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Abstract: Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of
childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic
hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs
as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and
Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases
grouped under the general term atypical HUS represent a heterogeneous group of diseases with
similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1,
a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious
diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is
based on congenital or acquired defects of complement system. This review presents summarized
data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in
various types of infection-induced HUS. Separate links in the complement system are considered,
the damage of which during bacterial and viral infections can lead to complement hyperactivation
following by microvascular endothelial injury and development of acute renal failure.

Keywords: hemolytic uremic syndrome; complement system; thrombotic microangiopathy; eculizumab;
Escherichia coli; Shiga toxin; STEC-HUS; hemolytic anemia; thrombocytopenia; acute renal failure;
pathogenesis; endothelium

1. Introduction

Hemolytic uremic syndrome (HUS) is a form of thrombotic microangiopathy (TMA),
which is characterized by the presence of three pronounced symptoms: thrombocytopenia,
acute renal failure, and microangiopathic hemolytic anemia. This syndrome is one of
the most common causes of renal failure in children. The development of HUS is based
on a whole range of different causes that determine the course of the disease, treatment
approaches, and outcome. These may be infectious diseases, cobalamin C defects, mutations
in the gene encoding diacylglycerol kinase ε (DGKE), genes of complement system factors,
antibodies to complement factor H, organ and tissue transplantation, tumor, autoimmune
diseases, etc. The etiology of HUS lay down the basis of its classification. Initially, it
was accepted to divide all cases of HUS into two main groups: typical and atypical HUS.
Typical HUS usually includes all cases caused by infection with hemorrhagic strains of
Escherichia coli and Shigella dysenteriae. In this case, the key pathogenic factor causing the
development of HUS are the toxins produced by pathogenic bacteria. At the same time, all
cases not associated with infection with strains of E. coli and S. dysenteriae were traditionally
classified as aHUS. As data on the causes and mechanisms of HUS development have
accumulated, the classification of HUS has changed [1–3]. In 2016, an international expert
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group of clinicians and basic scientists studying HUS proposed a classification dividing all
cases of HUS into seven groups [4]:

• HUS caused by hemorrhagic Shiga toxin-producing E. coli (STEC-HUS);
• Secondary HUS (due to cancer, organ and tissue transplantation, medications, autoim-

mune disorders, malignant hypertension, and HIV infection);
• HUS associated with infections caused by the H1N1 influenza virus and S. pneumoniae;
• HUS associated with cobalamin C defect;
• HUS associated with mutations in the DGKE gene;
• HUS caused by dysregulation of the alternative complement pathway (mutations in

complement genes and antibodies to factor H);
• HUS of unknown etiology.

This classification is based on etiological features, but a deeper understanding of
the pathogenetic mechanisms of HUS is also necessary to develop rational treatment
methods. The results of recent studies indicate that the complement system is involved in
the pathogenesis of HUS in these infections. In some cases, it has been established that the
development of pathogen-induced HUS is accompanied by activation of the alternative
pathway of the complement system. On the other hand, in the case of HUS that is associated
with disturbances in the regulation of the alternative complement pathway, the question
remains open as to what events serve as a trigger for its development in these cases. The
presence of mutations in the genes of complement factors does not in itself trigger the
pathological process. Since the complement system is part of the human immune system, it
is logical to assume that infectious diseases can act as a trigger leading to a disruption of
its functioning. This is confirmed by statistical data according to which in 79% of cases, a
relapse of aHUS develops against the background of infectious diseases, mainly viral [4]. It
is important to note that the range of infectious diseases that can provoke the development
of HUS is expanding. In this review, we tried to collect information about all currently
known infectious agents that can cause HUS, and the role of the complement system in
the pathogenesis of HUS in infectious diseases. Since the complement system is in close
relationship with the blood coagulation system and the result of the development of HUS
is thrombosis, we tried to pay special attention to the interaction of these systems.

2. Complement System

The role of dysregulation of the alternative complement pathway in endothelial cell
damage and the development of TMA was first considered in 1998, when abnormalities in
the CFH gene, encoding complement factor H, were discovered in patients with HUS [5].
Normally, the complement system plays an important role in the body’s humoral de-
fenses, enabling pathogen detection and elimination [6]. The complement system consists
of more than 40 proteins, including regulatory proteins and complement receptors [7].
Complement factors are predominantly synthesized by hepatocytes and are present in
the blood plasma in an inactive form. Synthesis of complement system components can
also occur in neutrophils (C7) [8] and adipose tissue (factor D) and, to a lesser extent, in
macrophages/monocytes, endothelial cells, keratinocytes, and renal epithelial cells [9].
Data also appeared on the existence of a local complement system and the presence of
proteins and complement receptors inside immune and non-immune cells. This system
was called the complosome [10]. The functions of the complement system are extensive
and are not limited to protecting the body from pathogens, as originally thought.

Complement factors are involved in the opsonization and lysis of pathogens [11,12],
recruitment of phagocytes for their destruction [13], modulation of smooth muscle con-
traction and vascular permeability, removal of immune complexes and cellular debris [14],
angiogenesis, tissue regeneration and wound healing, provision of proliferative signals
for adaptive immune cells [15], initiation and enhancement of the adaptive immune re-
sponse [16], and neuroprotection [17,18].

Complement activation occurs through one or several pathways, which are called the
classical, lectin, or alternative pathway (Figure 1).
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Figure 1. Complement activation pathways. The CP and LP are activated via antibody–antigen
complexes or by sugar moieties on the surfaces of bacteria, respectively, whereupon C4b is surface
deposited in a complex with C2b, forming the LP/CP C3 convertase (C4bC2b). The AP is con-
stitutively activated by spontaneous thioester hydrolysis. Either the LP/CP or AP C3 convertase
(C3bBb) may result in deposition of surface C3b [B] and generation of respective C5 convertases. C5b
production triggers the assembly of the lytic membrane attack complex [A] by the addition of C6, C7,
C8, and multiple C9 molecules. C3a and C5a, the smaller fragments, are referred to as anaphylatoxins.
They mediate chemotaxis, inflammation and do not contribute to further downstream complement
activation [C]. Under physiological conditions, complement activation is tightly controlled by the
regulators of complement activation (FI, FH/FHL-1, CR1, CD59, C4BP, CD55, CI-INH).

The end result of complement activation is the formation of the membrane attack
complex, which creates pores in the cell membranes of some pathogens and infected cells,
which can lead to their death.

All components of the classical complement pathway and membrane attack complex
are designated by the letter C followed by a number. Native components have a simple
numerical designation, for example, C1 and C2. The numbering does not reflect their
place in the chain of molecular interactions during complement activation, but the order of
discovery of the complement factor. In this regard, the sequence of reactions C1, C4, C2,
C3, C5, C6, C7, C8, C9 does not look entirely logical. Activation of the complement system
is accompanied by the cleavage of native factors with the formation of complexes with
specific activities. The products of cleavage reactions are indicated by adding lowercase
letters. The larger fragment is designated by the letter b, and the smaller fragment by a.
The exception is C2; the larger active cleavage fragment has long been designated C2a.
Instead of being numbered, the components of the alternative pathway are designated by
different capital letters, for example, factor B and factor D. As with the classical pathway,
their cleavage products are designated by adding lowercase letters a and b; thus the large
fragment B is called Bb, and the small fragment Ba. Finally, in the lectin mannose binding
pathway, the first enzymes activated are the mannan-binding lectin-a-associated serine
proteases MASP-1 and MASP-2.

The classical pathway plays a role in both innate and adaptive immunity. It is ini-
tiated upon recognition of antibody–antigen complexes or surface-bound pentraxins by
complement fragment C1q. C1q is part of the C1 complex, which consists of one molecule
of C1q associated with two molecules of each of the zymogens C1r and C1s. Its binding to
the target causes a conformational change in the C1r2–C1s2 complex, which leads to the
activation of autocatalytic enzymatic activity in C1r; the active form of C1r then cleaves the
associated C1s to form an active serine protease. Once activated, C1s cleaves C4 and C2
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to produce two large fragments, C4b and C2b, which together form the classical pathway
C3 convertase (C4b2b), and two small fragments, C4a and C2a, whose functions are not
completely clear. In turn, C3 convertase, remaining on the surface of the pathogen, cleaves a
large amount of C3 to form fragments C3a and C3b [19]. Fragment C3a is an anaphylatoxin
with proinflammatory activity. The C3b fragment either covalently binds to neighboring
molecules on the surface of the pathogen, allowing recognition and phagocytosis by phago-
cytes, or binds to the C3 convertase to form the C5 convertase C4b2b3b. Unbound C3b is
inactivated by hydrolysis.

The lectin pathway is triggered by the recognition of microbial glycans by pattern
recognition receptors (PRRs). These include (1) mannose binding lectin (MBL) of the
collectin family and (2) ficolins. MBL-associated serine proteases (MASP-1 and MASP-2)
are evolutionarily related to C1r and C1s and function in a similar manner [20]. When
interacting with MBL, MASP proenzyme molecules are activated and acquire the ability to
cleave complement components C4 and C2, similarly to the C1 complex. Further reactions
of the lectin and classical pathways coincide.

The alternative pathway is associated with constant spontaneous hydrolysis of the
thioester bond in the C3 molecule. The resulting C3(H2O) molecule interacts with factor
B. The binding of factor B to C3(H2O) allows a plasma protease, called factor D, to break
down factor B into Ba and Bb. The Bb fragment remains associated with C3(H2O) to form
the C3(H2O)Bb complex. This complex is a liquid phase C3 convertase, and although
it is only produced in small quantities, it can cleave many C3 molecules into C3a and
C3b. The amplification phase begins, as a result of which the cleavage of factors B and C3
increases. The accumulating fragment of C3b, having contacted the surface of the host cell
or pathogen, is able to bind factor B, ensuring its cleavage by factor D with the formation
of the alternative pathway C3 convertase, C3bBb. C3bBb activity is stabilized by factor P or
properdin, which is found on cell surfaces with reduced sialic acid content (e.g., foreign
cell membranes). In turn, the binding of C3b to C3bBb results in the formation of the C5
convertase C3bBbC3b [19].

2.1. General Terminal Stage of Complement Activation

The terminal stage of the complement activation cascade is triggered by the formation
of C5 convertase. C5 convertases of the alternative and classical pathways act in a similar
way. They split C5 into C5b and C5a. In this case, C5a plays the role of a chemotactic and
anaphylactogenic molecule, while C5b, having contacted other complement components
fixed on the cell membrane, participates in the formation of the lytic membrane attack
complex (MAC) [21]. In addition to pore formation and cell lysis (especially Gram-negative
bacteria), the functions of MAC also include stimulatory activity in the polarization of
T-helper cells and the role of soluble MAC in platelet activation [22,23].

2.2. Complement Regulatory Mechanisms

Excessive activation and dysregulation of complement and misrecognition of cellular
debris or grafts can lead to various pathological conditions [21]. That is why restraining
regulatory mechanisms acting at different stages of the cascade reaction are necessary.
Regulatory factors can be present both in the liquid phase and on the cell surface. The
major regulators of fluid phase complement include serum C1INH, C4BP, protein S, factor
H, factor I, and anaphylatoxin inhibitor AI. Cell-associated regulators include CD55 (DAF),
CD59 (MAC-IP or Protectin), MCP (or CD46), CR1 (or CD35), and CRIg [19]. Complement
regulators act in different ways (Figure 1). For example, C1INH inactivates the C1r and
C1s proteases in the C1 complex of the classical complement pathway; CD55(DAF) causes
degradation of C4b2b and thus interrupts the formation of classical and lectin pathway C3
convertase, and CD59 prevents final assembly of the membrane attack complex [6,19].
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A major role in the inactivation of C3bBb is played by complement factor H (CFH),
a plasma glycoprotein consisting of 20 short consensus repeats (SCRs). Factor H is able
to bind C3b, thereby preventing the cleavage of C5 and factor B on cell surfaces and
inhibiting the formation of C3 and C5 convertases. In addition, factor H is a cofactor for
factor I, a regulator that mediates the proteolytic cleavage of C3b [19]. Factor H acts both
in the fluid phase and on cell surfaces by recognizing host cells directly through specific
glycosaminoglycans and sialic acid or indirectly, for example through C-reactive protein
(CRP) [24].

The proteins Vitronectin and Clusterin also take part in the regulation of terminal
MAC assembly. Vitronectin, also known as protein S, preferentially binds to C5b-7 and
interacts with C9, inhibiting its polymerization, thereby preventing the formation of a lytic
pore in the membrane of the attacked cell [25]. Clusterin specifically binds to C7, the beta
subunit of C8 and C9, also inhibiting the polymerization of C9 [26].

The complement system is also regulated by other systems, including the blood
coagulation system, which we will discuss below.

3. Interactions of the Complement System with the Blood Coagulation System

The complement system and the blood coagulation system have a common evo-
lutionary origin, which led to the presence of common activators and inhibitors and
synergy in their work, which is extremely important for the body’s fight against
pathogens [27]. The function of the blood coagulation system is not only to ensure
the integrity of the cardiovascular system, but also to localize the source of infection
if it enters the body and stimulate inflammation mediated by the complement sys-
tem. In turn, the complement system engages the blood coagulation system in the
fight against pathogens. A striking example of such interaction is the syndrome of
disseminated intravascular coagulation in sepsis. Thus, the functional relationship
between the complement system and the blood coagulation system provides protection
for the body. Dysregulation of the activity of these systems and the pathways of inter-
action between them can lead to the development of severe complications, including
complement-associated thrombotic microangiopathies.

3.1. Blood Coagulation System

The blood coagulation system is a series of sequential proteolytic reactions in response
to damage to a vessel or some other stimulus, which results in the conversion of inactive
proteins—blood clotting factors—into their corresponding proteases, which ultimately
leads to the formation of a fibrin clot. It is important to note that all protease complexes of
the blood coagulation system depend on Ca2+ ions and anionic phospholipids (aPL). One
of the key sources of aPL are platelets. In response to vascular damage, platelet activation
occurs. They bind to proteins at the site of damage and are activated and then aggregate.
In this case, a regulated transfer of aPL occurs from the inner layer of the bilayer cell
membrane to the outer one [28,29] and the release of the contents of the granules [30],
which promotes coagulation. Platelets release important hemostatic components into the
circulation including platelet activating factor, platelet factor 4 (PF4), P-selectin, adenosine
diphosphate, and polyphosphate. They produce local cell-stimulating effects, recruit and
activate neutrophils and monocytes, and may promote further availability of aPL, an impor-
tant cofactor for the assembly of all coagulation cofactor/enzyme protein complexes. There
are two ways to activate the formation of thrombin, a key factor in the blood coagulation
system that catalyzes the formation of a fibrin clot. These are the extrinsic tissue factor TF
pathway and the intrinsic contact pathway (Figure 2).
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Figure 2. The coagulation cascade and its regulators. Coagulation is initiated via the extrinsic or
intrinsic pathway. The extrinsic pathway initiates by exposure of tissue factor (FIII) and assembly of
the extrinsic tenase, leading to prothrombinase and ultimate thrombin (IIa) production. Thrombin
(IIa) is responsible for direct fibrin clot formation, further stabilized by FXIIIa. The intrinsic pathway
is initiated by FXII interacting with negatively charged surfaces, autoactivation, and via kallikrein.
Activated FXIIa activates FXI (FXIa), which activates FIX (FIXa) that binds FVIIIa, forming the
tenase complex, where the intrinsic pathway converges with the extrinsic pathway. There are many
interactions between components within this complex system. For example, thrombin can activate
FXIII, FV, and FVII. Activation of the coagulation system is finely balanced and controlled through
specific regulatory mechanisms, including activity of proteins such as antithrombin (ATIII), activated
protein C (APC), heparin cofactor II (HCII), and tissue factor pathway inhibitor (TFPI).

3.1.1. Tissue Factor Pathway

Tissue factor (TF) is a transmembrane glycoprotein that is constitutively expressed
by subendothelial cells and serves as a high-affinity receptor cofactor for FVII. When the
vessel is damaged, TF becomes available for binding to FVII. This connection ensures
autoproteolytic activation of FVII with the formation of the TF/FVIIa complex, called
external tenase [31]. As part of this complex, TF accelerates the FVIIa-mediated conversion
of the FX factor into its active form FXa by approximately 100,000 times [32]. Extrinsic
tenase TF/FVIIa can also initiate activation of FIX [33] and FVIII [34]. FIXa and FVIIIa
are a protease and its cofactor, respectively, that form the FIXa/FVIIIa complex called
intrinsic tenase. Like extrinsic tenase, intrinsic tenase catalyzes the activation of FX. Once
the concentration of FXa exceeds the threshold required to overcome the effects of circu-
lating endogenous anticoagulants such as tissue factor pathway inhibitor (TFPI) [35] and
antithrombin (AT), FXa activates its cofactor FV [36,37]. Assembly of the Ca2+-dependent
prothrombinase complex FVa/FXa on a membrane containing aPL results in the cleavage
of prothrombin to produce the potent serine protease thrombin [38]. Thrombin, in turn,
triggers the polymerization of soluble fibrinogen by proteolytic conversion into cross-linked
fibrin by thrombin-activated FXIII to produce a stable clot.

3.1.2. The Internal Contact Activation Pathway

The internal contact activation pathway is a critical link within the thromboinflam-
matory network, which is closely related to complement and coagulation. The intrinsic
pathway is mediated by circulating factor FXII. Factor FXII constitutively exhibits low
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levels of activity [39]. Upon contact with a negatively charged surface, it catalyzes its own
activation and that of plasma prekallekrein to form the plasma serine protease plasma
kallikrein (Pka). To do this, it recruits the high molecular weight kininogen HK as a cofac-
tor, which significantly accelerates the process [40]. Negatively charged surfaces for FXII
may include damaged blood vessels, pathogens, DNA, RNA [41], neutrophil extracellular
traps (NETs) [42], anionic polysaccharides, polyphosphates, activated endothelial cells, and
platelets [43,44]. When there is enough FXIIa, FXI is activated. FXIa activates the formation
of the intrinsic tenase FIXa/FVIIIa and ultimately the formation of fibrin by thrombin.

Thrombin recognizes several protein substrates at once, which contribute to its own
generation and, as a consequence, amplification of the coagulation reaction [45]. It activates
FV and FVIII and converts FXI to FXIa, the latter promoting the generation of its own
tenase activity by further activating FIX. Combined with high levels of active Fva, increased
FVIIIa/FIXa tenase activity significantly increases subsequent prothrombinase Xa/Va
assembly and thrombin generation. At the same time, thrombin, in combination with
its cofactor thrombomodulin, activates protein C. Activated protein C, associated with
protein S, cleaves factors Fva and FVIIIa, thereby preventing excessive thrombin formation.
Plasma kallikrein Pka, as part of the HK/Pka/FXIIa complex, cleaves HK to produce the
proinflammatory bradykinin (BK) [46]. One of the functions of bradykinin is to activate the
release of tissue plasminogen activator tPA from endothelial cells [47]. The formation of
a complex of tPA with plasminogen (Pg) directly on the fibrin clot causes proteolysis of
plasminogen to form the corresponding serine protease, plasmin. Plasmin breaks down
fibrin, restoring blood flow.

3.2. Synergism in the Functioning of the Complement System and the Blood Coagulation System as
a Key Factor in Thrombus Formation in HUS

As already mentioned, the complement system and the blood coagulation system
have common activators and inhibitors that coordinate their relationships and activities
(Figure 3) [27]. Thus, anaphylotoxins C3a and C5a, through their receptors, activate platelets
sensitized to C3a and C5a, changing their adhesive properties and stimulating aggregation.
As a result of platelet activation, factors contained in α-granules are released that modulate
inflammation and coagulation, including blood coagulation factors FV, FVIII and FXI,
fibrinogen, vWF, P-selectin, plasminogen Pg, TFPI, PAI-1, PAF, PF4, regulatory complement
factors C1-INH, FH, CD55, CD59, CD46, FD, etc. [27]. During platelet activation, P-selectin,
chondroitin sulfate A, and gC1q-R receptors are exposed on their surface. C1q, through
the gC1q-R receptor, on the one hand, can trigger the classical pathway of the complement
system [48]; on the other hand, it causes conformational changes in the GpIIbIIIa integrin,
which supports platelet adhesion and aggregation [49]. Exposed on the surface of activated
platelets, P-selectin binds to its ligand C3b to ensure the assembly of alternative pathway
C3 convertase, which can be enhanced by properdin [50,51].

Endothelial cells also express C3a and C5a receptors [52–54], the interaction of which
causes activation of leukocyte adhesion molecules, P-selectin, VWF, and TF [55], suppres-
sion of thrombomodulin [56], and damage to the glycocalyx [57]. In addition to endothelial
cells, C5a also triggers the expression of TF on the surface of monocytes and neutrophils and
the expression of the plasminogen activator inhibitor PAI-1 in mast cells. Normally, these
cells express tissue plasminogen activator t-PA. An increased level of PAI-1 expression com-
pared to t-PA leads to a change in the regulatory activity of mast cells from profibrinolytic
to prothrombotic [58].

MASP2 protease, either alone or as part of the activated MBL-MASP2 and L-FCN-
MASP2 complexes, is capable of stimulating fibrinogen metabolism and fibrin clot for-
mation by cleaving prothrombin to form thrombin [59]. The MASP1 protease, although
significantly lower in comparison with thrombin, has very similar activity. It cleaves the
factor XIII A chain and the fibrinogen beta chain at sites identical to thrombin, but differs
from thrombin in cleaving the fibrinogen alpha chain [60]. In addition, activated MASP1
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can stimulate endothelial cells through the PAR4 receptor, which leads to the exposure of
TF and P-selectin.
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Figure 3. Complement and coagulation crosstalk. The complement and coagulation systems have
common evolutionary origins. They exhibit several interactions that can affect activation, amplifica-
tion and regulatory functions in both systems. Anaphylatoxins C3a and C5a, through their receptors,
activate platelets sensitized to C3a and C5a, changing their adhesive properties and stimulating
aggregation. Activated platelets secret FV, FVIII and FXI, fibrinogen, vWF, P-selectin, Pg, TFPI, PAI-1,
PAF, PF4, as well as regulatory complement factors C1-INH, FH, CD55, CD59, CD46, FD, etc. Exposed
P-selectin binds to its ligand C3b to ensure the assembly of alternative pathway C3 convertase. C5a
triggers surface expression of TF by endothelial cells, monocytes, and neutrophils. Activated by C3a
and C5a, endothelial cells express vWF, which can cause platelets aggregates formation. MASP2
protease, either alone or as part of the activated MBL-MASP2 and L-FCN-MASP2 complexes, is
capable of stimulating fibrinogen metabolism and fibrin clot formation by cleaving prothrombin to
form thrombin. Combined activity of thrombin and C5 convertase yielded C5a and C5b(T). C5b(T)
forms the C5b(T)-9 complex with significantly higher lytic activity compared to C5b-9. Thrombin
may also be able to enhance the C3 convertase assembly via activation of FD or, on the other hand,
induce PAR1-mediated expression of complement decay accelerating factor (DAF), a membrane
complement inhibitor.

Finally, platelets, endothelial cells, and leukocytes are particularly sensitive to sublytic
concentrations of C5b-9 (sC5b-9). The sC5b-9 complex induces the transbilayer flip of
aPL, which is required for the activation of coagulation through the assembly of the
corresponding tenases for the terminal generation of thrombin [61,62]. In turn, blood
coagulation factors are also capable of activating the complement system at various stages.
Thrombin, especially at high concentrations, cleaves C5 to form a fragment corresponding
to anaphylatoxin C5a [63–65]. The combined activity of thrombin and C5 convertase leads
to the formation of cleavage products C5a and C5b(T). In this case, C5b(T) forms the
C5b(T)-9 complex with significantly higher lytic activity compared to C5b-9 [65], thereby
enhancing the thromboinflammatory response to damage.
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Thrombin can also enhance complement by acting through its own protease-activated
receptors (PARs) on the plasma membrane. Thus, exposure of platelets to thrombin induces
deposition of C3 and MAC [66,67]. Thrombin may also be able to indirectly enhance the
assembly of C3 convertase through activation of FD [68,69]. On the other hand, thrombin
induces PAR1-mediated expression of the complement accelerating factor DAF, a mem-
brane inhibitor of the complement system [70]. Plasmin can also act as a regulator of the
complement system.

Plasmin cleaves C3 and C5 to form anaphylatoxins C3a and C5a, but this does not lead
to the formation of convertases, which may be due to the proteolytic activity of plasmin
towards C3b and C5b [63,71,72]. Factors IXa, Xa, XIa, and PKa have been reported to cleave
C5 bypassing true convertases in a C3-independent manner [63,64,73,74]. In turn, PKa
can cleave FH and FB [75,76]. Thus, both systems are capable of amplifying each other’s
activity and, after activation, require control by appropriate inhibitory mechanisms.

One of the key regulators of coagulation is antithrombin, the primary inhibitor of
thrombin, FXa, and FIXa [77,78]. In the complement system, it inhibits MASP1 and MASP2
of the lectin pathway [79]. In turn, the complement system inhibitor C1-INH, which blocks
several proteases, including C1r and C1s [80], MASP1 and MASP2 [81], and is also able to
directly bind C3b, blocking the formation of C3 convertases, control the activation of PK in
the hemostatic system and neutralizes PKa and FXIIa activity [82], and inhibit plasmin [83].

Tissue factor pathway inhibitor (TFPI), while an endogenous extrinsic tenase in-
hibitor [35,84,85], also inhibits the lectin pathway by preventing the MASP2 protease from
cleaving factors C4 and C2 [86].

There is an evidence suggesting a potential coregulatory relationship between FH and
FXIa [87]. FXIa degrades FH [88], reducing FH binding to endothelial cells, its cofactor
activity in FI-mediated C3b inactivation, and its C3b/Bb degradation function. In turn,
FH inhibits the activation of FXI by thrombin or FXIIa. A complex of FH with FXIIa was
detected in plasma [89]. Evidence suggests that FH may promote ADAMTS13-mediated
proteolysis of ULVWF to form monomers and dimers [90–93]. In turn, smaller forms of
VWF are not only less amenable to C3b binding, but they may also act as a cofactor for C3b
inactivation by FI [94].

Another regulator of the coagulation system, thrombomodulin, stimulates the pro-
duction of CPB2 [95], which inactivates the proinflammatory mediators bradykinin, osteo-
pontin, and the critical anaphylatoxins C3a and C5a [96]. Thrombomodulin also enhances
FI-mediated inactivation of C3b in the presence of FH or C4b-binding protein [97–99].

Summarizing the above data, we can say that the biochemical pathways of the com-
plement system and the blood coagulation system intersect and influence each other, have
common cellular targets, and common pathways of activation and regulation. The activity
of both systems is coordinated through complex feedback mechanisms, and the disruption
of these mechanisms can lead to various severe complications, including the development
of complement-associated thrombotic microangiopathies. Thus, in 5% of patients with
aHUS, various heterozygous missense mutations in the thrombomodulin gene THBD were
identified [97]. These mutations were found to be associated with a reduced ability to
inactivate C3b and activate CPB2. Plasminogen deficiency variants are also associated with
aHUS [100]. There are proposals to expand the panel of analyzed genes in patients with
aHUS to include genes encoding factors of the blood coagulation system [100].

4. Bacterial Infections That Cause HUS
4.1. Hemorrhagic Shiga Toxin-Producing E. coli

Among the infectious agents that provoke the development of hemolytic uremic syn-
drome, hemorrhagic Shiga toxin-producing E. coli occupies a special place. STEC infections
cause more than 2.8 million acute illnesses annually, with an average of 3890 cases of HUS,
270 cases of irreversible end-stage renal disease, and 230 deaths annually worldwide [101].
STEC-HUS primarily affects children, with peak incidence between 3 and 5 years of age [101].
The incidence rate in this age group reaches 10–17 cases per 100,000 children [102]. Symp-



Biomolecules 2024, 14, 39 10 of 36

toms appear 2–12 days after infection [102,103]. There is severe abdominal pain, bloodless
diarrhea, accompanied by vomiting and fever. In 70% of cases, the disease progresses within
1–2 days and hemorrhagic colitis develops. Diagnosis of HUS occurs 6–10 days after the
onset of diarrhea, when the first signs of acute renal failure are observed. Early dialysis has
reduced mortality among STEC-HUS patients from 30% to 5% [104]. However, 25–30% of
surviving patients subsequently experience renal and neurological complications [105,106].

4.1.1. Pathogenetic Mechanisms of STEC-HUS

The pathogenetic mechanisms of the development of STEC-HUS are complex and
affect a whole range of body systems. Once ingested, STEC colonizes the intestinal mucosa,
tightly attaching to the enterocyte. This involves the destruction of microvilli, rearrange-
ment of the enterocyte cytoskeleton, and accumulation of actin around the bacteria, forming
a pedestal-like structure above the surface of the plasma membrane [107]. This contributes
to diarrhea and intestinal inflammation. At this stage, to successfully colonize target or-
gans, STEC can produce various virulence factors in the form of SPATE proteases, which
inactivate both the complement system and the blood coagulation system. Thus, the serine
protease Pic suppresses complement activation by proteolysis of C2, C3/C3b, and C4/C4b,
interacts with FH/FI to inactivate C3b, and dearginates C3a, reducing its activity [108,109].
The EspP protease suppresses complement activation by proteolysis of C3/C3b and C5 and
inactivates FV and α2-antiplasmin [110,111]. Also, the EspP protease can have a cytotoxic
effect [112]. The metalloproteinase StcE cleaves the C1 esterase inhibitor C1-INH, thereby
increasing its ability to neutralize C1 and MASP [113,114]. In addition to SPATE proteases,
E. coli displays polyphosphate on its membrane to protect against complement. Polyphos-
phate prevents the assembly of MAC on the surface of the bacterial cell [115,116] and binds
C1-INH, blocking the assembly of complement convertases. Thus, hemorrhagic E. coli has
an arsenal of tools to defend against the complement system and maintain invasion. On the
other hand, as mentioned earlier, polyphosphate can activate FXII by triggering the contact
pathway to activate coagulation. It is generally accepted that the coagulation pathway
triggered by FXIIa is not associated with ensuring hemostasis, because its deficiency does
not lead to the development of bleeding [117]. Its activity is primarily associated with
intravascular thrombosis [118,119].

Shiga-like toxin (Stx) released by STEC passes through the gastrointestinal epithelium
and damages the blood vessels of the colon, causing bloody diarrhea [120]. Once in the
bloodstream, it migrates along the bloodstream to organs whose cells express glycosphin-
golipid globotriaosylceramide [Gb3Cer] and globotetraosylceramide [Gb4Cer] receptors
on their surface. These organs primarily include the kidneys, brain, and lungs [121]. Stx is
known to have two isoforms, Stx1 and Stx2, which in turn are divided into subtypes [122].
The distinct mechanisms of action of Stx1 and Stx2 remain to be elucidated, but Stx2 is
known to cause more severe symptoms [123].

The cytotoxicity of Stx can be enhanced by LPS in the outer membrane of Gram-
negative bacteria by activating Stx receptors and increasing its inhibitory activity on protein
synthesis in the cell [124,125]. Thus, in a mouse model, it was demonstrated that the combi-
nation of Stx and LPS induces a HUS-like response and changes in glomerular endothelial
cells that are different from those observed with exposure to Stx or LPS alone [126–128].
Thus, Gram-negative bacteria may increase Stx-induced inflammation and damage to
internal organs.

All Stx consist of one biologically active A subunit (32 kDa), which is associated with
five B subunits (7.7 kDa) [129]. This structure allows the bacterium to safely secrete the toxin
and ensures binding to cells expressing the Gb3Cer/CD77 or Gb4Cer receptors [130]. After
interaction with the receptor, the toxin undergoes endocytosis and retrograde transport
to the Golgi apparatus and endoplasmic reticulum [131]. In the endoplasmic reticulum,
subunit A is proteolytically cleaved to form the A1 fragment (27 kDa). This fragment moves
into the cytosol and interrupts protein synthesis, inactivating ribosomes by cleaving off an
adenine residue from 28S ribosomal RNA [132]. Caused by impaired protein synthesis, ri-
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bosomal stress triggers a variety of signaling pathways that can initiate a pro-inflammatory
response (cytokines and chemokines) and apoptosis [133–136].

Both Stx1 and Stx2 are found in the serum of HUS patients [137,138]. Stx circulates
in the blood plasma as a complex with cells, or in microvesicles released by blood cells.
Possible carriers of Stx are erythrocytes, platelets, and monocytes, which have the Gb3
receptor on their surface [139], as well as neutrophils, which do not express the Gb3 receptor,
but interact with Stx through Toll-like receptor 4 (TLR4) [140]. It has been suggested
that microvesicles released by blood cells are a means of transporting Stx to glomerular
cells [103,141]. Stx can be incorporated into blood microvesicles generated by neutrophils,
monocytes, platelets, and red blood cells, translocate to target cells, and be taken up
by endocytosis [141,142]. Thus, Stx, interacting at the first stage with its receptors and
penetrating into blood cells, can subsequently leave them as part of microvesicles and
penetrate into cells that do not carry specific receptors on their surface [141,142]. In addition
to the Stx toxin, the contents of microvesicles released by platelets and monocytes may
contain various factors, such as activated complement components or tissue factors, and
also be transferred to target cells [142].

Damage to the glomerular endothelium has been reported as one of the primary events
in the development of thrombotic microangiopathic lesions in STEC-HUS [136].

Under the influence of Stx in endothelial cells, nuclear transcription factor-κB
(NF-κB), proinflammatory cytokines and chemokines, cell adhesion molecules are
activated [128,143–145]. In this case, endothelial cells lose their thromboresistant phe-
notype and demonstrate increased adhesive abilities. Stx has been demonstrated to induce
the formation of platelet thrombi on the surface of endothelial cells under conditions of
high shear stress, similar to what is observed in the microvascular bed [146]. In this case,
von Willebrand factor acts as a factor directly involved in the formation of a platelet throm-
bus. It has been demonstrated that Stx can directly bind to von Willebrand factor on the
cell surface, protecting it from degradation by the metalloproteinase ADAMTS13 [147]
Blockade of adhesion proteins, including P-selectin, reduced the thrombogenic effect of
Stx [146].

Podocytes can also be subject to cytotoxic effects of Stx [148–151]. Upon binding to
Gb3 receptors, Stx activates p38 and p42/44 mitogen-activated protein kinases (MAPK), as
well as the transcription factors NF-kB and AP-1 in human podocytes, causing the release
of cytokines such as IL-1 and TNF-α. In turn, cytokines, through increased expression of
Gb3, increased the sensitivity of cells to the toxin [150–152] and favored apoptosis [148].

In addition to the direct cytotoxic and proinflammatory activity of Stx and other waste
products of E. coli, the complement system plays an important role in the pathogenesis of
STEC-HUS [153–156].

4.1.2. The Role of the Complement System in the Pathogenesis of STEC-HUS

Already, the first attempts to investigate the participation of the complement system
in the pathogenesis of STEC-HUS revealed decreased levels of C3 and increased levels of
its breakdown products C3a, C3b, C3c, and C3d in the blood serum of children during
the active phase of the disease [157–160]. A link between levels of C3 in blood plasma,
leukocytosis, and the severity of the disease was established. At the same time, fluctuations
in levels of C3 were noted in the range from 68 mg/dL to 108 mg/dL, with a norm of
88–169 mg/dL [160]. These data are consistent with the preliminary results we obtained
from our preliminary studies. The average amount of C3 in the blood plasma of the STEC-
HUS patients we examined was 99.8 ± 4.7 mg/dL (mean ± SEM, n = 9) (Figure 4). In
some cases, C4 levels were decreased in patients with STEC-HUS [160], but in most cases,
they remained within the normal range, limited to the range of 12–33 mg/dL [159]. In the
group of STEC-HUS patients we examined, the amount of C4 in the blood plasma was
also within normal range and averaged 23.3 ± 2.8 mg/dL (mean ± SEM, n = 9) (Figure 4).
At the same time, in patients with STEC-HUS, increased Bb levels were observed, which
directly indicates the activation of the alternative pathway of the complement system [161].
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Subsequent studies showed that an increase in the level of Bb in the plasma of patients
is accompanied by an increase in the level of soluble C5b-9, correlating with it and the
severity of oliguria [162]. We also noted increased levels of soluble C5b-9 in patients
with STEC-HUS. The average level of soluble C5b-9 in the group of STEC-HUS patients
we examined was 4185 ± 274 µAU/mL, with the established norm being considered
<1000 µAU/mL (Figure 4). We also compared the plasma levels of C3, C4, and soluble C5b-
9 in STEC-HUS patients with those in aHUS patients and found that with similar levels of
C4 and soluble C5b-9, aHUS patients demonstrate a more pronounced decrease in C3 levels
(Figure 4). On the one hand, it can be assumed that the activation of the alternative pathway
in patients with STEC-HUS is less pronounced. On the other hand, other pathways of
complement activation may be involved in the pathogenesis of STEC-HUS. An increase in
C3a levels was also found in the acute phase of the disease and a return to normal levels
after recovery [163]. This fact supports the hypothesis that complement plays an important
role in the pathogenesis of STEC-HUS.

1 
 

 
Figure 4. Complement system activation in STEC-HUS and aHUS. (A)—C3 level in plasma of aHUS
patients was lower than C3 level in plasma of STEC-HUS patients. (B)—C4 levels in plasma of
STEC-HUS patients and aHUS patients were within normal limits and did not differ significantly
from each other. (C)—sC5b-9 level was increased in plasma of STEC-HUS and aHUS compared to the
norm. Results represent the mean ± standard error of the mean. (* p < 0.01 by independent-samples
t-test).

In addition to the activation of the complement system, deposition of C3 and C5b-9
along with fibrin accumulation is noted in the glomeruli of children with STEC-HUS [163].
Taken together, these data suggested a connection between activation of the complement
system, renal microvascular thrombosis, and damage to glomerular podocytes.

4.1.3. Pathways of Complement Activation in STEC-HUS

The data presented in the literature allow us to identify several possible pathways
of activation of the complement system in STEC-HUS. One of them may be the direct
interaction of Stx with complement factors. It has been demonstrated that Stx2, when
added to normal human serum, activates the complement system in the fluid phase,
causing the formation of soluble C5b-9 [164]. It is assumed that Stx is able to directly
interact with complement proteins and activate the alternative pathway. The ability of
Stx2 to bind to short domains (SCRs) 6–8 and 18–20 of factor H, which are responsible
for recognition of the host cell surface, has been revealed [164]. Stx2 binding to factor
H disrupted its cofactor activity on the cell surface, leading to increased complement
activation and accumulation of C3b on the cell surface, but did not affect factor H activity
in the fluid phase [164]. In addition to binding factor H, Stx2 also acts as a ligand for
two other factor H family proteins, FHR-1 and FHL-1, which share amino acid sequence and
regulatory function with factor H [165]. In addition to direct activation of the complement
system, Stx can indirectly change its activity. Thus, Stx2 has been shown to modulate the
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expression of CD59, a membrane-bound complement regulator that inhibits the formation
of the C5b-9 complex. Endothelial cells exposed to Stx2 showed a decrease in CD59
mRNA levels and its surface expression [166]. Abnormal activation of the alternative
pathway can also be achieved through activation of factors B and D by MBL/ficolin-
associated serine proteases (MASPs), suggesting the possibility of indirect activation of the
alternative complement pathway [167]. Recent evidence suggests that the lectin pathway
plays a role in the disease, as inhibition of MBL2 in Stx-HUS mice significantly limits
renal C3d deposition and damage [168]. The mechanisms of lectin pathway activation
are unclear. Finally, activation of the complement system may be mediated by P-selectin.
In this case, the complement system closely interacts with the blood coagulation system
according to the principle of mutual reinforcement. A number of observations support this
assumption. Stx, by binding to its specific endothelial receptor Gb3, modifies endothelial
thromboresistance. Exposure of human umbilical vein endothelial cells HUVEC and
glomerular microvessels GMVEC to Stx stimulated exocytosis of Weibel–Palade bodies
containing both proinflammatory factors (P-selectin, eotaxin-3, IL-8, angiopoietin-2, CD63,
α1,3-fucosyltransferase VI, osteoprotegerin) and hemostasis factors (von Willebrand factor,
t-PA) [169]. P-selectin on the surface of endothelial cells is able to bind C3 and activate
the alternative complement pathway. In turn, whole blood perfusion of endothelial cells
that were treated with Stx1, compared to controls showed increased C3 deposits and a
larger area of thrombus formation [170]. Moreover, the addition of the soluble complement
receptor sCR1, a C3 inhibitor, as well as the addition of antibodies blocking P-selectin,
completely suppressed the formation of blood clots on the surface of endothelial cells,
which indicates a functional connection between C3 deposits on the endothelial surface and
thrombosis [170]. Apparently accumulated as a result of P-selectin-mediated complement
activation, C3a through the C3aR receptor enhances the expression of P-selectin and t-PA-
dependent cleavage of thrombomodulin TM, and activates platelets, thereby stimulating
both the complement system and the blood coagulation system [170,171]. Ultra-high
molecular weight von Willebrand factor (ULVWF) multimers on the surface of endothelial
cells bind and activate platelets [172], triggering a series of events leading to activation of
the blood coagulation system and stimulation of the complement system. It was found that
Stx1 and Stx2 inhibit the cleavage of ULVWF by the metalloproteinase ADAMTS13 [172].
It has also been shown that Stx-1, in combination with TNFa, disrupts the expression,
synthesis, association, and secretion of TFPI, and increases the level of functional TF on
the surface of endothelial cells [173]. Thus, it can be assumed that there is synergism
in the functioning of the complement system and the blood coagulation system in the
pathogenesis of STEC-HUS.

4.1.4. Targets of the Complement System in the Pathogenesis of STEC-HUS

The range of target cells of the complement system in STEC-HUS is quite wide. In
addition to the endothelium, deposits of C3 and C5b-9 have been observed on the surface
of blood cells and the microvesicles they secrete in patients with STEC-HUS [160,174].
Exposure of whole blood to Stx2 causes the formation of platelet-monocyte and platelet-
neutrophil aggregates with surface-bound C3 and C9 [160]. In turn, the deposition of
complement activation products on platelets and monocytes leads to the release of TF-
expressing microparticles that may contribute to the development of thrombosis in STEC-
HUS [175,176]. Exposure of erythrocytes to Stx2 causes the release of hemoglobin and
the formation of C3 and C5b-9 coated microvesicles [174]. Interestingly, Stx2-induced
hemolysis was not apparent in the absence of plasma and was inhibited by heat inactivation,
as well as by eculizumab, the purinergic P2 receptor antagonist suramin, and EDTA.
Release of microvesicles by erythrocytes in whole blood in the presence of Stx2 was not
observed in the absence of factor B and was suppressed by EDTA and P2 purinergic receptor
antagonists [174]. These observations directly indicate the involvement of the alternative
complement pathway in the hemolytic process occurring in STEC-HUS [174].



Biomolecules 2024, 14, 39 14 of 36

C3 and C5b-9 deposits are also found in the glomeruli of STEC-infected mice [163].
In wild-type mice with Stx2/LPS-induced HUS, C3 deposition was accompanied by fib-
rin(ogen) accumulation, dysfunction, and loss of podocytes [128,170,177]. Complement ac-
cumulation in the glomerulus has been shown to activate important regulators of podocyte
adhesion, migration, and intercellular communication, such as integrin-linked kinase (ILK)
signaling, as well as the Snail transcription factor, which is responsible for nephrin sup-
pression [177]. However, in factor B-deficient mice, complete restoration of glomerular
architecture was observed after administration of Stx2/LPS, which clearly indicates that
complement activation through the alternative pathway contributes to podocyte dysfunc-
tion [177].

4.1.5. Immunometabolic Alterations in STEC-HUS

Immunometabolism is a complex interplay between immune and metabolic path-ways.
Its dysregulation is considered to be one of the reasons for acute (AKI) and chronic (CKD)
kidney disease [178]. Immunometabolic system includes dendritic cells, macrophages, T
and B cells, the messengers of immune response (cytokines and chemokines, etc.), their
membrane receptors, and intracellular metabolic processes that are regulated by these re-
ceptors [179]. It is an integral part of systemic metabolism. In a healthy body under normal
physiological conditions, immunometabolic processes are tightly regulated. However, as
shown in review [178], their imbalance occurring under the action of pathogenic factors
is associated with the development of kidney diseases such as lupus nephritis, diabetic
kidney disease, and polycystic kidney disease. Below, we will consider immunometabolic
alterations in the most common kidney disease in children typical haemolytical uremic
syndrome and their possible connection with complement activation.

It is known that pro-inflammatory cytokines produced by a multiprotein complex
NLRP3 inflammasome are drivers of diabetic kidney disease [180]. NLRP3 inflammasome
is involved also in lupus nephritis polycystic kidney disease. Persistent or dysregulated
activation of the NLRP3 inflammasome has been implicated in the development of glomeru-
lonephritis, diabetic nephropathy, tubulointerstitial nephritis, and other inflammatory
renal disorders.

In typical HUS, the level cytokines is elevated [181]. An increase in cytokines can be
caused directly by Shiga toxin Stx2 [182]. Experiments in vitro with peritoneal macrophages
(PMs) isolated from wild-type (WT) C57BL/6J mice and gene knockout mice (Nlrc4–/–,
Aim2–/–, and Nlrp3–/–), and in vivo with WT mice and Nlrp3–/– mice indicate that Stx2
activates their production of IL-1β [183]. This work shows that Oridonin and other Nlrp3
inhibitors significantly impair the survival of mice treated with Stx2.

Activation of Nlrp3 in children with STEC-HUS may occur as a result of complement
activation. It is known that NLRP3 inflammasome activation is caused by peptides C5a [183]
and C3a [184], and can be promote by sublytic deposition of MAK [185,186].

4.2. Shigella dysenteriae

In addition to hemorrhagic strains of E. coli, the development of HUS can be caused
by infection with S. dysenteriae. Compared to E. coli, this infection is significantly less
widespread on Earth and is represented mainly in developing countries in Africa and
Asia. This is largely due to the mechanisms of infection transmission. The only carrier of
S. dysenteriae is humans, and transmission of infection occurs through the fecal–oral route
through contaminated food and objects. In this regard, the frequency of HUS associated
with S. dysenteriae is significantly lower than HUS associated with E. coli [187]. Thus,
between 1987 and 2012, only 488 cases of shigellosis-associated HUS were documented.
However, the average mortality rate is significantly higher than with STEC-HUS and can
reach 59% [188–194]. It is HUS that is the main cause of death in dysentery epidemics
caused by S. dysenteriae infection [187]. The development of HUS in shigellosis is predomi-
nantly associated with infection with S. dysenteriae serotype SD1 [195]. This serotype, in
comparison with other Shigella species and S. dysenteriae serotypes, is characterized by
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an increased level of Shiga toxin secretion. This toxin is identical to the Stx1 toxin of the
hemorrhagic Escherichia coli O157:H7, which, as previously mentioned, together with Stx2
plays a key role in the development of HUS [196]. In addition to Shiga toxin, S. dysenteriae
serotype SD1, like E. coli, produces LPS, which is considered a potential mediator of vascu-
lar damage, the development of DIC, and sepsis. LPS was detected in the blood of patients
with HUS associated with infection with S. dysenteriae serotype SD1. At the same time, in
patients with diarrhea uncomplicated by the development of HUS, LPS was rarely detected
in the blood [197]. Double intravenous administration of LPS produced by S. dysenteriae
caused a generalized Schwartzman reaction and the clinical picture of HUS [198]. These
facts suggest that HUS caused by S. dysenteriae infection and HUS caused by E. coli O157:H7
infection share common developmental mechanisms. However, it is worth considering that
infection with E. coli O157:H7 can cause the development of HUS in children and adults,
while shigellosis provokes the development of HUS exclusively in children. Also, unlike
E. coli, S. dysenteriae serotype SD1 is enteroinvasive. The diarrhea it causes is accompanied
by the penetration of bacteria into the general bloodstream.

4.3. Streptococcus pneumoniae and Other Neuraminidase-Producing Bacteria

The second most common infectious agent after hemorrhagic E. coli that can cause
hemolytic uremic syndrome is S. pneumoniae, which, according to some data, accounts for
approximately 5% of all cases of HUS in children. Other sources estimate that pneumococcal
HUS (SP-HUS) accounts for 38% to 43% of all non-STEC HUS cases. The annual incidence
is approximately 6 cases per 10 million children under 18 years of age per year. Most often
caused by infection with S. pneumoniae, HUS develops after pneumonia complicated by
empyema or meningitis.

To date, several probable mechanisms for the development of HUS in pneumococcal
infection are being considered. The most widely accepted opinion is that neuraminidase
produced by S. pneumoniae, circulating in the bloodstream, removes N-acetylneuraminic
acid (Neu5Ac) from the sialoglycoproteins of cell membranes from the surface of red
blood cells, platelets, and endothelial cells, exposing the Thomsen–Friedenreich antigen
(T-antigen) [199]. This disaccharide is not detected on the surface of normal cells and, if
exposed on the cytoplasmic membrane, is recognized by immunoglobulins circulating in
the blood [200]. Antibodies bind T-antigen on the surface of erythrocytes, platelets, and
endothelial cells, which leads to agglutination of erythrocytes, platelet aggregation in the
microvasculature and the development of TMA [201,202]. In addition to the presentation
of T-antigen on the cell surface, desialylation can lead to the loss of factor H binding sites
by cells. This may result in uncontrolled activation of the alternative complement pathway.
It has been shown that in patients with SP-HUS, factor H itself is also desialylated, which,
on the one hand, increases its C3b binding activity, and, on the other hand, does not in
any way affect its ability to dissociate C3b and C3bBb(P) convertase and reduces its ability
to inhibit red blood cell agglutination [203]. However, desialylation of erythrocytes and
platelets is not specific for HUS. This process is also observed in patients with invasive
pneumococcal infection not burdened by HUS [202,204]. Potential targets for desialylation
in the pathogenesis of SP-HUS are not limited to complement factors and cell membrane
sialoglycoproteins. Desialation can also affect factors of the blood coagulation system,
changing their functional activity. Thus, the most important point in the activation of
platelet aggregation by neuraminidase is the desialylation of Factor VIII [205]. This mecha-
nism excludes the role of mutations in the genes of complement factors as a determining
risk factor for the development of SP-HUS, although it is noted that desialylation may
lead to a decrease in cell resistance to the activity of complement factors [199,206,207].
Fibrinogen desialylation reduces thrombin time in patients with liver disease, which is
apparently due to increased aggregation of fibrin monomers [208,209]. Desialylation of
plasma von Willebrand factor induces its binding to platelets [210]. Desialation of FVIIa
promotes its active recognition by hepatocytes through the asialoglycoprotein receptor and
accelerates its clearance from the bloodstream [211]. The coagulation activity of factor IX is
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markedly reduced when sialic acid residues are removed [212]. Plasma clearance of pro-
thrombin is enhanced by desialylation. At the same time, the question about changes in its
activity remains open [213–215]. It can be assumed that desialylation of factors of the blood
coagulation system can affect both their procoagulant/anticoagulant activity, exacerbating
the prothrombotic state, and on regulatory activity in relation to the complement system.

HUS caused by pneumococcal infection can develop in the absence of antibodies to
T antigen [216]. Only 60–90% of patients with HUS show a positive Coombs test [217]
Dysregulation of the alternative complement pathway may be caused by direct binding
of factor H to bacterial proteins. Thus, some serotypes of S. pneumoniae express proteins
(PspC, CbpA, Hic) that can bind factor H, changing its activity and eliminating it from
the blood plasma [218,219]. Genetic studies have demonstrated the presence of mutations
previously associated with aHUS in a significant proportion of patients with SP-HUS [203].

The list of bacteria capable of producing neuraminidase and causing HUS is not lim-
ited to S. pneumoniae. To date, cases of the development of HUS due to a bacterial infection
caused by β-hemolytic streptococcus group A (S. pyogenes) have been described [220–222].
In this case, hypocomplementemia and C3 deposits on the surface of capillary endothelial
cells were observed [221,223]. In addition to neuraminidase, the M1, Fba, and NAPlr
proteins produced by S. pyogenes may be involved in the pathogenesis of HUS [224,225].
By binding factor H of the complement system, the Fba protein can disrupt its regula-
tory activity. Bacterial proteins of the M family are able to bind the protein S complex
with C4BP [226], thereby affecting its balance in plasma and regulation of the blood co-
agulation system. It was also found that S. pyogenes is capable of activating the contact
pathway of activation of the blood coagulation system, binding fibrinogen through the M1
protein and forming a fibrin network on the surface of the epithelium [227]. Fibrinogen
breakdown products can contribute to serious complications by causing the release of
monocyte/macrophage-derived interleukins 1 and 6 (IL-1, IL-6), and plasminogen acti-
vator inhibitor 1 (PAI-1). While IL-1 and IL-6 cause additional damage to the vascular
endothelium, PAI-1 inhibits fibrinolysis and subsequently accelerates further thrombus
formation. The nephritis-associated plasmin receptor NAPlr is deposited in glomeruli and
causes glomerular damage by binding plasmin and maintaining its local activity [228,229].
In addition to streptococci, other bacteria that produce neuraminidase, such as Clostridium
perfringens, can cause HUS [230–233].

4.4. Bordetella pertussis

B. pertussis is the causative agent of the acute respiratory infectious disease known
as whooping cough. Today, whooping cough remains a significant cause of morbidity
and mortality in children under 2 years of age. The infection is transmitted by airborne
droplets and manifests itself by damage to the mucous membranes of the upper respiratory
tract. In particularly severe cases, the infection can be accompanied by the development
of complications such as seizures, apnea, pneumonia, or encephalopathy, and lead to
death [234]. The first case of HUS developing due to B. pertussis infection was described in
2002 [235]. A child with abnormalities in the structure of factor H developed HUS several
weeks after infection, followed by death. Subsequently, several cases of the development
of non-recurrent HUS after infection with B. pertussis were described in patients without
defects in complement factors [236–238]. It was found that in patients with non-recurrent
HUS, C3 and C4 levels may decrease simultaneously in the acute phase [238]. This suggests
simultaneous activation of the classical and alternative complement pathways. The acti-
vation mechanisms have not yet been fully established. B. pertussis is known to express a
number of proteins that allow it to evade the activity of the complement system [239]. The
BrkA autotransporter protein suppresses the deposition of C3 and C4 and the formation of
MAC on the bacterial surface. The mechanism of this suppression is unknown. BrkA is pro-
posed to either promote C4b degradation or inhibit C4 activation [240]. The Vag8 protein
has been identified as a C1 inhibitor binding factor on the bacterial cell surface [241,242].
The structure of Vag8-C-INH shows a unique mechanism of C1-INH inhibition, where Vag8
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sequesters the reactive center loop of C1-INH, preventing its interaction with the target pro-
teases [243]. C1-INH is a key inhibitor of serine proteases of complement and coagulation
systems. Its inactivation can lead to aberrations in these systems’ functions. The surface
protein filamentous hemagglutinin (FHA), in complex with one or more as yet unidentified
BvgAS-regulated proteins, binds the complement regulatory factor C4BP [244–246]. C4BP
binds to C4b, thereby dissociating the CP/LP C3 convertase C4b2a, and acts as a cofactor
for plasma protease factor I in the proteolytic degradation of C4b [247]. Finally, B. pertussis
bacteria are able to bind complement factor H and similar proteins FHR-1 and FHL-1 on
their surface. Factor H binding has been shown to occur through its SCR20 and SCR5–7 do-
mains [248,249]. On the one hand, the binding of regulatory proteins allows the bacterium
to evade the activity of the complement system. On the other hand, this process can upset
the balance in the regulation of the complement and coagulation systems, leading to its
excessive activities.

4.5. Salmonella typhi

S. typhi infection is extremely rare as a cause of the development of HUS, and therefore
the mechanisms underlying the development of HUS in typhoid fever remain unclear.
However, it is assumed that the lipopolysaccharide of S. typhi may act as a key factor
triggering the chain of interactions leading to the development of HUS. Immunoglobulins
IgM and IgA to S. typhi are detected in the plasma of patients with typhoid fever burdened
with HUS [250] The lipopolysaccharide antigen Salmonella O-Ag was found to activate the
alternative pathway of complement activation [251,252]. In turn, the Vi capsular antigen
protects bacteria from phagocytosis and complement-mediated lysis by partially but not
completely suppressing opsonization, probably by shielding the O antigen [253,254]. Thus,
S. typhi bacteria can activate the alternative pathway of the complement system, maintaining
their viability for a relatively long time. On the other hand, within permissive macrophages,
Salmonella increases the expression of the outer membrane protease PgtE, which degrades
various complement components, including C3, C3b, C4, C4b, C5, factor B, and factor
H, mediating serum resistance [255–257]. PgtE activity is not limited by complement
factors. PgtE can cleave vitronectin, suppressing MAC resistance [249]. Blood coagulation
factors can also act as a substrate of PgtE. Thus, PgtE activates plasminogen and cleaves
PAI-1, TAFI, and α2-antiplasmin [255,258,259] Thus, one could talk about the activation
of fibrinolysis in infected S. typhi, but clinical data suggest the opposite. In those infected,
activation of the blood coagulation system is observed. There is an increase in the level of
thrombin and fibrinogen against the background of a decrease in the levels of protein C
and antithrombin. Patients showed signs of suppressed fibrinolysis and marked activation
of endothelial cells [260]. Perhaps the role of PgtE in the regulation of the complement
system is not so significant, or the range of its functions is wider than currently assumed.
One way or another, the mechanisms of HUS development in S. typhi infections remain
unknown and require research.

4.6. Other Bacterial Infections

In the modern literature, there is increasing evidence that some bacteria that have
not previously produced Stx can acquire this ability. Thus, different groups of researchers
discovered Shigella sonnei strains producing either Stx-1 or Stx-2a [261–264] It is known
that stx genes are carried in the genome of λ phages or “stx-converting bacteriophages”,
which can insert DNA into the chromosomes of host bacteria through transposition or
recombination [264]. E. coli and Shigella spp. are close genetic relatives, allowing Shigella
species to obtain toxin genes from E. coli. This indicates that previously nontoxigenic
S. sonnei can acquire virulence genes upon invasion by a phage carrying the toxin genes.
Phages carrying the stx gene have been detected in wastewater and in the feces of healthy
people [265,266]. These phages have been found to be able to infect and replicate in cultures
of Stx-negative strains of E. coli and S. sonnei [265]. Phages carrying the stx gene remain
viable longer than their bacterial hosts and can enter the body with contaminated food and
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water [267]. Another way to convert bacteria that do not normally produce Stx (such as
S. sonnei) into Stx producers involves co-infection with hemorrhagic strains of E. coli or
S. dysenteriae. As a result, bacteriophages released during lysis of E. coli or S. dysenteriae
infect bacteria that do not carry stx genes [265,268]. To date, at least one case of HUS
secondary to S. sonnei infection has been described [269].

5. Viral Infections That Cause HUS
5.1. Influenza Virus

Influenza remains one of the most common infectious causes of death in the Western
world, with high genetic variability and emerging resistance to antiviral drugs [270]. In-
fluenza A, B, and C viruses pose a threat to humans [271]. The literature describes cases
of the development of hemolytic uremic syndrome against the background of an acute
respiratory infection caused by the influenza A virus, in particular H1N1 [272–276]. Several
cases of HUS caused by influenza B virus have also been reported [277–279]. There are
relatively few such clinical cases and, at this stage, the mechanisms mediating the appear-
ance of HUS with the influenza virus remain poorly understood. Both in vitro and in vivo
experiments have demonstrated the ability of the H1N1 virus to cause endothelial cell
apoptosis, platelet activation, and subsequent microthrombi formation [270,280,281]. The
pathogenicity of influenza A virus as an inducer of HUS may be based on the presence of
neuraminidase (NA), encoded in the sixth RNA segment and forming a tetramer on the
outer membrane of the virus. NA has sialidase activity necessary for virus exit from the cell.
The participation of influenza A virus neuraminidase in the pathogenesis of HUS may differ
from that in S. pneumonia infection due to the fact that in the case of pneumococcal infection,
neuraminidase is in a free state and circulates in the blood plasma, while the virus neu-
raminidase is directly associated with its lipoprotein envelope. It has been demonstrated
that red blood cells that have been pre-exposed to viral particles activate the alternative
complement pathway in human serum. Moreover, the level of APC activity depended on
the number of viral particles to which erythrocytes were preliminarily exposed and on the
degree of desialylation of erythrocyte membranes [282]. In patients with influenza A H1N1,
activation of the complement system is observed, expressed in an increase in the level of
C5b-9 in the blood plasma [283]. It has also been demonstrated that acute lung injury in
mice infected with influenza A H5N1 is associated with excessive complement activation
with deposition of C3 and C5b-9 and increased expression of complement receptors C3aR
and C5aR [284]. It has been suggested that the pathogenesis of influenza virus-induced
HUS may involve activation of adhesion molecules on the surface of endothelial cells, as
has been demonstrated in the case of STEC-HUS, but this assumption needs to be tested.
A hypothesis has also been expressed about the triggering effect of the virus on the HUS-
sensitive haplotype [285–287]. Thus, in some patients with thrombotic microangiopathy
associated with influenza A and B, mutations potentially associated with dysregulation
of the complement system (C3 and MCP mutations) were found [273,277,278,288]. On
the other hand, there have been cases where activation of the complement system and
the development of TMA were observed in influenza-infected patients who did not carry
mutations [289]. However, this fact does not allow us to exclude the hypothesis about the
direct role of the H1N1 virus in the determination of transient activation of complement
and the development of HUS.

In addition to the activation of the complement system, the activation of the blood
coagulation system is observed during H1N1 infection. Thus, it was found that particles of
the H1N1 virus in the presence of blood serum are capable of activating platelets in two
ways at once. The first pathway involves the formation of the H1N1/IgG immune complex
and subsequent recognition of this complex by the platelet FcγRIIA receptor. The second
pathway is mediated by complement-independent activation of thrombin [280]. Ultimately,
the activation of platelets leads to their release of microparticles with subsequent activation
of both the blood coagulation system and the complement system.
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5.2. Human Immunodeficiency Viruses (HIV)

The association between HIV infection and the occurrence of HUS was documented
as early as 1984 [290]. However, the role of HIV in the described case was ambiguous.
The patient was undergoing treatment for Kaposi’s sarcoma at the time of development of
HUS and died from sepsis caused by Staphylococcus aureus infection. Subsequently, cases of
the development of HUS against the background of HIV infection, not burdened by other
infectious and tumor diseases, were described. On the one hand, a study of HUS patients
with HIV infection showed that the development of the syndrome is not necessarily due
to the presence of mutations associated with HUS. On the other hand, the data obtained
indicate that the complement system is involved in the pathogenesis of HUS [291,292].
Thus, in a woman with established HIV infection, HUS was accompanied by a decrease
in the level of factor C3 and factor B of the complement system. C4 levels remained
within normal limits, indicating activation of the alternative complement pathway. Kidney
biopsy showed colocalization of elevated serum MAC, C5b-9 deposits, and arteriolar
microangiopathic lesions in the kidney. However, the use of the alternative pathway
inhibitor of the complement system eculizumab was effective and led to remission. It is
worth noting that the researchers were not able to test the patient for mutations associated
with complement regulatory proteins [291]. Genetic examination of another patient with
HIV-associated HUS did not reveal the presence of a single mutation associated with
disturbances in the activity of the complement system. Factor H autoantibodies were tested
negative. ADAMTS13 levels are within normal limits (72%). However, this patient was
prescribed eculizumab therapy, which gave a positive result. It is logical to assume that,
in this case, HUS was triggered by HIV through activation of the alternative complement
pathway [292]. However, studies in a group of asymptomatic patients with HIV infection
and patients with sepsis and malaria associated with HIV infection showed that HIV can
activate the complement system through the classical pathway [293].

The inconsistency of the data obtained by different groups of researchers may be due
to the presence of concomitant diseases and mutations associated with aHUS in patients
with HIV infection, as well as at what stage of development of the immunodeficiency
caused by HIV infection the patient was at the time of examination [294]. Nevertheless,
several possible mechanisms can be identified, the launch of which can lead to activation of
the complement system and disturbances in its functioning, leading to the development of
TMA. Extensive evidence indicates that during HIV infection, antibody-mediated activation
of the classical pathway occurs, leading to complement-mediated lysis of viral particles
and virus-infected cells [295–297]. Lysis has been found to be rapid and efficient in the
early stages of infection [294]. Antibody levels rise in response to gradually increasing viral
load and appear to remain high throughout the disease [298]. As a consequence, increased
activity of the classical complement pathway remains.

Activation of the complement system by the HIV-1 virus can also be mediated by the
lectin pathway [299]. The ability of the gp120/gp41 Env complex to bind mannan-binding
lectin (MBL) and activate the complement system has been demonstrated [300–302]. In
addition, in vitro experiments have shown that MBL can influence the clearance of HIV-1
from the blood by binding the virus, followed by uptake by tissue macrophages, and
enhancing antibody-mediated neutralization [303,304]. However, the role of the lectin
pathway of the complement system in the development of the immune response to HIV
infection requires further research.

Activation of the complement system during HIV infection is accompanied by op-
sonization of viral particles by complement system factors, which, on the one hand, protect
them from complement-mediated lysis and, on the other, enhance their virulence. Depo-
sition of C3 cleavage products and anaphylatoxin C5a on HIV-1 viral particles facilitates
the interaction of HIV-1 with cells such as monocytes/macrophages and dendritic cells
expressing complement receptors CR3 and CR4 [305,306]. Opsonization of intact viral par-
ticles by C1q results in enhanced HIV-1 infection in cell cultures, which is mediated by CR2
receptors [307]. CR1 and CR2 have been shown to contribute in an independent and com-
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plementary manner to the entry of opsonized virus into T cells expressing the complement
receptor [308]. It has also been demonstrated that complement activation products C5a
and C5a(desArg), but not C3a or C3a(desArg), can increase the susceptibility of monocytes
and macrophages to HIV infection by stimulating the secretion of TNF-alpha and IL-6 by
these cells [309]. In addition to activating the complement system, which enhances HIV-1
infectivity, HIV-1 actively stimulates the synthesis of complement factor C3 in astrocytes
and neurons [310]. This effect may be mediated by the viral proteins gp41 and Nef [310].
C3 deposits and their high activity may play a key role in the pathogenesis of neurological
disorders observed in HIV-1 infected individuals. In addition, the binding of anti-HIV
antibodies to complement opsonized virions facilitates the interaction of HIV-1 with ery-
throcytes. HIV-1 binds to red blood cells in a complement system. These HIV-1-associated
erythrocytes can not only deliver immunocomplex HIV-1 to organs susceptible to infection,
but also free HIV [311]. In this case, the protection of HIV-1 from lysis is due, at least
in part, to the presence of complement activation regulators CD59 and CD55 in the viral
envelope, which the virus recruits from the host cell during the budding process [312–314].
In addition, additional resistance to complement system attacks is provided by the binding
of factor H to HIV-1 [315]. Thus, on the one hand, HIV activates the complement system
and stimulates the synthesis of complement factors and proinflammatory cytokines. On
the other hand, it demonstrates the ability to evade the complement system, using it to
enhance its virulence.

Complement system-mediated inflammation modulates thrombotic responses by
increasing procoagulant activity, decreasing anticoagulant activity, and suppressing fib-
rinolysis [316]. Both inflammatory and coagulation biomarkers have been found to be
elevated in HIV infection [317–321]. It has been suggested that increased translocation
of microbial products across intestinal surfaces, resulting from irreversible damage to
mucosal lymphatic tissue, may contribute to monocyte activation, tissue factor expression,
and pathogenic hypercoagulability [322–324]. It has been reported that in HIV-infected,
when compared to uninfected, the level of TF expression in monocytes is higher [325].
TF expression in monocytes correlated with HIV viral load, D-dimer levels, and soluble
CD14 (sCD14), a monocyte inflammatory marker and bacterial lipopolysaccharide (LPS)
co-receptor [325]. Without prompt treatment, HIV replication leads to increased levels of
some procoagulants (eg, factor VIII and von Willebrand factor) due to systemic inflamma-
tion, and decreased levels of all major anticoagulants (eg, antithrombin, protein C, and
protein S), as well as function-dependent procoagulants hepatocytes. Computer modeling
has shown that the net effect of HIV replication is to increase coagulation potential [326].
Thus, it can be assumed that the development of HUS associated with HIV infection may
be mediated by activation of the complement system. Moreover, one of the key functions
of the complement system in this pathological process is to disrupt the balance between
procoagulants and anticoagulants, leading to activation of the blood coagulation system.
Nevertheless, these assumptions require careful verification.

5.3. Enteroviral Infections

The participation of invasive enteroviral infections in the development of HUS re-
mains questionable today. The first case of HUS associated with enterovirus infection
was described back in 1965. Coxsackievirus Group A type 4 was detected in a patient
with HUS [327] Subsequently, more than 60 patients with HUS were reported to have
enterovirus infections, including Coxsackievirus and ECHO virus [327–333].The problem
is that the diagnoses of enterovirus infection in the cases described were based on serology,
obtaining viral cultures from the throat, rectum, and stool, and identifying viral particles
in stool samples using electron microscopy. These approaches confirm the very presence
of infection, but do not directly link the presence of enterovirus infection with the de-
velopment of HUS. It should also be noted that patients were not always examined for
the presence of hemorrhagic bacterial infection. A comparative study on the presence
of enterovirus infections in two groups of patients with HUS, STEC-positive (58 people)
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and STEC-negative (31 people), did not reveal statistically significant differences between
them [329]. The authors of this work proposed to exclude enteroviruses from the list of
infectious pathogens that can provoke HUS. However, a number of researchers question
this position. Two cases have been described in which enterovirus infection was detected
directly in the kidneys of patients with HUS [331,332]. In one case, the viral culture did not
give a positive result, but enteroviral RNA was isolated from the kidney tissue. There were
no abnormalities in the serological parameters of complement factors, ADAMTS13 activity
was normal, pneumococcal infection, E. coli serotype O157:H7 infection, shigellosis or
salmonellosis were excluded. However, the clinical features and renal biopsy were entirely
consistent with HUS [334]. As is the case with some other infections, the mechanisms of
pathogenesis of HUS caused by enterovirus infections remain unclear. Most researchers are
inclined to believe that they can act as a trigger in people with a genetic predisposition to
aHUS. Many serotypes of echovirus (EV) and coxsackievirus B (CBV) have been shown
to bind human decay accelerating factor (DAF) and use it as a receptor. [335]. DAF is
a glycosylphosphatidylinositol (GPI)-anchored membrane protein that inhibits both the
classical and alternative pathways of complement activation, accelerating the dissociation
of already formed C3 convertases, and preventing the formation of new ones [336–339].
The association of viral particles with DAF may be mediated by C3b, and its formation
may result in activation of the alternative complement pathway, as has been demonstrated
for Coxsackievirus B3 [340]. Another possible way is damage to endothelial cells directly
by the virus or as a result of the cytokine storm caused by it. Using Coxsackie B virus as
an example, it was shown that viral infection can cause increased expression of adhesion
molecules on the surface of endothelial cells and their mediated development of TMA [341].
We were unable to find significant information on the involvement of the blood coagulation
system in enterovirus-associated HUS. However, it has been found that during sepsis,
enteroviral pathogens cause the release of proinflammatory cytokines and activation of
monocytes, which leads to increased regulation of tissue factors. Activation of tissue factors
ultimately activate the coagulation cascade. Moreover, cytokines stimulate endothelial
cells to produce plasminogen activator inhibitors, thereby reducing fibrinolysis [342]. It
cannot be excluded that the development of HUS during enterovirus infections may be
mediated by similar mechanisms, when complement system-mediated inflammation leads
to activation of the blood coagulation system and the development of TMA.

5.4. SARS-CoV-2

The SARS-CoV-2 coronavirus causes an acute, predominantly respiratory infection,
which, in especially severe cases, is accompanied by the development of thrombotic mi-
croangiopathy and the resulting organ failure. One form of thrombotic microangiopathy
that is observed in patients with COVID-19 is HUS. The mechanisms of HUS development
during coronavirus infection remain unclear. The data obtained indicate that SARS-CoV-2
infection can provoke the development of HUS independently and is also a potential risk
factor for the development of complications in HUS caused by E. coli infection [343,344].
Genetic testing of COVID-19 patients with HUS has shown that not all of them are carriers
of aHUS-associated mutations [345]. On the one hand, this suggests that the SARS-CoV-2
viral infection may act as a trigger for aHUS. On the other hand, it is possible that the
SARS-CoV-2 virus is capable of independently causing HUS, regardless of the presence
of genetic abnormalities. There is evidence that infection with the SARS-CoV-2 virus
causes complement-mediated inflammation and thrombotic microangiopathy [346]. It
has been suggested that the S glycoprotein of the SARS-CoV-2 coronavirus may bind to
mannose-binding lectin (MBL) and thereby activate the mannose-associated serine pro-
tease MASP2 [347]. In turn, MASP2 activation is the first step of the lectin pathway of
complement activation and part of a positive feedback loop leading to sustained activa-
tion of the alternative pathway, and the inflammation and initiation of the coagulation
cascade [348,349].
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Thus, it was found that due to inflammatory reactions in patients with COVID-19, an
imbalance of procoagulant and anticoagulant mechanisms occurs, with endothelial dys-
function playing a major role [350,351]. Thus, in patients in the early stages of the disease,
the level of fibrinogen increases [352]. However, structural differences in fibrinogen have
been found in patients diagnosed with COVID-19, which contribute to clinical differences
in thrombotic features associated with COVID-19. These structural differences are, at least
in part, mediated by differential sialylation [352]. In addition, platelets from COVID-19
patients were found to have increased levels of P-selectin expression and activity of the
MAPK signaling pathway, which mediates the production of thromboxane. Moreover, the
level of P-selectin correlated with the level of platelet α-granules marker platelet growth
factor PDGF [353]; with this in mind, we can talk about increased activation of the blood
coagulation system in patients with COVID-19.

6. Conclusions

The list of pathogens of infectious diseases that can cause the development of throm-
botic microangiopathies, including HUS, is gradually expanding. The pathogenetic mecha-
nisms of HUS in various infections are very complex and require study in each specific case.
HUS can be caused by toxins and enzymes produced by microorganisms, as well as surface
antigens of the pathogen. In addition to endothelial cells, platelets, and erythrocytes, other
cellular elements of the blood and specialized cells of organs and tissues (lung alveolo-
cytes, kidney podocytes, etc.) may be involved in the pathogenesis of HUS. From the
data presented in the literature, it becomes clear that the common link in the pathogenetic
mechanisms of HUS in various infectious diseases is the complement system, which is in
close interaction with the blood coagulation system. The connection between these systems
is bilateral, multilevel, complex, and is ensured by common regulatory mechanisms, which
include both complement factors and blood coagulation factors. Normally, the interaction
between the complement system and the blood coagulation system provides the body
with protection from pathogens. However, we see that, in some cases, a disruption in the
functioning of one of the systems can lead to a change in the activity of the other, mediated
by general regulatory mechanisms, and, as a consequence, the development of TMA. It
is important to remember that one or another infectious agent does not always trigger
the development of HUS as a complication of the underlying disease. It appears that the
development of HUS due to infection requires a combination of factors that have not yet
been fully established. One of these factors, potentially, is the functionally significant muta-
tions in the genes of the complement system proteins. In turn, mutations in these genes by
themselves are not sufficient for the development of aHUS. Based on the presented data,
we can assume that infectious diseases can act as a trigger for the development of aHUS.
At the same time, the close relationship between the complement system and the blood
coagulation system and disturbances in their activity in the pathogenesis of HUS suggest
that not only mutations in the genes of the complement system factors, but also in the genes
of the blood coagulation system factors can act as a risk factor for the development of HUS.
This assumption has already been confirmed in some studies [97,100]. The functional role
of the complement system and its interaction with the blood coagulation system in the
pathogenesis of HUS requires further research.
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