-tethered
biomolecules themselves [22]. Numerous studies have been published that include the
interrogation of aptamer-modified surfaces via QCM with a dissipation mode. Nevertheless,
most of the investigations have focused on the use of aptamers for the detection of proteins
and/or pathogens, whose comparatively large mass facilitates analysis and allows large
signal responses to be obtained [23]. By contrast, studies on aptamer-based monitoring of
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small molecule analytes with QCM are very limited, since the binding of the latter results
in frequency changes of only few Hz, leading to low signal-to-noise ratios [24–26].

Herein, in an attempt to gain a better understanding on the effect of the solution
environment as well as the surface immobilization on the ability of an aptamer to fold
and recognize its target analyte, an aptamer against oxytetracycline (OTC) was employed
as a model system. OTC, a member of the tetracycline family of antibiotics, was chosen
due to its widespread and excessive use in livestock, which has been linked to the increas-
ing emergence of antibiotic-resistant bacteria [27]. Developing reliable analytical sensor
systems for OTC detection in various environmental and food matrices is therefore of
paramount importance, and this is why a large number of biosensors for OTC detection
have already been developed, including numerous aptasensors [28–30]. The performance
of such OTC sensors and by inference the general performance of aptasensors against other
small-molecule analytes can be improved by investigating how an OTC aptamer folds in
response to OTC, as well as a number of other factors. The aptamer sequence utilized
in this work was selected by Niazi and coworkers [31], and although it has already been
extensively used in the construction of sensors [6–9,32–34], its conformation as well as the
effect of buffer pH, target binding and surface immobilization have never been studied
before. Towards this goal, CD spectroscopy and QCM with dissipation measurements were
employed, which are complementary techniques suitable for the interrogation of aptamers
in solution and surface-bound form.

2. Materials and Methods
2.1. Chemicals

Sodium chloride, potassium chloride, magnesium chloride hexahydrate, calcium
chloride dihydrate, disodium hydrogen phosphate, dipotassium hydrogen phosphate,
tris(hydroxymethyl)aminomethane (Tris) base, trisodium citrate, Tween 20, oxytetracycline
hydrochloride, oxytetracycline dihydrate and tris(2-carboxyethyl)phosphine (TCEP) were
purchased from Sigma-Aldrich, Budapest, Hungary. Paraffin oil was obtained from Met-
allex Group, Athens, Greece, while potassium hydroxide and L-cysteine were purchased
from Reanal, Budapest, Hungary. Moreover, 30% hydrogen peroxide was purchased from
Lach-Ner, Neratovice, Czech Republic. LGC Biosearch Technologies, Lystrup, Denmark,
and Integrated DNA Technologies, Leuven, Belgium supplied the DNA aptamers for the
CD measurements. The sequences were as follows: 5′-GGA ATT CGC TAG CAC GTT GAC
GCT GGT GCC CGG TTG TGG TGC GAG TGT TGT GTG GAT CCG AGC TCC ACG TG-3′

(71-mer) and 5′-ACG TTG ACG CTG GTG CCC GGT TGT GGT GCG AGT GTT GTG T-3′

(40-mer). The thiol-modified 40-mer aptamer for the QCM measurements was supplied by
LGC Biosearch Technologies, Lystrup, Denmark with the following sequence: 5′-ACG TTG
ACG CTG GTG CCC GGT TGT GGT GCG AGT GTT GTG T-(CH2)6-S-S-(CH2)6-OH-3′.

2.2. Buffer Preparation

The Tris binding buffer contained 20 mM Tris, 100 mM NaCl, 5 mM KCl, 2 mM
MgCl2 and 1 mM CaCl2. A similar buffer was used in the binding process of the SELEX
procedure of the aptamer [31]. For the experiments, phosphate-buffered saline (PBS)
(10 mM Na2HPO4, 1.8 mM K2HPO4, 150 mM NaCl, 2.6 mM KCl) and saline-sodium citrate
(SSC) (150 mM NaCl, 1.5 mM trisodium citrate) buffers were also made. The K+, Mg2+

and Ca2+ ion contents and the pH of the buffers were adjusted prior to the respective
experiments. PBS buffer pH was adjusted in the range of 7.1–9.1 and the SSC buffer in
the pH range of 3.1–6.6, with 0.5 pH increments in both cases. In the SSC buffer, the K+,
Mg2+ and Ca2+ ions were used in the same concentrations as in the Tris binding buffer. For
the investigation of the effect of ionic content, the following media were used: ultrapure
water, PBS, Tris binding buffer and Tris buffer containing K+, Mg2+ and Ca2+, either at the
concentration of the binding buffer or none, in every possible variation. Moreover, 100 mM
sodium was present in all Tris buffer solutions. The buffer solutions were filtered using
0.20 µm or 0.22 µm syringe filters and sterilized if their storage time exceeded 5 days.
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2.3. Circular Dichroism Spectroscopy Measurement

CD measurements were performed on a Jasco J-1500 CD Spectrometer in photometric
mode. The measurement range was 200–320 nm, with 2 nm bandwidth and spectra taken
at 50 nm/min scanning speed during the OTC titration experiments. The sample holder
was thermostated at 25 ◦C. Buffer solutions without any aptamer or OTC were used for
baseline correction. The denaturation measurements were performed without baseline
correction. The scanning speed was set at 100 nm/min, the temperature was increased at a
rate of 2 ◦C/min between 4 and 100 ◦C and spectra were taken at every 2 ◦C.

For titration, 500 µL of 5 µM aptamer solution was pipetted into a 5 mm quartz
cuvette. An aqueous solution of OTC was pipetted into the aptamer solution to obtain
concentrations of 2.5, 5, 10, 20 and 40 µM. Before the CD measurement, the solutions were
gently shaken and incubated at room temperature for 5 min.

Denaturation experiments were carried out using 1000 µL of 5 µM aptamer solution
alone and with 40 µM OTC in a 5 mm quartz cuvette with a PTFE lid. In addition, 100 µL
paraffin oil was layered on top of the solution to minimize evaporation.

2.4. Quartz Crystal Microbalance Measurement

The QCM with an impedance analysis (QCM-I) unit (MicroVacuum Ltd., Budapest,
Hungary) was controlled via BioSense 3 software (MicroVacuum Ltd., Budapest, Hungary.
The QCM-I device’s resonance and dissipation sensitivity in liquid are 0.2 Hz and 1 × 10−7,
respectively. Solutions were drawn through the QCM fluidic cell using an Ismatec peristaltic
pump at 60 µL/min. To change solutions, the pump was stopped for a moment, the tubing
was immersed into the next solution and the pump was started again. The cell temperature
was thermostated to 25 ◦C. Besides the fundamental resonance frequency, dissipation was
also registered at odd-numbered overtones up to the 13th.

The dithiol-modified aptamer solution was incubated with TCEP at room temperature
for 1 h to reduce the dithiol to the more reactive thiol. It was then diluted to 1 µM, incubated
in a Grant bio PCH-1 Dry-block at 95 ◦C for 5 min and allowed to cool to room temperature
so that the aptamer assumes its native conformation after being stored frozen.

QCRs, 14 mm, 5 MHz Ti/Au (MicroVacuum Ltd., Budapest, Hungary), were first
cleaned with a 50 mM KOH-25% H2O2 solution [35], then rinsed with ultrapure water and
dried using compressed air flow. The gold surface of the QCRs was modified by dropping
150 µL of the following solutions: (I) 1 µM aptamer solution; (II) 0.1 µM L-cysteine solution;
(III) 1 µM aptamer solution followed by 0.1 µM L-cysteine solution (low-density coverage);
and (IV) 10 µM aptamer solution followed by 0.1 µM L-cysteine solution (high-density
coverage). The solutions were left on the crystal for 1 h, rinsed with ultrapure water and
then immersed into 7.1 pH Tris binding buffer until measurement.

3. Results and Discussion
3.1. Induced Conformational Changes in Solution Phase

Initially, the CD spectra of the variable region of the aptamer including the primers
flanking it (71-base-long) and without them (40-base-long) were recorded in the absence
as well as in the presence of increasing OTC concentrations (Figure 1). As both sequences
contain a high number of guanine bases, it was anticipated that they assume a guanine
quadruplex (G-quadruplex) structure. G-quadruplexes are made up of multiple G-quartets,
planar square motifs formed by four guanine bases. G-quadruplexes can be categorized into
three main subtypes: parallel, antiparallel and hybrid [20,21,36,37]. Parallel G-quadruplexes
can be identified by their large positive peak at 260 nm, and a shallow negative one at
240 nm. Antiparallel G-quadruplexes, on the other hand, display a negative peak at 260 nm
and a positive peak at around 295 nm, while the peaks of the hybrid structures fall between
the peaks of the previous two, showing positive peaks at 295 nm and 260 nm, as well as
a negative one at 240 nm. These wavelength values are averages of the values reported
in the literature; the exact values where peaks are formed are influenced by differences in
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G-quartet stacking, strand segment orientation and loop arrangements [38]. This shows the
ambiguity when interpreting CD spectra of G-quadruplex structures.
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Figure 1. Target-induced conformational change of (a) 40-mer aptamer (5 µM) and the (b) 71-mer aptamer
(5 µM) in Tris binding buffer (pH = 7.6) with increasing concentrations of OTC (2.5 µM, 5 µM, 10 µM,
20 µM and 40 µM). The red arrows point in the direction of increasing concentration.

Analysis of the CD spectra obtained for the two sequences shows some common struc-
tural features, such as the negative peak at ca. 205 nm, which is characteristic of GC-rich
sequences adopting an A form even in aqueous solutions [18]. The rest of the structural
elements that can be deduced from the recorded spectra differ significantly between the
two sequences. For the 40-mer, no distinctive features can be deduced in the absence
of the analyte, whereas the CD spectrum of the 71-mer indicates that it adopts a parallel
G-quadruplex. Incubation with OTC results in the adoption of the most thermodynamically
favorable structure, which is different for the two sequences under examination. As far as
the 40-mer is concerned, the increase at ca. 230–240 nm, the decrease at ca. 250 nm–270 nm
and the increase at ca. 290 nm (as indicated by the red arrows) observed in the presence
of increasing concentrations of OTC is indicative of the analyte-induced formation of an
antiparallel G-quadruplex. In the case of the 71-mer, increasing OTC concentrations result
in a shift in the minimum peak from ca. 240 nm to ca. 250 nm, coupled with a decrease
in the maxima at ca. 270 nm and the appearance of a peak at ca. 290 nm. Once again,
and as was the case for the 40-mer, the shifts in the spectra observed for the 71-mer are
analyte-induced and most probably testify to the folding of the aptamer into a hybrid G
quadruplex or a mixture of hybrid and antiparallel quadruplexes. For practical purposes,
and since both sequences show binding to the analyte, the shorter 40-mer sequence was
selected in all subsequent experiments.

Subsequently, the effect of different cations (K+, Mg2+, Ca2+ or combinations thereof)
on the aptamer structures, as well as on the target-induced conformational changes, was
examined in different media, as seen in Figure 2. The CD spectra of the 40-mer aptamer
recorded in the absence of the analyte revealed that they conform to the same structure,
irrespective of the ionic composition or strength of the buffer, which also holds true for
the buffering media employed, while in the complete absence of ions (i.e., in pure H2O),
different conformation was observed. In other words, the aptamer folds into its respective
structure simply in the presence of monovalent cations, while divalent cations do not signif-
icantly influence this structure, which is not the case with other G-quadruplex conforming
aptamers, whereby the presence of divalent cations is of paramount importance for their
folding [21,39]. Nonetheless, when the buffer used during the SELEX process is employed,
and therefore the aptamer is in the presence of both monovalent (Na+ and K+) as well as
divalent cations (Mg2+ and Ca2+), the CD spectra recorded show similar shifts to those
induced by the analyte itself, unlike in pure H2O. This is why the binding buffer was
employed in all subsequent experiments.
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3.1.1. Thermal Denaturation Study

Thermal denaturation or DNA melting of the 40-mer on its own, as well as in complex
with OTC, was performed to establish whether the analyte has a stabilizing effect on the
aptamer. Raising the temperature by 2 ◦C increments results in gradual breakage of the
hydrogen bonds and the hydrophobic stacking between the bases; both are responsible
for maintaining the 3D conformation of the aptamer. Above a certain temperature, the
native conformation of the aptamer is lost completely, and the oligonucleotide exists as a
random coil. This point will depend on the stability of the oligonucleotide sequence based
on the number and strength of interactions between its bases and will be affected by the
new bonds that form between the aptamer and its analyte [40,41].

Heat denaturation of the aptamer resulted in small changes in the recorded CD spec-
trum, reaffirming the lack of prominent structural motifs in the 40-mer in the absence of
its analyte. The decrease in the peaks at ca. 220 and 250 nm, as well as the disappearance
of minima at ca. 205 nm, are indicative of the stacking between the bases and the accom-
panying increased helicity (Figure 3a). As 40 µM OTC is introduced (Figure 3b) at low
temperature, the positive peak at 280 nm shifts to 295 nm, and a negative peak appears
around 260 nm, indicating binding of the aptamer to its target. However, as the tempera-
ture increases, the two peaks are diminishing in intensity, indicating decreased binding.
For the determination of Tm, we identified two wavelengths, where the CD absorbance
changes the most during denaturation, 250 nm for the native aptamer and 270 nm for the
aptamer–target complex. The CD changes were then normalized and plotted together as a
function of the temperature (Figure 4). From the curves, the melting temperatures could be
obtained. The Tm of 41 ◦C for the native aptamer increased to 80 ◦C upon binding with
OTC. This convincingly shows the structure-stabilizing effect of target binding.
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3.1.2. Effect of pH

The effect of pH on DNA conformation has been primarily investigated for nanoswitches,
as well as in drug-delivery and pH sensor applications, focusing on its effect on distinctive
structures such as the cytosine-rich i-motif and G-quadruplexes [42–46]. However, it has
rarely been investigated with regards to surface-confined aptamers and aptasensors, even
though the pH can greatly affect the DNA conformation through the charge incurred on
DNA bases and on the target itself [47–49].

To investigate the effect of pH on the OTC aptamer, CD spectra were acquired in the
pH range of 3.1–9.1, using Tris buffer for the alkaline pH range (7.1–9.1) and SSC buffer for
the acidic range (3.1–6.6). K+, Mg2+ and Ca2+ ions were used in the same concentrations as
in the Tris binding buffer.

The pH-dependent target-induced changes in the alkaline pH range can be evaluated
from the CD spectra shown in Figure 5a,c. While the conformation of the native aptamer is
the same at all five adjusted pH values, the binding of OTC facilitates different structural
changes. Up to 8.1 pH, the characteristic peaks of the antiparallel G-quadruplex are
discernible, but in the more alkaline solutions, positive peaks around 250 nm and 280 nm
appear. We hypothesize that the deprotonation of the guanine bases’ N1 nitrogen prevents
quadruplex formation, considering that this hydrogen is involved in half of the hydrogen
bonds in the G-quadruplex structure [50]. However, since no previous work has been
conducted regarding this, further investigations are needed to confirm our theory.

In the acidic pH range (Figure 5b,d), however, the unbound aptamer shows different
behavior. When the pH is below 4.6, a negative peak at 240 nm and a positive peak at
260 nm appears, and the positive peak at 290 nm increases in intensity. According to the
literature, this is due to the protonation of cytosine bases [51]. This structure, contrary
to observations in alkaline conditions, seems to be undisturbed by the OTC interaction,
i.e., the deviations from the CD spectra of the OTC-bound aptamer at pHs higher than 4.1
at the wavelengths of 240 nm, 260 nm and 290 nm remain the same. While the CD spectra
of the native aptamer in the acidic pH resemble hybrid G-quadruplex conformation, the
fact that the pH-induced structure is unaffected by the OTC addition suggests that this
structure is most likely in a different part of the DNA strand than the sequence responsible
for OTC binding.
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In Figure 6, the characteristic concentration-dependent target-induced conformational
changes can be seen throughout the investigated pH range. The pH of the binding buffer
affects the native conformation of the aptamer, as well as the aptamer-target interaction.
The buffer type also seems to affect the CD spectra, most noticeably the intensity of the
negative peak at 205 nm is greater in the case of Tris buffer compared to the SSC buffer.
Since at neutral and acidic pH the sensitivity of the aptamer and the nature of the binding
are unchanged, the charge of OTC can only have a relevant effect above pH 8.6.
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3.2. Induced Structural Changes in Surface-Immobilized Aptamer

The behavior of the surface-bound aptamer in response to different pH and OTC
concentrations was investigated using QCM with dissipation monitoring. We followed the
frequency and dissipation change in the QCR on the third overtone, considering that the
planar crystal sometimes behaves irregularly in the fundamental mode [22]. We assign the
initial frequency shift to the hydration of modified QCR surface.

3.2.1. pH-Induced Responses of the Aptamer

First, we investigated the pH-induced conformational change of the surface-bound
aptamer, where the thiolated 40-mer aptamer was deposited on the gold surface of the
QCR and SSC buffer of pH 6.6 and pH 3.6 were exchanged over it, repeatedly. In Figure 7,
it is shown that the dissipation decreases as the pH is lowered, which corresponds to the
aptamer layer becoming more compact. Cytosine-rich sequences form a dense quadruplex
structure called an i-motif in acidic pH due to the deprotonation of the bases. The formation
of such a conformation explains both the CD (Figure 5b) and the QCM results. Supporting
QCM results are already published regarding i-motif formation [52]. The frequency of the
crystal during this measurement did not change due to differences in pH.
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3.2.2. Target-Induced Responses of the Aptamer
Non-Specific OTC Adsorption on Gold and L-Cysteine-Based Antifouling Layer

Non-specific binding of OTC to clean gold QCR surfaces was observed upon switching
from buffers to different pH OTC solutions (Figure 8). This interaction is pH-dependent,
since at pH 9.1, a greater amount of OTC adsorbs onto the surface, than at pH 7.1. This is
probably due to the charge state of the OTC molecule, being mostly neutral in a zwitterionic
state at 7.1 and negatively charged at 9.1.
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This target adsorption on gold is undesired when investigating aptamer-OTC binding;
therefore, we deposited an L-cysteine antifouling layer on the gold after aptamer immo-
bilization to prevent it [53,54]. This amino acid is zwitterionic in neutral pH, while at pH
9.1, the amine group becomes deprotonated (pK ≈ 8.2), resulting in a negatively charged
surface layer, which repels the similarly negative OTC molecules. The antifouling layer
succeeded in hindering the OTC adsorption at both investigated pH values (Figure 9); here,
a slight baseline shift was observed. On the other hand, the increase in pH affected the
L-cysteine layer and resulted in a dissipation decrease and a frequency increase on the
QCR, which is due to the different hydration levels of the deposited layer, facilitated by the
deprotonation of the amine group.
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OTC-Aptamer Binding, the Effect of Surface Density and pH

The CD spectra showed that the conformational change induced by OTC titration was
not affected by the pH in the acidic pH range, unlike in the alkaline range (Figure 4). Due
to this, the effect of target binding on the surface-bound aptamers was only investigated in
the pH range of 7.1–9.1.

The gold surfaces of the QCRs were modified with high and low aptamer concen-
trations and L-cysteine resulting in high- and low-coverage aptamer layers. These were
subjected to increasing concentrations of OTC solutions, whereupon frequency changes in-
dicative of aptamer-OTC interaction were observed. The addition of 20 µM OTC resulted in
only a slight decrease at the low aptamer density surface at pH = 9.1 (Figure 10), which did
not decrease further after increasing the concentration twofold, indicating that the aptamers
are already saturated in the presence of 20 µM OTC. In the case of the high-aptamer-density
surface (Figure 11), a larger frequency decrease was observed after the interaction with
20 µM OTC than with the low-density surface. This was followed by a further, proportion-
ally larger decrease, when the 40 µM solution was introduced. These findings support the
notion of preparing optimal aptamer surface densities for sensor applications [25,26,55].
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Both on the low- and high-aptamer-coverage surfaces, the dissipation drops when
the pH of the solutions is changed from 7.1 to 9.1. This change can be linked to the
L-cysteine-based antifouling layer. The back and forth switching between pH conditions
had little effect on the frequency baseline.

4. Conclusions

In this work, a comparative investigation of the pH- and target-dependent structural
characteristics of an antibiotic-binding aptamer in dissolved and surface-bound form was
presented. By using circular dichroism spectroscopy, the native and the antibiotic-bound
conformation of the oxytetracycline aptamer was determined in solution: the aptamer
assumes a random coil by itself, and the presence of oxytetracycline induces antiparallel
G-quadruplex formation. Denaturation experiments further confirmed the loosely struc-
tured nature of the native aptamer and the high affinity and strong stabilizing effect of
the target molecule. A significant effect of pH on the structure of the aptamer and the
oxytetracycline–aptamer complex was observed. Protonation of DNA bases resulted in the
formation of a more compact native aptamer structure in acidic buffers compared to the
loosely ordered structure in neutral and alkaline solutions. Moreover, the interaction of
the aptamer with the oxytetracycline target was affected in alkaline solutions: the deproto-
nation of bases prevented the guanine quadruplex’s formation. These phenomena were
also demonstrated on the surface-immobilized aptamer via quartz crystal microbalance
measurements. The frequency alteration of the resonator was attributed to aptamer –target
binding, while decreases in dissipation could be related to the development of a compact
aptamer structure. A pH-dependent oxytetracycline adsorption to the clean gold surface
was also observed, which could be hindered by the deposition of an L-cysteine adlayer.
While L-cysteine serves well as an antifouling agent, it imparts an additional pH sensitivity
to the surface due to its zwitterionic nature. This study highlights the importance of com-
prehensive investigations on the structural changes in aptamers during the development
process of effective aptasensors.
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