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Abstract: Cholecystokinin (CCK) can make the human body feel full and has neurotrophic and
anti-inflammatory effects. It is beneficial in treating obesity, Parkinson’s disease, pancreatic cancer,
and cholangiocarcinoma. Traditional biological experiments are costly and time-consuming when
it comes to finding and identifying novel CCK-secretory peptides, and there is an urgent need to
develop a new computational method to predict new CCK-secretory peptides. This study combines
the transfer learning method with the SMILES enumeration data augmentation strategy to solve the
data scarcity problem. It establishes a fusion model of the hierarchical attention network (HAN)
and bidirectional long short-term memory (BiLSTM), which fully extracts peptide chain features to
predict CCK-secretory peptides efficiently. The average accuracy of the proposed method in this
study is 95.99%, with an AUC of 98.07%. The experimental results show that the proposed method
is significantly superior to other comparative methods in accuracy and robustness. Therefore, this
method is expected to be applied to the preliminary screening of CCK-secretory peptides.

Keywords: cholecystokinin; CCK-secretory peptides; transfer learning; SMILES enumeration; hierarchical
attention network; BiLSTM

1. Introduction

Cholecystokinin (CCK) is a gastrointestinal hormone that causes gallbladder con-
traction and was discovered and named by Ivy and Oldbery in 1928. CCK is a peptide
hormone comprising 33 amino acids, released by the small intestinal mucosa I cell. CCK
plays various roles in the organism, such as producing satiety to inhibit food intake,
slowing gastric emptying, and stimulating pancreatic and gallbladder secretion produc-
tion [1–4]. Cholecystokinin-8 and nerve growth factor (NGF) work together to maintain
and repair the nervous system [5]. Su et al. [6] found that CCK has neurotrophic and
anti-inflammatory effects and improves adverse effects, such as the inflammatory re-
sponse and neuronal damage, in Parkinson’s disease patients. Numerous experiments
have confirmed that CCK is a vital tumor growth factor in the digestive tract and has
an apparent promoting effect on pancreatic and bile duct cancer [7,8]. In recent years,
therapeutic peptides have emerged as an advanced and novel cancer treatment strategy
that can treat many diseases [9–11]. Compared with traditional recombinant antibody
therapies, peptide-based therapies are highly targeted, productive, less toxic, and easy to
synthesize and modify [12]. CCK as a therapeutic peptide will also offer broad research
prospects. CCK-secretory peptides can target the intestinal endocrine cell membrane
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CaSR to activate the Gq signalling pathway, promoting the secretion of CCK by the
intestinal endocrine cells. High-quality CCK-secretory peptides have the advantages of
safety, no toxic side effects, gastrointestinal digestive enzyme hydrolysis tolerance, and
easy absorption. CCK-secretory peptides are suitable for developing food and drugs as
functional ingredients or food base materials. The prediction of CCK-secretory peptides
has a significant application value in developing foods, health foods, and drugs with
functions such as delaying gastric emptying, promoting satiety, and weight loss.

In recent decades, biological researchers have conducted numerous experiments to
study the substances that stimulate CCK secretion. It has been demonstrated that the pri-
mary nutrients stimulating CCK release are ingested fats and proteins, especially amino
acids, peptides, and protein hydrolysates [13]. Daly Kristian et al. [14] demonstrated
that Phe, Leu, and Glu induce CCK secretion via small-intestinal tissue experiments in
mice. In pig jejunal tissue experiments, Leu, Ile, or a mixture of amino acids significantly
increased CCK secretion [15]. Santos-Hernández et al. [16] found that VLLPDEVSGL and
a derivative fragment, VLLPD, induced CCK release in gastrointestinal egg-white diges-
tion. The above experiments require a high amount of time from biological researchers,
with the help of numerous devices, to speculate whether peptides or amino acids have a
facilitative effect on CCK. These tasks are tedious, labor-intensive, and costly.

With the increasing therapeutic importance of CCK, there is an urgent need to
develop efficient, accurate, and cost-effective predictive techniques for CCK-secretory
peptides. The issues above have prompted us to propose a method to address the limita-
tions of biological clinical experiments. Nowadays, numerous in silico techniques have
been applied in various fields. Mol2vec [17] has been utilized in the field of chemistry to
identify the vector representations of molecular substructures. Similarly, Jo et al. [18]
employed message-passing neural networks for predicting SMILES chemical properties.
In natural language processing (NLP), the word2vec [19] method has also been applied
to the semantic search of relevant documents. Sunjaya et al. [20] used ARIMA and long
short-term memory (LSTM) methods to predict the number of positive COVID-19 cases
in Indonesia, and the results showed that the LSTM model outperformed the ARIMA
model. Han et al. [21] proposed an LSTM model that combines input and hidden layer
attention mechanisms for long-term streamflow prediction in the environmental domain.
Liu et al. [22] introduced the MolRoPE–BERT framework, which integrates an effective
position-encoding method for capturing sequence position information and a pre-trained
BERT model for molecular property prediction. However, these in silico techniques still
face challenges, as they require a large number of training data and may struggle to
achieve a good prediction performance on small-scale datasets.

This paper describes a method to predict CCK-secretory peptides with high accuracy.
The sequences of peptides associated with CCK secretion are efficiently characterized
as SMILESs, and data augmentation is achieved via SMILES enumeration. Based on
this, a BiLSTM model based on transfer learning and hierarchical attention networks
was developed to predict CCK-secretory peptides. In the training phase, a two-stage
transfer learning strategy was adopted to train the model, to prevent overfitting. The
data augmentation and transfer learning strategy solves the problem of the scarcity
of CCK-secretory peptide data, while improving the performance and generality of
the model. The model has a more significant performance and accuracy compared
with machine learning models based on the AAC and DPC representations and similar
transfer learning models. Therefore, the proposed method is expected to be applied in
the initial screening of CCK-secretory peptides. Molecular docking [23,24] helps us to
understand the interactions between molecules, and the combination of the proposed
method and molecular docking is conducive to developing CCK-secretory peptide foods
and drugs.
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2. Materials and Methods
2.1. Construction of Datasets

In this work, two datasets were used to construct the model, named as the source
dataset and target dataset. The details of the datasets are shown in Table 1.

Table 1. Details of the source dataset and target dataset used in this study.

Dataset Name Total Positive Negative

Source dataset
DILI 467 235 232

Pgb-sub 1185 586 599
SR-MMP 1840 892 948

Target dataset CCK 99 54 45

Positive samples are denoted by C+, and negative samples are denoted by C−. There-
fore, the whole dataset can be denoted as C.

C = C+ ∪ C−, (1)

In addition, there is no overlap between the positive and negative dataset.

∅ = C+ ∩ C−, (2)

Source dataset: To train a source task prediction model, four high-quality absorption,
distribution, metabolism, excretion, and toxicity (ADMET) datasets were collected from
ADMETlab [25,26]. The source datasets contain pgb-sub, DILI, and SR-MMP, which have
some similarities to the target dataset, in that they are all drug-related datasets. The CCK-
secretory peptides can also be used in targeted therapy peptide drug development. The
datasets with partial similarity are conducive to the transfer of transfer learning model
knowledge. And these datasets have different sizes, ranging from 467 to 1840, which can
better explore the differences between datasets.

Target dataset: This dataset contains 99 data obtained from 37 papers investigating
CCK-secretory peptide activity. Among them, the number of samples with effective pep-
tides was 54, and the number of samples with ineffective peptides was 45. The sample
distribution in the dataset is relatively balanced, which can prevent the overfitting of the
model caused by an unbalanced dataset, to some extent.

Each dataset is randomly divided into training and testing datasets, using a hierar-
chical strategy, with ratios of 0.8 and 0.2, respectively. Therefore, the sample distribution
in the training and test datasets is the same for an original dataset. All experiments were
repeated five times, using different random seeds, to minimize the impact of the sample
distribution on the model performance. The model was trained on the training dataset, and
the parameter selection was adjusted to achieve a better model performance. The average
of the five repeated experiments on the test dataset was calculated as the final model
performance. The proposed model and comparison method were evaluated according to
sensitivity (Sen), specificity (Spe), accuracy (Acc), Matthews correlation coefficient (MCC),
and the area under the curve (AUC).

2.2. Feature Representation of Peptides

Efficient feature representation is essential for constructing predictive models and,
therefore, requires the generation of corresponding features for each peptide sequence.
The feature representation method has an important impact on the performance of the
prediction model. This study used three different features to develop models based on
machine learning and deep learning techniques. The machine learning model uses the cur-
rently popular machine learning peptide representation, including amino acid composition
and dipeptide composition. The deep learning model uses a SMILES to characterize the
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sequence of the peptide. Below is a brief description of the different feature representation
methods and principles.

2.2.1. Amino Acid Composition

Characterizing amino acids or protein sequences as AAC is one of the simplest meth-
ods available for feature extraction. The AAC descriptor represents the frequency of
standard amino acids occurring in protein sequences [27]. As all peptides are composed of
20 standard amino acids, the AAC can be expressed as a vector of dimension 20, and we
calculate the AAC as follows.

AAC(i) =
aa(i)

L
, (3)

where AAC(i) is the abundance of the ith amino acid, aa(i) is the number of occurrences of
the ith amino acid, and L is the length of the peptide.

2.2.2. Dipeptide Composition

Dipeptide composition (DPC) can express more information than AAC and represent
the local order of amino acid sequence pairs [28]. We calculated all possible dipeptides (i.e.,
amino acid sequence pairs, e.g., AA, AC, etc.) with a dimension 400 (20 × 20) vector, to
represent the DPC. The DPC is calculated as follows.

DPC(i) =
dp(i)
L− 1

, (4)

where DPC(i) is the frequency of occurrence of the ith dipeptide, dp(i) is the number of
circumstances of the ith dipeptide, and L is the length of the peptide.

2.2.3. Simplified Molecular Input Line Entry System

The Simplified Molecular Input Line Entry System (SMILES) is a chemical notation
system for modern chemical information processing [29]. The SMILES is based on the
principles of molecular graph theory and allows for a strict structural specification, by using
a minimal and natural syntax. The SMILES naming rules are simple and easy to understand
for researchers, and the system is considered to be the best compromise between human
and machine chemical notation to date. Computationally, the SMILES interprets chemical
molecules speedily and compactly, thus meeting machine time and space-saving goals. The
SMILES is based on a computer-language-parsing approach, and our conversion of peptide
sequences to the SMILES will significantly improve the data processing efficiency.

2.3. Data Augmentation

Deep learning has developed rapidly in recent years, and the computational power
has increased greatly. However, deep learning usually requires a large number of samples
for training, to achieve better generalization. Data augmentation is a good idea to solve
this problem. Data augmentation refers to the method of increasing the number of data
by adding small changes to the existing data, or creating new synthetic data from the
existing data. This strategy solves the data imbalance problem, while expanding the
dataset, improves the performance and generalization of the model, and prevents the
model from overfitting, to some extent [30].

This study used SMILES enumeration for data augmentation. SMILES enumeration
uses a Python script to generate multiple SMILESs, by changing the order of atoms using the
cheminformatics library RDKit, wherein different atom orders lead to different SMILESs,
thus achieving data augmentation [31]. An example of the use of a SMILES for data
augmentation is shown in Figure 1.

2.4. Machine Learning Models

To demonstrate the predictive power of a hierarchy-attention-network-based BiLSTM
deep learning model for CCK-secretory peptides, we built some classical machine learning
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models for comparison. Specifically, in this study, we characterized the peptide sequences
as AAC and DPC forms, respectively, and then built machine learning classifiers based on
the AAC and DPC representations using SVM light and scikit-learn from the Python library,
respectively, including support vector machines (SVM), random forest (RF), multilayer
perceptron (MLP), k-nearest neighbor (KNN), gradient-boosting decision tree (GBDT), and
extreme gradient boosting (XGBoost). The relevant parameters of different classifiers were
adjusted in the modeling process, and the best parameters are reported.
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2.5. Transfer Learning Models

The transfer learning model used in this work is a bidirectional long and short-term
memory network model based on a hierarchical attention network. SMILESs encoded after
data enhancement are fed into this model. A BiLSTM is used to aggregate the information
and extract the best features, through a new hierarchical attention network. Following are
brief descriptions of each part of the model.

2.5.1. Bidirectional Long and Short-Term Memory

The bidirectional long and short-term memory network comprises forward long and
short-term networks and backwards long and short-term networks. BiLSTM and LSTM are
variants of RNN. Researchers solved the problems of RNN gradient explosion and the poor
ability to rely on information over long distances by adding gating mechanisms (forget
gate, input gate, output gate) to preserve information long term, thus proposing LSTM [32].
The sequences of peptides are input to two LSTMs of BiLSTM in forward and reverse order,
respectively, for feature extraction, and the word vector formed via the stitching of the two
output vectors (i.e., the extracted feature vectors) is used as the final feature expression of
the word. The model design concept of BiLSTM is to make the feature data obtained at
the time t have the information between the past and future simultaneously. It is worth
mentioning that the two LSTM neural network parameters in BiLSTM are independent,
and they only share the word-embedding word vector list. The structure of BiLSTM is
shown schematically in Figure 2.

The LSTM model can better capture the longer-distance dependencies. This is because
LSTM uses a gating mechanism to determine which information should be remembered
and which should be forgotten. However, modelling sentences with LSTM also has a
problem: it cannot encode information from back to front. In this study, we used BiLSTM
to aggregate the sequence information of peptides. BiLSTM allows for the better capture of
bidirectional textual semantic dependencies.
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2.5.2. Hierarchical Attention Network Mechanism

The attentional mechanism mimics the internal processes of biological observation
behavior and is a mechanism that combines internal experience with external sensation, to
improve the precision of observation in certain regions [33]. This mechanism provides a
higher scalability and robustness, by focusing on important information based on the size
of the weights, and continuously adjusting the weights so that important information can
be selected, even under different circumstances. In this study, the hierarchical attention
network mechanism is used to focus on more critical features gradually.

The hierarchical attention network (HAN) consists of several components: a word
sequence encoder, word-level attention layer, sentence encoder, and sentence-level attention
layer [34]. The embedding word layer first transforms the input text into vector form. The
BiLSTM layer extracts the text features, the global information of the text is obtained using
the self-attention layer and, finally, the fusion and pooling are performed by the fusion
and pooling layers. Finally, the fusion and pooling layers are used to fuse and pool the
text. After the splicing layer, the fully connected layer, and the SoftMax, the implication
relationship in the text is obtained, to achieve the classification of the text. The attention
layer is calculated as follows:

upi = tanh(WW hpi + bw), (5)

αpi =
exp(uT

Pi
uw)

∑i exp(uT
Pi

uw)
, (6)

VP = ∑i αpi hpi , (7)

where Ww and bw are the adjustable weights and bias terms of the attention model, tanh is
the activation function, hp i is the output of the BiLSTM layer, uw is the weight value, and
the calculated result αpi indicates the important information of each word in the sentence;
VP is the output vector of the text after the attention model calculation. Similarly, the
output vector Vh of the hypothetical text after the attention model calculation can also
be calculated.

2.5.3. Design of Transfer Learning Models

Transfer learning is an approach to improving a learner by transferring information
from one domain to a related domain, which can reduce training costs and overcome the
problems of data scarcity and time-consuming training [35]. Transfer learning can be simply
defined as: given a source domain Ds, a learning task Ts, and corresponding target domains
Dt and Tt, the effect of improving the target prediction function ft(·) in Dt by the learning
knowledge already available in Ds and Ts.
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The transfer learning method used in this study is parametric transfer, and the transfer
learning model is built in two phases using this method. In the first phase, the source
dataset is fed into the model for source task pre-training and prediction. In the second
stage, the model parameters learned from the source domain are migrated to the target
dataset, and the parameters are adjusted slightlym to make the model applicable to the
target task. The transfer learning process in this study is shown in Figure 3.
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2.6. Our Approach

The framework of our proposed method is shown in Figure 4. The amino acid and
peptide sequences are randomly divided into training and test sets, in a 4:1 ratio. All
peptide sequences are represented as SMILESs, and the target dataset is augmented via
the implementation of a SMILES enumeration strategy. The SMILESs were then encoded,
and the encoded features were used as the input for the transfer learning model mentioned
previously. A BiLSTM prediction model, based on transfer learning and the hierarchical
attention network mechanism, is used to accomplish the target task, which is named by us
as TL-AHB.
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Specifically, the target dataset was preprocessed using the SMILES enumeration tech-
nique, and the model was pre-trained on the source dataset using transfer learning. We
solved the scarcity problem in the training data, while significantly improving the per-
formance and accuracy of the model. Considering the large number of SMILESs of large
length in the dataset, BiLSTM can better capture the textual semantic dependencies in
both directions over longer distances. The hierarchical attention network, which progres-
sively extracts features with higher weights, provides the most critical features for the
model. Thus, the TL-AHB model combines the advantages of BiLSTM and HAN, which is
important in improving the model’s performance. The use of transfer learning and data
augmentation strategies allows us to obtain models with good predictive and generalization
capabilities compared to traditional methods.

2.7. Performance Evaluation Metrics

This study investigates a prediction problem of CCK-secretory peptides, and this
problem can be considered a binary classification problem. Therefore, five metrics widely
used in binary classification tasks were used to evaluate the performance of the model,
including the sensitivity (Sen), specificity (Spe), accuracy (Acc), Matthews correlation
coefficient (MCC), and area under the curve (AUC). Each metric was calculated as follows:

Sen =
TP

TP + FN
, (8)

Spe =
TN

TN + FP
, (9)

Acc =
TP + TN

TP + FP + TN + FN
, (10)

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (11)

where TP represents the true positive number, TN represents the true negative number, FP
represents the false positive number, and FN represents the false negative number. Sen,
Spe, and Acc take values in the range (0, 1), and MCC takes values in the range (−1, 1).
Sen and Spe measure the predictive ability of the classification predictor for positivity and
negativity, respectively, and Acc and MCC are used to assess the overall performance of
the predictor. ROC curves were plotted based on the false-positive and false-negative rates,
and AUC was the area under the ROC curve.

3. Results and Discussion

To comprehensively evaluate the ability of our proposed method to predict CCK-
secretory peptides, firstly, the amino acids of peptides were analyzed, and machine learning
models based on AAC and DPC representations were built on the target dataset. Then,
the performance of our proposed method was analyzed on the source and target tasks,
respectively. Finally, some CCK-secretory peptide sequences with high similarity were
used to verify the model’s predictive ability.

3.1. Compositional Analysis

Amino acid composition analysis is critical, because the two-terminal residues play
a key role in the biological study of peptides. Firstly, the amino acid distributions in the
active, the inactive, and all peptides need to be analyzed in the target dataset. The results
of the analysis are shown in Figure 5, where the compositions of all 20 amino acids in
the peptides associated with CCK secretion are compared and counted. Specific residues,
including Glu, Phe, and Arg, were higher in the effective peptides than in the ineffective
ones. In contrast, Ala, Gly, Leu, and Pro were higher in the ineffective peptides.
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3.2. Analysis of Machine Learning Model Based on AAC and DPC Representations

Some peptide sequences are long, and their arrangement is complex, making it im-
practical to use the sequence directly for prediction; as commonly used characterization
methods for peptide sequence prediction, AAC and DPC can simplify sequences, extract
different features to replace complex sequences, and achieve interval prediction. Both
have advantages in characterizing peptide sequences, and AAC features can represent
a sequence with fewer feature dimensions and more straightforward calculations. On
the other hand, dipeptide features contain the positional information of amino acids in
protein sequences, making them more accurate in characterizing sequence information.
We established machine learning models on the target dataset using six classic algorithms
(SVM, RF, MLP, KNN, GBDT, XGBoost) to study the performance of different models, based
on two representation methods. Each model has been adjusted and tested on the optimal
parameters. These models were evaluated on the test set, and the experimental results are
shown in Tables 2 and 3.

Table 2. Performance comparison with different machine learning models developed based on AAC.

Model Sen (%) Spe (%) Acc (%) MCC (%) AUC (%)

SVM 61.54 71.43 66.67 33.15 66.48
RF 76.92 64.29 70.37 41.44 70.60

MLP 69.23 57.14 62.96 19.56 59.62
KNN 61.54 50.00 55.56 11.60 55.77
GBDT 84.62 85.71 85.19 70.33 85.16

XGBoost 76.92 71.43 74.07 48.35 74.18
Sen: sensitivity, Spe: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUC: the area under the
receiver operating characteristic curve.

Table 3. Performance comparison with different machine learning models developed based on DPC.

Model Sen (%) Spe (%) Acc (%) MCC (%) AUC (%)

SVM 61.54 18.18 57.14 30.93 59.09
RF 80.00 27.27 52.38 8.53 53.64

MLP 60.00 36.36 47.62 3.74 48.18
KNN 60.00 27.27 42.86 13.48 43.64
GBDT 90.00 9.09 47.62 1.55 49.55

XGBoost 40.00 72.73 57.14 13.48 56.36
Sen: sensitivity, Spe: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUC: the area under the
receiver operating characteristic curve.
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Tables 2 and 3 show the details of the performance comparison of the machine learning
models based on AAC and DPC, respectively. It can be observed that the best performance
is achieved using the GBDT algorithm, with 84.62% for Sen, 85.71% for Spe, 85.19% for
Acc, 70.33% for MCC, and 85.16% for AUC in the machine learning prediction model with
the AAC representation approach. In the machine learning prediction model with the
DPC representation approach, the SVM algorithm model showed the best performance,
but Acc was only 57.14%, and AUC was 59.09%. It is obvious that the performance
of the machine learning prediction model based on the AAC representation approach
is better than that of the prediction model based on the DPC representation approach,
overall. Both representation methods have their limitations. The AAC feature disregards
the positional information of the amino acids in the sequence, while the DPC feature
has a higher dimensionality, making the calculations relatively complex. Due to data
scarcity, both methods show a poor performance. Although the former has shown a better
prediction ability, the model still has huge room for improvement when applied to predict
CCK-secretory peptides. This also motivates the creation of our proposed method.

3.3. SMILES Augmentation Times on Model Impact Analysis

The SMILES of one molecule may obtain tens or even hundreds of different SMILES
expressions via data augmentation, and the amount of data has a great impact on the
model performance, so we analyzed the relationship between the number of SMILES
augmentations and the model performance. The impact of different augmentation times (1,
5, 10, 20, 30, 40, and 50) on the model performance was evaluated on the source dataset
using pgb-sub as an example. As shown in Figure 6, the AUC of the model is only about 81%
when no data augmentation is applied to the SMILES. As the augmentation times increase,
the AUC also increases, and the trend of performance improvement eventually levels off. In
order to consider the performance and training time of the model, an optimal augmentation
threshold needs to be determined for the SMILES. According to the results shown in
Figure 6, the model levelled off at an augmentation time of 30, so the augmentation time of
the SMILES was set to 30.
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3.4. Analysis of Prediction Results of Source Tasks on Different Models

Then, we built four deep learning pre-trained models on the source dataset and used
them for the prediction analysis of three datasets, DILI, pgb-sub, and SR-MMP. These four
deep learning pre-trained models include HL, AHL, HB, and AHB. This set of experiments
demonstrates the predictive power of the BiLSTM model based on SMILES representation
and hierarchical attention network, where A denotes data enhancement using SMILES
enumeration, and H denotes the use of the hierarchical attention network mechanism.
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The evaluation results of the source dataset on different pre-trained models are shown in
Table 4.

Table 4. Performance of pre-training models on different source datasets.

Dataset Model Sen (%) Spe (%) Acc (%) MCC (%) AUC (%)

DILI

HL 77.33 84.80 80.46 60.47 85.84
AHL 78.28 86.58 82.41 65.12 87.88
HB 78.09 85.91 81.59 61.89 86.06

AHB 85.66 81.16 83.34 67.19 90.05

pgb-sub

HL 79.37 70.01 73.92 48.80 83.17
AHL 79.99 81.20 80.65 60.02 88.16
HB 75.50 77.43 75.76 52.09 85.42

AHB 85.54 80.08 82.28 64.59 89.90

SR-MMP

HL 80.10 82.20 81.04 61.96 88.60
AHL 78.06 88.98 83.27 66.93 90.86
HB 79.38 83.49 81.70 63.18 89.47

AHB 79.77 87.97 83.81 67.66 91.13
A: using data augmentation; H: hierarchical attention network (HAN). L: LSTM. B: BiLSTM. Sen: sensitivity, Spe:
specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUC: the area under the receiver operating
characteristic curve.

As shown in Table 4, experimental control groups, with and without data augmenta-
tion, were set up in the pre-training experiments, to show the effect of SMILES enumeration
on the pre-trained models. In the three source datasets, AHL improved the AUC by 2.04%,
4.99%, and 2.26%, respectively, compared with the HL model; AHB improved the AUC by
4.00%, 4.48%, and 1.66%, respectively, compared with the HB model. The performances
of the models with data augmentation were all improved to some extent. On the other
hand, BiLSTM also played a key role in model performance improvement. AHB improved
the AUC by 2.17%, 1.74%, and 0.27% for the three datasets compared to the AHL model,
respectively. As mentioned earlier, LSTM captures information through a gating mech-
anism and can only retain unidirectional information about the sequence, and cannot
encode information from the reverse to the forward direction. BiLSTM, because of the
introduction of reverse information, can be trained in both the forward and reverse direc-
tions. Despite the higher computational complexity, BiLSTM captures bidirectional textual
semantic dependencies, learns global and local features, and can better aggregate peptide
chain information. BiLSTM can provide a better performance in datasets containing a large
number of long sequences.

3.5. Analysis of Prediction Results of Target Tasks on Different Models

After completing pre-training on the source dataset, four transfer learning models,
including TL-HL, TL-AHL, TL-HB, and TL-AHB, were obtained by combining the transfer
learning strategy and parameter fine-tuning, wherein TL denotes transfer learning. Finally,
the four transfer learning models were used in the identification of CCK-secretory peptides.
The performance evaluation of the models is shown in Table 5.

Table 5. Performance of different transfer learning models on the target dataset.

Model Sen (%) Spe (%) Acc (%) MCC (%) AUC (%)

TL-HL 74.36 82.93 80.17 55.94 83.58
TL-AHL 70.77 95.73 87.69 71.12 91.88
TL-HB 66.67 88.16 82.14 59.58 87.87

TL-AHB 90.71 98.92 95.99 91.27 98.07
TL: transfer learning. A: using data augmentation; H: hierarchical attention network (HAN). L: LSTM. B: BiLSTM.
Sen: sensitivity, Spe: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUC: the area under the
receiver operating characteristic curve.
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It is obvious that the BiLSTM model (TL-AHB) based on transfer learning and the
hierarchical attention network mechanism showed the best performance in predicting
CCK-secretory peptides. The sensitivity (Sen) was 90.97%, the specificity (Spe) was 98.92%,
the accuracy (Acc) was 95.99%, the Matthews correlation coefficient (MCC) was 91.27%
and, in particular, the area under the ROC curve reached 98.07%. Among the machine
learning models based on AAC and DPC representations, the best model is GBDT, with
Acc and AUC of 85.19% and 85.16%. TL-AHB improves Acc and AUC by 10.8% and 12.91%
compared to the former. Among the pre-training models, the best-performing model is the
AHB model on the SR-MMP dataset, with Acc and AUC of 83.81% and 91.13%, and TL-AHB
has an Acc and AUC improvement of 12.18% and 6.94% over this model. According to
the experimental results, it can be seen that TL-AHB shows a strong predictive ability and
excellent stability in predicting CCK-secretory peptides after transfer learning.

3.6. Analysis of the Prediction Performance of Similar Sequences on the Model

To investigate the model’s predictive ability for some similar CCK-secretory peptide
sequences, some similar CCK-secretory peptide sequences of known classes were selected
to validate the model. Each peptide sequence was entered into the model and predicted
50 times, and the model prediction performance is shown in Table 6. In Table 6, some
peptides exhibited completely different activities, despite their extreme sequence similarity,
with some peptides even differing by only one amino acid sequence. The average accuracy
of our proposed method on similar sequences is about 92.36%. HAN assigns different
weights to the features of peptide sequences, which helps the model to focus on the most
critical features step by step, so that the model still performs well for some sequences with
extremely high similarity. However, some samples also have a poor predictive performance,
with accuracy rates of only 86% for RYLG and 82% for RYPS, respectively. The amino acid
sequence at both ends of the peptide has an important influence on the activity, so the
activity prediction of similar sequences of CCK-secretory peptides is a difficult point in this
study, and there is still room for improvement, to overcome this difficult point in the future.

Table 6. Prediction performance of similar sequences using the model.

CCK-secretory Peptide Sequence Class Label Accuracy (%)

RYLGY [36] 1 96
SRYPS [36] 1 90

IRGCRL [36] 1 94
RYLG [36] 0 86
RYPS [36] 0 82

RGCRL [36] 0 94
LEL [37] 0 96
LLP [16] 0 96
LL [38] 0 96
IPI [38] 0 92
GPI [39] 0 94

Class label 1: effective peptides, Class label 0: ineffective peptides.

4. Conclusions

In this study, a BiLSTM model (TL-AHB) based on transfer learning and a hierarchical
attention network mechanism is proposed, for the first time, to predict CCK-secretory
peptides. The SMILES enumeration method is used to enhance the SMILES, and the
transfer learning strategy is combined to pre-train and fine-tune the model parameters. The
information on the peptide chain is fully learned, and effective and ineffective peptides are
recognized using the TL-AHB model. The experimental results demonstrate the excellent
performance and robustness of the model. Of course, some difficulties still need to be
overcome in the future. The model cannot measure the strength of the CCK-secretion-
stimulating effect of peptides, and there are still broad research prospects for this topic.
As an efficient and low-cost tool, the TL-AHB prediction model is expected to be used
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to predict and research CCK-secretory peptides. In addition, user-friendly and publicly
accessible web servers are becoming a popular trend. This study aims to help biological
researchers more easily identify CCK-secretory peptides, and we hope to provide a web
server for the prediction method proposed in this paper in the future. A robust online web
server can significantly enhance the influence of the TL-AHB model.
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