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Abstract: Natural products with health benefits, nutraceuticals, have shown considerable promise
in many studies; however, this potential has yet to translate into widespread clinical use for any
condition. Notably, many drugs currently on the market, including the first analgesic aspirin, are
derived from plant extracts, emphasizing the historical significance of natural products in drug
development. Curcumin and resveratrol, well-studied nutraceuticals, have excellent safety profiles
with relatively mild side effects. Their long history of safe use and the natural origins of numerous
drugs contrast with the unfavorable reputation associated with nutraceuticals. This review aims to
explore the nutraceutical potential for treating pseudoachondroplasia, a rare dwarfing condition, by
relating the mechanisms of action of curcumin and resveratrol to molecular pathology. Specifically,
we will examine the curcumin and resveratrol mechanisms of action related to endoplasmic reticulum
stress, inflammation, oxidative stress, cartilage health, and pain. Additionally, the barriers to the
effective use of nutraceuticals will be discussed. These challenges include poor bioavailability,
variations in content and purity that lead to inconsistent results in clinical trials, as well as prevailing
perceptions among both the public and medical professionals. Addressing these hurdles is crucial to
realizing the full therapeutic potential of nutraceuticals in the context of pseudoachondroplasia and
other health conditions that might benefit.

Keywords: nutraceuticals; resveratrol; curcumin; turmeric; dwarfism; growth plate chondrocyte;
articular cartilage; joint degeneration; joint pain

1. Introduction

The mechanisms of action of curcumin and resveratrol target many of the patho-
logic stress mechanisms involved in pseudoachondroplasia (PSACH). Specifically, resver-
atrol and curcumin, a compound in turmeric, reduce inflammation [1–4] and oxidative
stress [2,5–13] and increase autophagy [6,7,14,15]. Testing of a coconut oil dispersion of
curcumin, CurQ+ [16], in young MT-COMP mice, a model of PSACH, completely restored
limb growth [17]. Resveratrol treatment resolved pain and prevented joint degeneration in
adult MT-COMP mice [18]. These findings suggest that resveratrol and curcumin may pro-
vide a therapeutic benefit for PSACH. Curcumin/turmeric and resveratrol have a long, safe
history of consumption in humans and have been shown to reduce joint degeneration in os-
teoarthritis (OA) [7,19–25]. Despite these positive outcomes, there are significant challenges
to nutraceutical therapy. In this review, the PSACH pathology will be discussed along
with the relevant stresses that curcumin and resveratrol impact [1,10,12–14,17,18,26–28].
Finally, the hurdles to using natural compounds as therapeutics will be discussed, includ-
ing one obstacle that is inherent to the compounds: bioavailability. Another barrier is
the lack of Food and Drug Administration (FDA) regulation, which leaves the consumer
in the dark about the product they are purchasing and creates variation in studies such
that they cannot be compared equally. These issues have limited physicians’ interest in
using supplements/nutraceuticals and have led to skepticism in the public. Curcumin
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and resveratrol come from the diet and, therefore, have fewer and less significant side
effects than pharmaceuticals and typically cost less than prescription drugs. Overcoming
these obstacles could lead to the first treatment for PSACH and perhaps prevention of OA
joint damage if caught early enough, safer pain management for joint degeneration, more
healthy and active years in late adulthood, and the alleviation of a great deal of the health
care burden on society.

2. PSACH Pathology

Cartilage oligomeric matrix protein (COMP) is a large, pentameric, matricellular
protein that binds to many extracellular (ECM) proteins. COMP contributes to cartilage
homeostasis [29–32] by sponsoring multiple interactions among ECM components, includ-
ing collagens and proteoglycans [29–31]. Mutations in COMP cause PSACH, a severe
dwarfing condition characterized by disproportionate short stature (average height of 3′ 9′′

(females) and 3′ 11′′ (males)) with short limbs [30,33–43]. Joint pain, extreme laxity, and
very early-onset joint degeneration are the most significant clinical outcomes [30,33–43].

2.1. Chondrocyte Pathology and Mechanisms

In order to study PSACH pathologic mechanisms and test therapeutics in vivo, we
generated the MT-COMP mouse that expresses mutant human D469del-COMP (deletion of
one of five consecutive aspartic acid residues) in tissues expressing type II collagen with
doxycycline (DOX) administration. The expression of the most common PSACH mutation
(D469del-COMP) in addition to the endogenous wild-type mouse COMP recapitulates
the clinical phenotype and PSACH chondrocyte pathology in a mouse designated the
MT-COMP [44]. The MT-COMP mouse allowed for us to demonstrate that accumulation of
mutant-COMP in the rER (rough endoplasmic reticulum) due to misfolding is cytotoxic
to chondrocytes in the growth plate and articular cartilage [38,45,46]. Accumulation of
mutant-COMP in chondrocytes induces ER stress, driving both oxidative stress and inflam-
mation, creating a self-perpetuating pathologic loop that leads to an autophagy block [11]
(Figure 1). The autophagy blockade is particularly harmful given that autophagy is the
primary means to clear the ER of misfolded protein. Autophagy is blocked by high levels
of mTORC1 signaling stimulated via TNFα and CHOP [11]. Increased mTORC1 signal-
ing supports general protein synthesis at the detriment of autophagy, directly inhibiting
autophagic clearance of the ER in chondrocytes [11,12]. Protein synthesis, in the context
of accumulated misfolded protein in the ER, likely exacerbates ER stress [11,12]. In the
growth plate, the multitude of stresses driven by mutant-COMP accumulation leads to a
loss of chondrocytes needed to generate the matrix necessary to make the cartilage model of
long bones, thereby decreasing long bone growth. In articular chondrocytes, the collection
of stresses induces degenerative changes in the cartilage related to inflammation, oxida-
tive stress, and autophagy blockade. Moreover, the cooperative action of these stresses
drives a senescent phenotype in MT-COMP mice [27]. Senescence is known to propagate
degenerative changes to nearby cells and tissues of the joint, hastening joint damage.

Biomolecules 2024, 14, x FOR PEER REVIEW 3 of 15 
 

 
Figure 1. Stress processes involved in mutant-COMP pathology. This schematic briefly summarizes 
the pathologic processes in PSACH chondrocytes. Mutant-COMP is a pentamer; mutant subunits 
are shown in red, and wild type is shown in blue. Quality control systems recognize mutant-COMP 
as improperly folded, and it is held in the ER [47]. This accumulation generates ER stress that leads 
to oxidative stress and inflammation, and each makes the other stress worse [10]. Prolonged ER 
stress results in TNFα/TRAIL and CHOP activation that, in turn, elevate mTORC1 signaling, block-
ing autophagy—thereby preventing the clearance of the ER [11,27]. Orange bar block (⊥) represents 
inhibition associated with resveratrol and CurQ+, including inflammation, TNFα, oxidative stress, 
ER stress, PERK, and CHOP [10,12,13,17,18,48]. 
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alterations of gait [27], voluntary running, and grooming [18]. The parents of PSACH 
young children describe their children as resting more than their peers, tiring easily, and 
frequently complaining of leg pain that limits stamina (personal communication). This 
pain in childhood is likely attributable to inflammation-related processes that occur in 
growth plate chondrocytes due to the accumulated mutant-COMP [34,38,46,49]. PSACH 
joint pain in adulthood is a chronic problem that affects ambulation, mood, and quality of 
life [50]. Eighty-one percent of PSACH adults report chronic pain [50]. PSACH pain is 
described as tiring, exhausting, nagging, aching, throbbing, sharp, and miserable [50]. 
Joint pain and degenerative changes in the joints along with micro-injuries from extremely 
lax joints necessitate joint replacements in the late 20′s [36,44]. Typically, hips are replaced 
first, followed by knees, and some individuals have shoulders and elbows replaced. MT-
COMP mice joint degeneration studies demonstrate multiple sources of nociceptive pain 
present, including subchondral bone remodeling, meniscus damage, synovitis, and in-
flammation [27]. A non-surgical approach is desperately needed since all joints are af-
fected, but not all joints are replaceable, and numerous years of uncontrolled pain are en-
dured before joint replacement [38,44,50,51]. 

3. Modulation of ER Stress 
ER stress arises when the capacity of the ER to synthesize correctly folded proteins is 

exceeded, and secretory cells, such as chondrocytes, are particularly susceptible [52]. In 
PSACH, the residues deleted or mutated in COMP impact calcium binding, which is cru-
cial for correct folding [53–55], leading to a protein that cannot be folded correctly. Three 
sensors, PERK, ATF6, and IRE1, detect ER stress. BiP selectively binds to misfolded pro-
teins, releasing the sensors and activating downstream targets. PERK suppresses global 
translation while inducing the transcription of genes involved in the unfolded protein re-
sponse (UPR), including CHOP, a mediator of apoptosis (Figure 2). Activation of ATF6 
and IRE1 triggers the expression of UPR-related targets, such as chaperones and ER-as-
sisted degradation (ERAD). These systems collaborate to restore ER homeostasis. 

Figure 1. Stress processes involved in mutant-COMP pathology. This schematic briefly summarizes
the pathologic processes in PSACH chondrocytes. Mutant-COMP is a pentamer; mutant subunits are



Biomolecules 2024, 14, 154 3 of 14

shown in red, and wild type is shown in blue. Quality control systems recognize mutant-COMP as
improperly folded, and it is held in the ER [47]. This accumulation generates ER stress that leads to
oxidative stress and inflammation, and each makes the other stress worse [10]. Prolonged ER stress
results in TNFα/TRAIL and CHOP activation that, in turn, elevate mTORC1 signaling, blocking
autophagy—thereby preventing the clearance of the ER [11,27]. Orange bar block (⊥) represents
inhibition associated with resveratrol and CurQ+, including inflammation, TNFα, oxidative stress,
ER stress, PERK, and CHOP [10,12,13,17,18,48].

2.2. PSACH Pain

Pain in the MT-COMP mice has been established through multiple assays, including
alterations of gait [27], voluntary running, and grooming [18]. The parents of PSACH
young children describe their children as resting more than their peers, tiring easily, and
frequently complaining of leg pain that limits stamina (personal communication). This
pain in childhood is likely attributable to inflammation-related processes that occur in
growth plate chondrocytes due to the accumulated mutant-COMP [34,38,46,49]. PSACH
joint pain in adulthood is a chronic problem that affects ambulation, mood, and quality
of life [50]. Eighty-one percent of PSACH adults report chronic pain [50]. PSACH pain
is described as tiring, exhausting, nagging, aching, throbbing, sharp, and miserable [50].
Joint pain and degenerative changes in the joints along with micro-injuries from extremely
lax joints necessitate joint replacements in the late 20′s [36,44]. Typically, hips are replaced
first, followed by knees, and some individuals have shoulders and elbows replaced. MT-
COMP mice joint degeneration studies demonstrate multiple sources of nociceptive pain
present, including subchondral bone remodeling, meniscus damage, synovitis, and inflam-
mation [27]. A non-surgical approach is desperately needed since all joints are affected, but
not all joints are replaceable, and numerous years of uncontrolled pain are endured before
joint replacement [38,44,50,51].

3. Modulation of ER Stress

ER stress arises when the capacity of the ER to synthesize correctly folded proteins
is exceeded, and secretory cells, such as chondrocytes, are particularly susceptible [52].
In PSACH, the residues deleted or mutated in COMP impact calcium binding, which
is crucial for correct folding [53–55], leading to a protein that cannot be folded correctly.
Three sensors, PERK, ATF6, and IRE1, detect ER stress. BiP selectively binds to misfolded
proteins, releasing the sensors and activating downstream targets. PERK suppresses global
translation while inducing the transcription of genes involved in the unfolded protein
response (UPR), including CHOP, a mediator of apoptosis (Figure 2). Activation of ATF6
and IRE1 triggers the expression of UPR-related targets, such as chaperones and ER-assisted
degradation (ERAD). These systems collaborate to restore ER homeostasis. However, if
homeostasis is not promptly reestablished, ERAD and autophagy are activated. Cell death
or apoptosis is triggered if these mechanisms fail to clear the ER of misfolded proteins.

Mutant-COMP-induced ER stress results in the intracellular retention of mutant-
COMP, leading to elevated expression of CHOP and GADD34, consequently reactivating
protein translation and exacerbating the intracellular retention of MT-COMP [56] (Figure 2).
Reactive oxygen species (ROS) are generated by an increase in endoplasmic reticulum
receptor stress-inducible 1 beta (Ero1β) [56]. This oxidative stress triggers DNA damage
and upregulates the expression of growth arrest and DNA damage (GADD) genes [56].
The absence of activated caspases coupled with the presence of cleaved apoptosis-inducing
factor suggest that mutant-COMP-induced premature chondrocyte death occurs through
necroptosis [56] (Figure 2).
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The PERK branch leads to CHOP activation, generating ROS from Ero1β, which is dampened by 
CurQ+ and resveratrol (green asterisks*) [57]. Of particular importance, the mutant-COMP stimu-
lated increase in PERK, P-eIF2α, and CHOP is reversed by CurQ+ and resveratrol. Less oxidative 
stress prevents additional ER stress/inflammation driven by ROS. Anti-inflammatory activity of 
resveratrol and CurQ+ diminishes TNFα [5,12,17,48,58–60], lessening mTORC1 activation and exac-
erbation of oxidative and ER stress (brown asterisks*). SIRT1 upregulation by curcumin and resvera-
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the repression of ER sensors and CHOP expression, the elevation of silent information 
regulator factor 2-related enzyme 1 (SIRT1), chaperones, and ERAD (Figure 2). Specifi-
cally, curcumin and resveratrol decrease the PERK pathway by upregulating SIRT1 ex-
pression. This leads to the suppression of activated forms of PERK and eIF2α (Figure 2). 
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ulating translation of SIRT1 and indirectly increasing SIRT1 levels through phosphory-
lated AMPKα [61]. This increase in autophagy promotes clearance of mutant-COMP. The 

Figure 2. Mechanisms of mitigating ER stress with CurQ+ and resveratrol. ER stress stimulates the
unfolded protein response (UPR) that uses three sensors, PERK, ATF6, and IRE1, and only the PERK
branch proceeds beyond initial activation with the mutant-COMP response [57] (pink asterisks*). The
PERK branch leads to CHOP activation, generating ROS from Ero1β, which is dampened by CurQ+
and resveratrol (green asterisks*) [57]. Of particular importance, the mutant-COMP stimulated
increase in PERK, P-eIF2α, and CHOP is reversed by CurQ+ and resveratrol. Less oxidative stress
prevents additional ER stress/inflammation driven by ROS. Anti-inflammatory activity of resveratrol
and CurQ+ diminishes TNFα [5,12,17,48,58–60], lessening mTORC1 activation and exacerbation of
oxidative and ER stress (brown asterisks*). SIRT1 upregulation by curcumin and resveratrol [61]
promotes ERAD/autophagy, allowing for accumulated protein to be cleared (red asterisks*).

Curcumin and resveratrol mitigate ER stress through various mechanisms, including
the repression of ER sensors and CHOP expression, the elevation of silent information
regulator factor 2-related enzyme 1 (SIRT1), chaperones, and ERAD (Figure 2). Specifically,
curcumin and resveratrol decrease the PERK pathway by upregulating SIRT1 expression.
This leads to the suppression of activated forms of PERK and eIF2α (Figure 2). Decreasing
CHOP indirectly induces autophagy by upregulating SIRT1 by directly stimulating transla-
tion of SIRT1 and indirectly increasing SIRT1 levels through phosphorylated AMPKα [61].
This increase in autophagy promotes clearance of mutant-COMP. The activation of SIRT1
by curcumin and resveratrol also inhibits inflammation and supports cellular survival.
Furthermore, curcumin and resveratrol enhance heat shock protein levels, aiding in protein
refolding [62–64]; however, since mutant-COMP cannot be folded properly, this likely does
not play a role in this case. ER stress is associated with ROS production and oxidative stress-
induced inflammation, and therefore, the antioxidant and anti-inflammatory properties of
curcumin and resveratrol indirectly dampen ER stress.

4. Anti-Inflammatory Effects

Inflammatory markers are increased in chondrocytes expressing mutant-COMP as
early as 2–3 weeks of age [10,27]. Importantly, IL1β, IL6, and TNFα are elevated in MT-
COMP mice [10,27], and all of these pro-inflammatory molecules are involved in OA
joint degeneration [65,66]. Curcumin exerts its anti-inflammatory effects by reducing
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various cytokines, including those involved in interleukin (IL) activation, tumor necrosis
factor-alpha (TNF-α), and the nuclear factor-kappa B pathway [5,58,67] (Figure 2). On
the other hand, resveratrol targets IL-1β, TNF-α, and cyclooxygenase-2 to achieve its anti-
inflammatory activity [18,27,48,59,60,68–70]. The upregulation of SIRT1 by curcumin and
resveratrol plays a pivotal role in driving their anti-inflammatory activities [28,63,71–75]
(Figures 1 and 2). In the context of cartilage, TNF-α and IL-1β hold particular significance
as pro-inflammatory molecules as they induce the expression of enzymes that contribute
to the degradation of extracellular matrix proteins, including matrix metalloproteinases
(MMPs) [2,19,20,24,27,48,76–78]. The ability of curcumin and resveratrol to modulate these
key inflammatory mediators underscores their potential to address inflammation-related
issues in cartilage.

5. Antioxidant Effects

Oxidative stress has been observed in chondrocytes expressing mutant-COMP [57].
Prolonged ER stress drives the expression of CHOP, which induces endoplasmic reticulum
oxidoreductase 1 beta (ERO1β), that works together with protein disulfide isomerase (PDI)
to eliminate free radicals [79] (Figures 1 and 2). In vitro oxidative stress in chondrocytes
with accumulation of mutant-COMP was demonstrated by increased expression of ERO1β
and NADPH oxidase 4 (NOX4) and reduction in mitochondrial membrane potential [57].
Each of these changes indicates that, in the presence of mutant-COMP, there are excessive
ROS that drive oxidative stress.

Curcumin and resveratrol play a role in neutralizing free radicals, mitigating the
oxidative stress involved in joint damage [10,12,19,28,69,78,80–86]. Oxidative stress is a
key factor in cartilage damage, affecting the tissue at various levels that include damage
to cartilage proteins, contributions to chondrocyte dysfunction, and premature cell death.
Moreover, oxidative stress induces inflammation that drives painful synovitis, associated
with joint degeneration [65,87,88]. Furthermore, inflammation is directly correlated with
pain as it stimulates the expression of molecules known to induce pain [89,90]. By address-
ing oxidative stress and its downstream effects, curcumin and resveratrol may provide a
multi-faceted approach to mitigating joint damage, inflammation, and associated pain in
conditions like osteoarthritis.

6. Cartilage Health

MT-COMP mice develop joint degeneration as early as 20 weeks compared to
9–12 months in the background strain, which is similar to the premature joint degen-
eration observed in PSACH [27]. Numerous studies have demonstrated the chon-
droprotective effects of curcumin and resveratrol, effectively slowing or inhibiting joint
degeneration [1,4–7,10,12,13,18–20,24,27,28,48,77,91–96]. Both resveratrol and curcumin
enhance SIRT1 and autophagy, mechanisms that safeguard chondrocyte viability—essential
for the optimal function of the growth plate and articular cartilage [63,97–99]. The decel-
eration of degradation is likely attributed to reductions in the matrix metalloproteinases
(MMP)-1, MMP-3, MMP-13, and ADAMTS5, which are responsible for breaking down
collagen and aggrecan, the primary components of cartilage [2,19,20,24,27,48,76–78]. No-
tably, resveratrol has been shown to increase the expression of type II collagen and aggre-
can [94,100]. Additionally, both curcumin and resveratrol exhibit the ability to alleviate
chondrocyte senescence, mitigate stiffening, and counteract cartilage glycation—factors that
contribute to degeneration progression [14,27,48,94]. These multifaceted effects underscore
the potential of curcumin and resveratrol as therapeutic agents for mutant-COMP growth
plate pathology and the prevention of joint degeneration processes [66] (Figures 1 and 3).
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Figure 3. CurQ+ and resveratrol impacts in cartilage. This schematic shows cartilage built of ECM
generated by chondrocytes. Orange red block bar (⊥) represents inhibition of MMPs by CurQ+ and
resveratrol. Orange arrows depict resveratrol’s enhancement of ECM synthesis. Image shown is
modified from https://sitn.hms.harvard.edu/flash/2021/treating-osteoarthritis-the-smart-way/
(accessed on 20 Jan 2004).

7. Pain

MT-COMP mice show signs of pain in multiple assays that are proxies for pain
in rodents, including gait changes [27,48], voluntary running, and grooming [18]. Pain
modulation can occur at various levels, encompassing the origin of pain, sensory perception,
and the transmission of signals. The anti-inflammatory properties of both curcumin and
resveratrol play a role in dampening sources of pain [1,3,4,28,87,101–103]. Resveratrol
specifically inhibits nociceptive (pain-sensing) pathways [104–106]. At the same time,
curcumin intervenes by inhibiting the activity of key pain mediators, including bradykinin,
substance P, and TRPV1 (transient receptor potential vanilloid 1), as well as by modulating
the neuronal excitability of sodium channels [20,107–113]. Moreover, both curcumin and
resveratrol alter neurotransmitter levels, influencing the perception and transmission of
pain signals to the central nervous system [114–121]. Curcumin modifies serotonin and
dopamine levels, whereas resveratrol impacts glutamate and serotonin [116–121]. By
targeting these multiple facets of pain processing, curcumin and resveratrol present a
comprehensive approach to pain modification, potentially offering relief across various
dimensions of the pain experience. Importantly, resveratrol treatment of MT-COMP mice
abrogates pain (discussed in Section 9) [18].

8. CurQ+ Normalizes Limb Growth in MT-COMP Mice

Curcumin, an active ingredient in turmeric, has been used in traditional medicine and
cooking for decades. CurQ+, a unique coconut oil-based dispersion technology, is better
absorbed, up to 35-fold more, than 95% dry curcumin in capsules [16]. CurQ+ treatment
of MT-COMP mice from 1 to 4 weeks postnatally restored IL10 levels, which control
MMP13 cartilage degradation and decrease the pro-inflammatory molecules IL6, IL1β,
and TNFα [17]. As expected, IL6, IL1β, TNFα, and MMP13, which drive high levels of
chondrocyte stress, are all dampened in growth plate chondrocytes with CurQ+ treatment
of MT-COMP mice [17]. CurQ+ treatment of MT-COMP mice from 1 to 4 weeks effectively
eliminated mutant-COMP accumulation in the ER and ER stress (CHOP), and preserved
growth plate chondrocyte viability (TUNEL), autophagy (MID1, pS6), and proliferation
(PCNA) [17]. The most important outcome of this study is the normalization of long bone
growth in MT-COMP mice with CurQ+ treatment [17]. Restoring long bone growth is the
gold standard for treating a dwarfing condition. This dramatic result occurred after three
weeks of CurQ+ treatment and is significant given that autophagy blockage jeopardizes
chondrocyte viability and proliferation, which are both crucial to growth plate function
and long bone growth [17]. Significantly, the dosages of curcumin used in these studies did
not negatively impact weight or compromise pup health and are within the range safely
consumed by humans.

https://sitn.hms.harvard.edu/flash/2021/treating-osteoarthritis-the-smart-way/
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9. Resveratrol Preserves Joint Health and Abrogates Pain in MT-COMP Mice

Previously, we showed that resveratrol treatment of MT-COMP mice from birth to
4 weeks recovers approximately 50% of lost limb growth [10,12]. This partial rescue of limb
growth led us to study the effect of resveratrol on premature joint degeneration and pain
in MT-COMP mice [18]. Resveratrol was administered to MT-COMP mice beginning at
birth, 4, 6, and 8 weeks to 20 weeks. Resveratrol dampens articular chondrocyte stress, as
demonstrated by the reduction in ER stress, inflammation, autophagy block, and degener-
ative enzymes (MMP13) [18]. The inflammatory proteins reduced by resveratrol include
TNFα, IL1β, IL6, and IL18 [12,48,60,122]. IL6 and TNFα play a pro-inflammatory role
in joint degeneration (OA) [123–125], and both IL-6 and TNFα stimulate MMP13 expres-
sion [48,76,126], an enzyme that degrades articular cartilage. Clearance of mutant-COMP
from the ER of chondrocytes restored homeostasis, normalized function, and alleviated the
multiple associated stresses. Early resveratrol treatment (beginning at birth or four weeks)
preserved joint health, as joint degeneration scores were equivalent to controls [18]. Specifi-
cally, resveratrol treatment decreases synovitis and bone/cartilage damage and diminishes
the loss of proteoglycans in the articular cartilage [18]. Importantly, resveratrol treatment
ameliorated pain in MT-COMP mice whether administration began at birth or at 4 or
6 weeks [18]. Grooming, a natural behavior, is reduced or less efficient when the mouse
is in pain [127]. This assay was validated by the administration of a pain reliever (ibupro-
fen) or by withholding the induction agent, which normalized grooming scores in the
MT-COMP mice [18]. Direct joint pain is associated with synovitis, meniscal damage, and
subchondral bone remodeling, while inflammation primarily drives indirect joint pain; all
are observed in the MT-COMP mice [58,59]. Given that the MT-COMP mice treated with
resveratrol from 6 to 20 and 8 to 20 weeks have joint degeneration in the absence of pain
suggests that resveratrol suppresses mutant-COMP-induced pain primarily by dampening
inflammation [18]. This study reveals that resveratrol not only improves chondrocyte
health but also addresses clinically relevant issues of structural joint degeneration and pain.

10. Obstacles to Nutraceutical Treatments
10.1. Bioavailability

The low bioavailability of curcumin is primarily linked to its inadequate water sol-
ubility, poor absorption, and rapid elimination from the body [128]. CurQ+ has been
developed to address these challenges, demonstrating enhanced absorption and elevated
serum plasma levels [16,129]. Similar to curcumin, dry resveratrol powder has limited
water solubility, a short half-life, and low oral bioavailability [130–132]. While liquid
resveratrol formulations circumvent the solubility issues associated with desiccation, they
introduce complexities by incorporating additional compounds. These co-purifying com-
pounds may be beneficial (or the source of the benefit), but they obscure the specific impact
of resveratrol.

10.2. Lack of Regulation

Both resveratrol and curcumin are classified as supplements; the United States Fed-
eral FDA does not regulate these products. While this may be advantageous to some
manufacturers as it eliminates the FDA regulatory burden, the lack of stringent regula-
tions for supplements leads to considerable variations in formulations and concentrations
of specific compounds in the product [133]. Our analysis using mass spectroscopy on
five different commercially available resveratrol preparations revealed substantial dispar-
ities between the reported concentrations and the concentrations measured with mass
spectroscopy. The concentrations ranged from 16% to 80% of the labeled concentration.
Nature’s Answer liquid resveratrol demonstrated the concentration closest to the reported
labeled amount and was selected for use in our resveratrol study [18]. The inconsistency in
supplement formulations poses a challenge for consumers in accurately determining the
dosage they are actually taking. This lack of uniformity also hinders clinical evaluations of
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efficacy, as variations in concentrations make it challenging to establish standardized and
reliable outcomes.

10.3. Perspectives

Prudent skepticism toward any new treatment is justified [134,135]. Communication
regarding prescription medications is typically guided by reputable manufacturers and
confined to approved uses. The classification of curcumin and resveratrol as supplements
constrains manufacturers from making therapeutic or treatment claims. In contrast, naturo-
pathic groups and fringe elements within the medical community have exaggerated claims
for supplements, and regulations have not eliminated this problem. Unfortunately, the
designation of resveratrol and curcumin as supplements unintentionally fosters a per-
ception among the public that supplements lack the efficacy and potency necessary for
legitimate consideration as treatments [136,137]. It also implies that potential dangers do
not necessitate stringent regulation, and in the case of resveratrol and curcumin, the risks
are low, but other supplements can pose significant risks. Additionally, the low cost of
supplements produced by multiple manufacturers and the limited profit potential from
a patent introduce financial constraints. The limited profit margins associated with these
products hinder the ability to support comprehensive large-scale clinical trials and fund
rigorous FDA approval processes.

11. Conclusions

Curcumin normalizes growth in young MT-COMP mice [17], while resveratrol pre-
vents early joint degeneration and the associated pain in adult MT-COMP mice [18]. This
suggests that these natural products warrant investigation for their efficacy in PSACH.
However, conducting clinical trials for a rare condition like PSACH poses significant
challenges due to the limited availability of participants. Many individuals with PSACH
manage pain using NSAIDs that thin the blood. Complicating matters more, both curcumin
and resveratrol possess weak blood-thinning properties, and it is unsafe to combine blood-
thinning agents. Consequently, the already restricted pool of participants for a PSACH
clinical trial is further diminished.

The multifaceted impacts of curcumin and resveratrol, encompassing anti-inflammatory,
antioxidant, pro-autophagy, and chondroprotective effects, pose a challenge in isolating
the essential therapeutic attribute for addressing mutant-COMP pathology. Determining
whether the improvements in MT-COMP mice are solely linked to a specific therapeutic
property or the result from the synergistic cross-talk of these properties presents a complex
issue that is impossible to tease out. Our work with the anti-inflammatory aspirin has
shown that the stress cross-talk in the mutant-COMP pathology allows for the dampening
of one stress to reduce others [10]. While this intricacy of synergistic cross-talk might be
perceived as a drawback, especially in the context of FDA applications, it can be argued
that the complex pathology of PSACH benefits from a multi-target approach offered by
curcumin and resveratrol.

Collectively, these formidable challenges, compounded by the inherent complexities
of nutraceutical development, create substantial hurdles for curcumin and resveratrol as
potential treatments for PSACH. Despite these impediments, the life-altering impact of
intractable pain in PSACH that significantly diminishes the quality of life for affected
individuals motivates ongoing research efforts to address this pressing issue.
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