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Abstract: Osteoarthritis (OA) is a debilitating joint disorder that affects millions of people worldwide.
Despite its prevalence, our understanding of the underlying mechanisms remains incomplete. In
recent years, transient receptor potential vanilloid (TRPV) channels have emerged as key players in
OA pathogenesis. This review provides an in-depth exploration of the role of the TRPV pathway
in OA, encompassing its involvement in pain perception, inflammation, and mechanotransduction.
Furthermore, we discuss the latest research findings, potential therapeutic strategies, and future
directions in the field, shedding light on the multifaceted nature of TRPV channels in OA.
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1. Introduction to Osteoarthritis

Osteoarthritis (OA), one of the most common types of arthritis, is a chronic degenera-
tive and disabling disease characterized by complex disease of the entire synovial joint [1],
including structural defects in the hyaliphatic articular cartilage, loss of intact subchondral
bone, meniscal degeneration, infrapatellar fat pad and synovial membrane inflammation
and fibrosis, and instability of tendons and ligaments [2–4]. OA can involve multiple
joints, including the hip, knee, ankle, hand, temporomandibular joint (TMJ), and other
joints [1,5,6], among which the knee, hand, and hip are the most prone to OA [7]. The
estimated global incidence of symptomatic osteoarthritis is 240 million people, including
10% of men and 18% of women aged 60 years and older [2]. In 2021, 22% of adults over the
age of 40 had knee OA, and it is estimated that more than 500 million people are currently
affected by OA globally [8]. According to a large cohort study in the United States, the
prevalence of knee osteoarthritis (KOA) has increased 2.1-fold since the 1950s [9]. The
prevalence of OA is expected to increase from 26.6% to 29.5% by 2032 [10].

OA is the main cause of disability worldwide, and is a significant burden on the medi-
cal and social economy [11–13]. Its clinical manifestations include joint pain, movement
disorder, stiffness, and appearance distortion, which lead to great pain and inconvenience
to patients [1,2,14]. The pathogenesis of OA is still unclear, but many studies have stated
that the pathological changes in OA involve the whole joint [1–4]. At the same time, the
pathological changes in joint tissue lead to the production of proinflammatory factors,
which further stimulate and injure the receptors, resulting in hyperalgesia. Current medical
technology has not been able to cure osteoarthritis, although various treatment options [15],
such as medications, physical therapy, and lifestyle modifications, aim to manage symp-
toms, improve joint function, and enhance the quality of life for affected individuals.
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However, OA with severe symptoms can only eventually be treated with joint replacement.
Joint replacement surgery is increasing at a rate of 10% per year worldwide, and 95% of
these surgeries are performed on patients with OA [16]. Though joint replacement is an
important method for the treatment of OA, which can effectively relieve joint pain, restore
joint function, and improve the quality of life of patients, patients must bear the high cost
and high risk of joint replacement surgery [17]. Therefore, there is an urgent need for a new
strategy for the treatment of OA that can delay the progression of OA via early prevention
before the large-scale destruction of articular cartilage occurs.

2. Etiology of Osteoarthritis

The etiology of osteoarthritis involves various factors, including aging, joint injuries,
female gender, obesity, genetics, and lifestyle [18–20].

Aging has been recognized as the most important risk factor for OA. Although aging
and OA can be completely independent processes, they are closely related from a statis-
tical point of view [21,22]. In recent years, several possible pathological mechanisms of
aging leading to OA have been proposed, for example, joint tissues naturally undergoing
degeneration and repair processes, leading to their decreased efficiency with age [23].
Greene et al. [24] showed that joint tissue cells, including chondrocytes and meniscus cells,
as well as infrapatellar fat adjacent to the knee joint, may be a local source of inflammatory
mediators that increase with age and lead to OA. At the same time, increased production of
proinflammatory mediators such as cytokines and chemokines, as well as matrix-degrading
enzymes important for joint tissue destruction, may be a consequence of cellular senescence
and the development of the senescence-associated secretory phenotype (SASP). In addition,
Blanco et al. [25] and Hui et al. [26] showed that oxidative stress induced by age-related
mitochondrial dysfunction, characterized by excessive accumulation of reactive oxygen
species (ROS) and imbalance of energy metabolism in articular chondrocytes, may promote
articular chondrocyte apoptosis and articular cartilage destruction.

Joint damage is another major risk factor for OA. Felson et al. [27] suggested that
most or almost all aspects of OA are caused by mechanical damage to the joint tissue.
Clinical statistics in the United States predict that traumatic OA accounts for 12–42% of
OA (the proportion varies by age), and the actual proportion may be higher [16]. Recently,
Laitner et al. [28] showed that traumatized joints are five times more likely to develop OA
than untraumatized joints. In recent years, the role of mechanical stress in the pathogenesis
of OA has also been a research hotspot, including the pattern, force, and duration of joint
stress [29,30]. However, the molecular mechanisms of how mechanical stress contributes
to the occurrence and progression of OA need to be studied in more detail to guide the
clinical physiotherapy of OA patients.

It is well known that women are more susceptible to OA than men [7,31]. It has
been shown that 18% of the female population aged 60 years and older suffer from symp-
tomatic OA compared to only 10% of the male population [2,8]. In addition, some recent
studies [28,31,32] have shown that female OA patients have more severe joint pathological
changes and clinical symptoms compared with male OA patients. Although these studies
have suggested that this gender difference may be caused by the reduction in sex hormone
levels in menopausal women, the underlying factors leading to this gender difference in
the development of OA are still not fully understood [28,31,32].

Obesity is another major risk factor for hip and knee OA. The reason may be that
overweight and obesity leads to a significant increase in mechanical load of hip and knee
joints and articular cartilage wear and tear accompanied by ligament destruction in patients,
and eventually leads to the occurrence of OA. Of note, obese patients also have a higher
incidence of OA in the non-weight-bearing hand [33,34]. The reason may be that cytokines
such as retinol binding protein 4 (RBP4), leptin, adiponectin, resistin, and other cytokines
released by a large number of adipocytes in obese patients promote the occurrence and
progression of OA [35–37]. In addition, the increased production of enzymes, oxidative
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stress, and the release of proinflammatory cytokines can lead to cartilage degradation and
inflammation within the joint [38].

In addition, genetics plays a significant role in the development of OA [39]. In the past,
studies have confirmed that genetic factors are associated with OA in humans. A study by
Boer et al. [40] in 2021 confirmed that genetics is a risk factor for 11 types of OA including
hand, hip, and spine. In this study, the authors performed a genome-wide association study
meta-analysis of 826,690 people (177,517 with osteoarthritis) from 13 international cohorts
from nine populations, and identified 100 independently associated risk variants across
11 osteoarthritis phenotypes. Although some genetic studies [39,41,42] have identified
effector genes that affect the development of OA, these genetic data still need to be further
validated and studied.

3. Signal Pathways and Ion Channels Related to Osteoarthritis

In the past few decades, the pathogenesis of OA has been extensively studied [43],
but the complex ion channels and signaling pathways involved in the pathogenesis and
development of OA are still not fully understood. Previous studies have confirmed that
the signaling pathways involved in OA include the Wnt pathway [44–48], Notch path-
way [49–51], AMPK pathway [52–54], nuclear factor-κb (NF-κB) pathway [55–59], MAPKs
pathway [15,60–62], Hippo-YAP pathway [63], TGF-β/Smad pathway [4,64,65], mTOR
pathway [66–68], and the OPG/RANK/RANKL pathway [69,70]. In addition, the ion
channel theory has been increasingly investigated in the pathogenesis of arthritis. Com-
mon related mechanosensitive channels include the degenerin/epithelial sodium channel
(DEG/ENaC), transient receptor potential channel (TRP), two-pore-domain potassium
channel (K2P), and the Piezo channel [71]. Among them, the TRP and Piezo channels are
mechanosensitive ion channels that have been widely studied. These ion channels can
respond to various mechanical stimuli such as gravity, fluid shear stress, compressive stress,
and tensile force [72].

In recent years, a growing number of studies have shown that TRP channels play anti-
inflammatory and analgesic roles in joints while participating in the maintenance of their
normal physiological functions [73–78]. For example, transient receptor potential vanilloid-
1 (TRPV1) has been found to be an important transducer of chemical, inflammatory, and
neuropathic pain signals, and is expressed in a variety of neuronal and non-neuronal tissues
and organs, including chondrocytes, fibroblasts, macrophages, and the dorsal root ganglion
(DRG), which play an important role in inflammatory diseases such as OA and rheumatoid
arthritis [73,74]. Transient receptor potential vanilloid-4 (TRPV4) has been shown to re-
spond directly or indirectly to a variety of mechanical signals, such as stretch, compression,
osmotic pressure, and shear stress [75]. Recently, functional changes in TRPV1 and TRPV4
channels have been identified as risk factors for OA, and their abnormal expression and
function can cause cell necrosis and apoptosis, cartilage extracellular matrix degradation,
synovial inflammatory response, and hyperalgesia [76–78], suggesting that TRPV1 and
TRPV4 play an important role in OA pain generation as well as disease progression. There-
fore, TRPV is expected to become a new therapeutic target for the treatment of OA. It
is of great significance to study the expression and mechanism of TRPV in OA, and to
develop TRPV-related drugs to inhibit OA pain and structural destruction. This article
comprehensively summarizes the expression and mechanism of TRPV channels in OA as
well as the progress of TRPV-channel-related drugs in OA treatment, in order to provide
new insights and ideas for the clinical treatment of OA in the future.

4. The TRPV Channel Family Overview

TRPV channels are part of the TRP channel superfamily, and are named for their
sensitivity to vanillic acid and capsaicin [79–81]. TRPV channels are multimodal proteins
gated by a variety of mechanisms that are structurally similar to other TRP channels, but
contain an additional 3–5 ankyrin repeat domain at the N-terminus [82]. This N-terminal
anchoring protein repeat domain is one of the important clues for understanding the
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functional diversity of TRPV channels [83]. The TRPV subfamily consists of TRPV1–6
members, which are divided into two subgroups: TRPV1–4 and TRPV5–6 [84]. TRPV1–4
can be activated by heat, and are therefore referred to as thermal TRP channels [85]. They
form homogeneous and heterogeneous channels that show mild Ca2+ selectivity [86].
However, TRPV5 and TRPV6 can form homologous and heteromeric channels that are
highly selective for Ca2+ [87,88]. Although the TRPV family members are highly similar in
sequence, each member exhibits specific expression and biological functions.

TRPV1 channels are expressed in both neuronal and non-neuronal cells, and there
is evidence that TRPV1 channels play a key role in various physiological functions [89].
TRPV1 is highly expressed in small-diameter sensory neurons such as the DRG, trigeminal
ganglia, and vagal ganglia [90,91], and is mainly localized in the plasma membrane [92,93].
TRPV1 channels can be blocked by noxious heat (>42 ◦C) [94], animal peptide toxins,
fatty acids, active compounds (such as capsaicin [90]), and other irritants [95] activated
and involved in thermal nociception [96–98]. Caterina et al. [97] showed that knockout
TRPV1-/-mice exhibited reduced postinflammatory thermal hyperalgesia and impaired
nociception. In addition, Plant et al. [96] showed similar results where heat-induced
pain perception was impaired in TRPV1 KO mice. Thus, TRPV1 agonists induce pain-
related behaviors in mice, whereas the pain-related behaviors are attenuated in TRPV1
null mice. Drug blockades have shown analgesic effects in various pain models, including
arthritis and cancer pain [99]. TRPV1 is also involved in the physiological function of
non-neuronal tissues, and studies have found that non-neuronal expression is seen in the
arteriolar smooth muscle of the skin and trachea [100,101]. In addition, TRPV1 plays a role
in respiratory tract functions such as coughing [102]. In smooth muscle and endothelial
cells, it contributes to the control of chronic hypoxia-induced vasculature [103], and in
keratinocytes it may be involved in skin proliferation promoted by low pH [104].

TRPV2 is widely expressed in almost all cell types, but is particularly highly expressed
in the DRG, brain, lung, and spleen [92,105]. Under normal physiological conditions,
TRPV2 channels are mainly located in the inner membrane of the cell [106,107]. However,
after stimulation by growth factors (IGF-I), hormones, cytokines, and endocannabinoids,
they translocate from the inner membrane to the plasma membrane [105,108]. TRPV2
has a variety of physiological roles, ranging from sensing noxious stimuli to nocicep-
tion. TRPV2 exerts its function mainly by acting as a lipid sensor, thermal sensor, and
mechanical sensor to regulate intracellular calcium homeostasis [109,110]. In addition,
TRPV2 function is regulated by phosphatidylinositol 4, 5-bisphosphate (PIP2) and extra-
cellular signal-regulated kinase (ERK)-dependent phosphorylation [107,111]. TRPV2 acts
as a nonspecific cation channel activated by noxious temperatures of 52 ◦C to regulate
thermal nociception, and responds to low osmolality, stretch, and shear stress in tissues
other than the brain [112]. Aguettaz et al. [113] found that TRPV2 was highly expressed
in cardiomyocytes and involved in the stretch-dependent response of the heart. Simi-
larly, Naticchioni et al. [114] showed that mice lacking TRPV2 exhibited impaired cardiac
function. TRPV2 plays an important role in maintaining Ca2+ homeostasis in vascular
smooth muscle and cardiomyocytes [115]. Overstimulation of TRPV2 has been implicated
in muscular dystrophy, myocardial fibrosis, and cardiomyopathy caused by Ca2+ over-
load [116,117]. In addition, the expression and normal function of TRPV2 in different types
of immune cells were confirmed, and macrophages showed an especially high expres-
sion rate of TRPV2 [110,118]. Link et al. [119] observed impaired macrophage activation in
TRPV2-deficient mice, resulting in increased susceptibility to bacterial infection. In addition,
Santoni et al. [120] reported that TRPV2 was overexpressed in different types of cancer.

TRPV3 is widely expressed in a variety of tissues, including the brain, sensory neurons,
DRG, spinal cord, tongue, nose, palate, colon, and testis [93,121], and especially in epithe-
lial cells and keratinocytes of skin [122,123]. TRPV3 is a Ca2+-permeable, nonselective,
temperature-sensitive cation channel that responds to noxious heat, with a threshold of
approximately 39 ◦C in skin keratinocytes [124]. Activation of TRPV3 can regulate a variety
of downstream functions, including skin barrier formation, wound healing, temperature
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perception, pruritus, and pain [125,126]. Thus, TRPV3 is essential for normal skin barrier
formation [127]. On the other hand, excessive activation of TRPV3 can lead to skin damage
and increase the risk of dermatitis [128]. Recently, Zhong et al. [129] showed that a gain in
function mutation in the TRPV3 gene can cause Olmsted syndrome, which is characterized
by progressive hyperkeratosis leading to hand and foot damage, inflammatory dermatitis
infiltration, abnormal hair growth, pruritus, and pain. Notably, Moqrich et al. [130] found
that TRPV3 KO mice did not respond to harmless/noxious heat. Cheng et al. [127] further
found that TRPV3−/− gene knockout mice showed wavy ear flaps, curly whiskers, and
changes in temperature preference.

In contrast to other thermal TRPV channels, TRPV4 has been implicated in a number
of channel diseases, suggesting a broad expression pattern and multiple physiological func-
tions. TRPV4 is highly expressed in the musculoskeletal tissues, kidney, heart, liver, spleen,
brain, sensory neurons, skin, epithelial cells, urinary tract, and vascular system [131–133].
TRPV4 is a Ca2+-permeable, nonselective cation channel that is expressed in a variety
of tissues, and responds to stimuli such as temperature, mechanical stress, hypotonic
conditions, and small-molecule compounds [134]. TRPV4 directs various physiological
functions in different cell types through mediated Ca2+ influx, and plays an important
role in cell volume regulation [135,136]. For example, it is expressed in vascular endothe-
lial cells and contributes to the regulation of vascular tone and blood pressure [137]. In
mammary epithelial tissue, TRPV4 specifically regulates the integrity of cell–cell junctions
through the expression of tight junction proteins [138]. TRPV4 regulates osmotic balance
by regulating water secretion in the kidney, and contributes to renal function [139]. In the
musculoskeletal system, TRPV4 is required for mechanical stress transduction [140]. In
addition, TRPV4 protects the skin barrier [141], regulation of hair follicle growth [142],
and pruritus in some pathologies [143]. Interestingly, TRPV4−/− mice showed only slight
changes in temperature response, while other physiological functions were significantly
more affected [144]. Knockout mice have impaired bladder function, increased bladder vol-
ume, increased bone mass, impaired vascular endothelial function, and impaired pressure
and pain perception [145,146]. In contrast to the mild phenotypic alterations in mice, more
than 50 TRPV4 gene mutations were detected. These mutations cause a variety of diseases
in human patients, such as different forms of skeletal dysplasia, neuropathy, and muscular
atrophy [147].

TRPV5 and TRPV6 share 75% amino acid sequence identity; thus, they are both highly
selective for Ca2+, sensitive to 1,25-dihydroxy-vitamin D3 (1,25-(OH)2-VitD3), and play
important roles in maintaining Ca2+ homeostasis and regulating bone metabolism [87,88].
TRPV5 was mainly expressed in the distal convoluted tubule (DCT) and connecting tubule
(CNT) of the kidney [148,149], and its mRNA was found in human placenta, osteoclasts, and
lymphocytes in low amounts [150,151]. However, TRPV6 is significantly expressed in a va-
riety of tissues, including the gastrointestinal tract, kidney, placenta, breast, pancreas, testis,
and prostate, especially in prostate cancer and most other common cancers [109]. Several
recent studies [152–156] have also confirmed that TRPV5 and TRPV6 play important roles
in maintaining Ca2+ homeostasis and regulating bone metabolism. Hoenderop et al. [152]
showed that TRPV5 gene knockout mice exhibited dysfunction of Ca2+ reabsorption and se-
vere hypercalciuria, followed by significant abnormalities in bone structure. Subsequently,
Renkema et al. [153] further confirmed that TRPV5−/−mice exhibited strong urinary Ca2+

excretion, followed by a significant increase in serum concentrations of calcitriol and
parathyroid hormone (PHT) as a compensatory mechanism. As a result of the elevated
concentrations of these hormones, a decrease in bone mineral density and increased Ca2+

reabsorption in the GI tract were observed [154]. TRPV6 contributes to intestinal Ca2+

absorption [155], and Bianco et al. [156] found that TRPV6 gene knockout mice had reduced
bone mineral density and increased serum Ca2+ concentration. The basis for maintaining
normal bone metabolic activity is to maintain a dynamic balance between bone formation
by osteoblasts and bone resorption by osteoclasts. Osteoblasts are the most important func-
tional cells in the process of bone formation and development, and also regulate osteoclasts
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to a certain extent [157,158]. Ca2+ transport in and out of cells is closely related to these
bone metabolic processes [158]. Therefore, a certain degree of dynamic balance must be
maintained between blood calcium and bone calcium.

In summary, TRPVs serve as sensors for different stimuli (heat, mechanical stress, and
cytokines); play diverse and critical roles in both physiological and pathological processes
in most tissues; and contribute to the homeostasis of electrolytes, the maintenance of barrier
functions, and the development of macrophages (Table 1). Consequently, investigating the
functions and regulatory mechanisms of these channels is significant for understanding the
pathogenesis of related diseases and developing novel therapeutic strategies.

Table 1. The functions of TRPV channels.

Channels Distribution Functions Pathological Roles Related Diseases References

TRPV1
Brain, DRG, Sensory nerve,
Liver, Kidney, Brain, Urinary
bladder, Pancreas, Testis

Mechanosensitivity;
Thermosensitivity;
Neurodepolarization

Inflammatory pain;
Neuropathic pain;
Aberrant
thermosensitivity

Osteoarthritis;
Migraine; ARDS;
Fibromyalgia

[96–99,159–162]

TRPV2

Brain, DRG, Sensory nerve,
Spinal cord, Liver, Lung,
Spleen, Muscle, Intestine,
Urinary bladder, Immune cells

Thermosensitivity;
Thermosensitivity; Cell
cycle regulation

Cell proliferation
abnormalities; Tumor
growth; Mechanical
injury sensitivity

Heart failure [75,91,105,109,110,120,163]

TRPV3

Keratinocytes, Brain, DRG,
Sensory nerve, Spinal cord,
Skin, Tongue, Nose, Palate,
Colon, Testicles

Thermosensitivity; Maintain
normal skin barrier

Skin injuries; Pain
symptoms; Sensory
abnormalities

Dermatitis;
Psoriatic lesions;
Olmsted syndrome

[75,93,123,127–129,164,165]

TRPV4

Musculoskeletal tissue, Brain,
Skin, Sensory neurons, DRG,
Kidney, Liver, Lung, Spleen,
Heart, Vascular endothelia

Mechanosensitivity;
Thermosensitivity;
Regulates the
musculoskeletal system

Inflammation; Pain
perception; Cellular
deformation; Cell
proliferation
abnormalities

Osteoarthritis;
Skeletal dysplasia;
Neuromuscular
disorders

[131–134,140,147,166–168]

TRPV5 Kidney, Placenta,
Pancreas, Prostate

Maintenance of Ca2+

homeostasis;
Renal regulation

Calcium metabolism
abnormalities;
Renal diseases

Nephrolithiasis;
Osteoporosis; [75,88,148,149,152–154,169,170]

TRPV6
Intestine, Kidney, Pancreas,
Breast, Placenta,
Testes, Prostate

Maintenance of Ca2+

homeostasis; Intestinal
calcium regulation

Calcium metabolism
abnormalities;
Intestinal inflammation

Osteoporosis;
Hyperparathy-
roidism; Cancer

[75,88,109,155,156,169,170]

5. The Expression and Role of TRPV Channels in Osteoarthritis

In summary, TRPV ion channels are widely distributed in various systems and tissues
of the human body. TRPV ion channels are a class of cation channels that can respond to a
variety of stimuli such as harmful heat, hormones, cytokines, small-molecule compounds,
and mechanical stress, and are involved in a variety of signaling pathways. Therefore,
in the context of osteoarthritis, it is of great significance to further study their expression
and mechanism of action in OA, and to develop TRPV-related drugs to inhibit OA pain,
inflammation, and structural destruction.

5.1. TRPV1

TRPV1, as a widely distributed ion channel in the nervous system, is highly expressed
in nerve terminals such as the DRG, trigeminal ganglia, and vagal ganglia [90,91,171].
There is evidence of a key role in various physiological functions [89] and a crucial role
in the context of osteoarthritis [76–78]. In the investigation conducted by Cho et al. [172],
advanced tracing and immunocytochemistry techniques were employed to demonstrate
the presence of TRPV1-positive fibers innervating both knee and ankle joints in mice. Their
study revealed widespread expression of TRPV1 channels in the synovium, cartilage, and
nerve fibers associated with joints, emphasizing the crucial role of TRPV1 in detecting and
transmitting pain signals related to joint conditions.

Throughout the pathological progression of osteoarthritis, the release of inflammatory
factors activates TRPV1 channels, thereby triggering an increase in neuronal excitability
and intensifying the transmission of pain signals [173]. The activation of TRPV1 channels
could lead to the release of inflammatory mediators, such as hormones and cytokines,
contributing to the development and persistence of joint pain and inflammation [174].
Kochukov et al. [175] proposed that TRP channels are functionally expressed in human
synoviocytes, potentially playing a crucial role in adaptive or pathological alterations
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of joint surfaces during arthritis inflammation. Subsequent studies in articular cartilage
showed that exposure of chondrocytes to the inflammatory factors IL-1β and TNF-α
resulted in increased TRPV1 expression in chondrocytes [176]. Another study found
that TNF-α could regulate TRPV4 through the p38MAPK inflammatory pathway [177].
Spahn et al. [178] delved into the sensitization of TRPV1 via activation of TRPA1, involving
adenylyl cyclase, increased cAMP, subsequent translocation and activation of PKA, and
phosphorylation of TRPV1 at PKA phosphorylation residues.

In addition, TRPV1 is expressed in some immune cells, and is a novel regulator of
the immune system [179,180]. Lv et al. [181] observed a simultaneous increase in TRPV1
expression and M1-type macrophage infiltration in human and rat OA synovia. Their
results indicate that TRPV1 inhibits the polarization of M1 macrophages in the synovium
through the Ca2+/CaMKII/Nrf2 signaling pathway, thereby reducing the progression of
OA. In addition, Engler et al. [182] demonstrated the expression of TRPV1 in synovial
fibroblasts (SFs) from patients with symptomatic OA and rheumatoid arthritis (RA). Stimu-
lation of cultured OA-SF and RA-SF with the TRPV1 agonist capsaicin resulted in increased
expressions of IL-6 mRNA and IL-6 protein in the cell culture supernatant. This suggests a
non-neuronal role for TRPV1 in regulating nociception in symptomatic OA and RA patients.
A recent study by DEWAKER et al. [183] in 2023 further elaborated the important role of
TRPV1 in the detection of noxious stimuli (heat, acid, capsaicin). Its role in pain makes it a
potential drug target for the treatment of chronic pain, migraines, and related disorders.

Overall, the involvement of TRPV1 in inflammatory responses, particularly its respon-
siveness to thermal stimuli, establishes it as a pivotal nexus linking pain and inflamma-
tion [184]. In osteoarthritis, TRPV1 primarily expressed in sensory neurons contributes
to pain perception and transmission. It becomes activated in response to inflammatory
mediators, contributing to heightened pain sensitivity. Additionally, TRPV1 activation
leads to the release of proinflammatory cytokines, further exacerbating the inflammatory
response [185]. Therefore, the mechanisms of TRPV1 in osteoarthritis encompass its distri-
bution within the nervous system and its intricate regulatory role in pain transmission and
inflammatory responses (Figure 1).

Biomolecules 2024, 14, x FOR PEER REVIEW  8  of  25 
 

pathophysiology of  joint disorders. These findings highlight  the potential of  targeting 

TRPV1, offering promising approaches for the development of therapeutic strategies for 

OA. 

 

Figure 1. The roles of TRPV1 channels in osteoarthritis. (1, 2a, 3a) The release of inflammatory fac-

tors activates TRPV1 channels, thereby triggering an increase in neuronal excitability and intensify-

ing the transmission of pain signals. (1, 2b, 3b) The activation of TRPV1 channels could lead to the 

release of inflammatory mediators, such as hormones and cytokines, contributing to the develop-

ment and persistence of joint pain and inflammation. Furthermore, thermal stimulation during in-

flammation  enhances  TRPV1  sensitivity  in  the  pain  pathway.  Created  by  Figdraw.com 

(https://www.figdraw.com). 

5.2. TRPV2 

As a nonspecific cation channel, TRPV2 is widely expressed in almost all cell types, 

and has a variety of physiological roles ranging from sensing noxious stimuli to pain sen-

sation  [92,109]. Therefore, exploring  the expression and role of TRPV2  in osteoarthritis 

will elucidate the molecular mechanism of osteoarthritis. 

In a seminal study conducted by Nakamoto et al. [186], an exploration into the ex-

pression of TRPV2 in both mouse and human articular cartilage, as well as ectopic ossifi-

cation  lesions, revealed noteworthy  insights  into the regulatory mechanisms governing 

articular  cartilage.  The  study  underscored  the  pivotal  role  of  TRPV2  in  this  context, 

demonstrating its influence through the induction of Prg4 and the simultaneous suppres-

sion of ectopic ossification. This compelling evidence strongly suggests that TRPV2 plays 

a crucial protective role in the maintenance of joint health. Furthermore, it proposes the 

potential of TRPV2 as a viable target for innovative approaches to osteoarthritis treatment. 

In a parallel vein, Laragione et al. [187] delved into the intricate web of signaling molecules 

within  fibroblast-like  synoviocytes  (FLSs)  derived  from  rheumatoid  arthritis  patients. 

Their investigation brought to light a novel facet of TRPV2 function, namely its ability to 

suppress the activation of specific signaling molecules such as Rac1 and RhoA. This find-

ing implies a significant regulatory role of TRPV2 in key processes related to cell invasion 

in the context of arthritis. Consequently, the study posits TRPV2 as a potential therapeutic 

target for addressing the intricate mechanisms underlying this debilitating condition. 

By synthesizing these findings, it becomes evident that TRPV2 emerges as a multi-

faceted player in joint health, exerting protective effects in the realm of articular cartilage 

maintenance and demonstrating regulatory potential in the context of arthritis. The stud-

ies by Nakamoto et al. [186] and Laragione et al. [187] collectively contribute to a growing 

Figure 1. The roles of TRPV1 channels in osteoarthritis. (1, 2a, 3a) The release of inflammatory factors
activates TRPV1 channels, thereby triggering an increase in neuronal excitability and intensifying the
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of inflammatory mediators, such as hormones and cytokines, contributing to the development and
persistence of joint pain and inflammation. Furthermore, thermal stimulation during inflammation
enhances TRPV1 sensitivity in the pain pathway. Created by Figdraw.com (https://www.figdraw.com).
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These studies highlight the relevance of TRPV1 channels in arthritis, where they signifi-
cantly contribute to the pain and inflammation characteristics of the disease, and contribute
to our understanding of the intricate involvement of TRPV1 channels in the pathophysiol-
ogy of joint disorders. These findings highlight the potential of targeting TRPV1, offering
promising approaches for the development of therapeutic strategies for OA.

5.2. TRPV2

As a nonspecific cation channel, TRPV2 is widely expressed in almost all cell types,
and has a variety of physiological roles ranging from sensing noxious stimuli to pain
sensation [92,109]. Therefore, exploring the expression and role of TRPV2 in osteoarthritis
will elucidate the molecular mechanism of osteoarthritis.

In a seminal study conducted by Nakamoto et al. [186], an exploration into the expres-
sion of TRPV2 in both mouse and human articular cartilage, as well as ectopic ossification
lesions, revealed noteworthy insights into the regulatory mechanisms governing articular
cartilage. The study underscored the pivotal role of TRPV2 in this context, demonstrating
its influence through the induction of Prg4 and the simultaneous suppression of ectopic
ossification. This compelling evidence strongly suggests that TRPV2 plays a crucial pro-
tective role in the maintenance of joint health. Furthermore, it proposes the potential of
TRPV2 as a viable target for innovative approaches to osteoarthritis treatment. In a parallel
vein, Laragione et al. [187] delved into the intricate web of signaling molecules within
fibroblast-like synoviocytes (FLSs) derived from rheumatoid arthritis patients. Their inves-
tigation brought to light a novel facet of TRPV2 function, namely its ability to suppress the
activation of specific signaling molecules such as Rac1 and RhoA. This finding implies a
significant regulatory role of TRPV2 in key processes related to cell invasion in the context
of arthritis. Consequently, the study posits TRPV2 as a potential therapeutic target for
addressing the intricate mechanisms underlying this debilitating condition.

By synthesizing these findings, it becomes evident that TRPV2 emerges as a multi-
faceted player in joint health, exerting protective effects in the realm of articular cartilage
maintenance and demonstrating regulatory potential in the context of arthritis. The studies
by Nakamoto et al. [186] and Laragione et al. [187] collectively contribute to a growing
body of knowledge that positions TRPV2 as a promising avenue for further exploration in
the quest for innovative osteoarthritis treatments.

5.3. TRPV3

TRPV3 is a Ca2+-permeable, non-selective, and temperature-sensitive cation channel [124].
When activated, TRPV3 can regulate a variety of downstream functions, including skin
barrier formation, wound healing, temperature perception, pruritus, and pain [125,126].
However, its expression and function in osteoarthritis are still unclear.

In the investigation conducted by Somogyi et al. [188], the mRNA expressions of
TRPV1, TRPV2, TRPV3, TRPV4, and TRPV6 were identified in high-density cartilage
cultures established from the limb buds of chicken and mouse embryos. Notably, the
expression pattern of TRPVs underwent a switch during chondrogenesis in both cultures.
Inhibition of TRPVs with nonselective calcium channel blockers not only reduced chondro-
genesis, but also significantly inhibited proliferation. Furthermore, incubating cell cultures
at 41 ◦C resulted in increased TRPV1 expression and enhanced cartilage matrix production.
Additionally, elevated mRNA levels of TRPV3 were detected during the differentiation of
chondrocytes into matrix-producing chondrocytes. These findings collectively demonstrate
that TRPV1 and TRPV3 expressions are responsive to thermal and mechanical stimuli,
respectively. As a result, these channels emerge as potential candidates contributing to
the transduction of environmental stimuli in chondrogenic cells. This study provides
valuable insights into the dynamic regulation of TRPV expression during chondrogenesis,
and highlights the roles of TRPV1 and TRPV3 in responding to specific environmental cues,
thereby influencing the behavior of chondrogenic cells. The research by Somogyi et al. [188]
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contributes to our understanding of the intricate interplay between TRPV channels and
environmental stimuli in the context of cartilage development.

5.4. TRPV4

TRPV4 is a Ca2+-permeable, nonselective cation channel that is expressed in a variety
of tissues, and responds to stimuli such as temperature, mechanical stress, hypotonic
conditions, and small-molecule compounds [134]. Previous studies have shown that the
functional change in the TRPV4 channel is considered a risk factor for OA, and it plays an
important role in the production of OA pain and disease progression [76–78].

As an intracellular second messenger, Ca2+ has been implicated in the survival and
functional expression of chondrocytes. Previous studies have shown that inflammatory
factors such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) can promote
TRPA1 mRNA and protein expression and channel opening; this causes a large influx
of Ca2+ into the cell, but eventually leads to chondrocyte apoptosis due to intracellular
Ca2+ overload and mitochondrial dysfunction [189,190]. Activation of TRPV4 channels
promotes the expressions of cartilage marker SRY-related high mobility group-box 9 (Sox9),
aggrecan (ACAN), and collagen II (COL-II) through the Ca2+/calmodulin (CaM) signal-
ing pathway [191]. SOX9 plays an important role in chondrogenesis, differentiation, and
functional maintenance of chondrocytes. Thus, TRPV4 serves as a key regulator of chon-
drogenesis. Recent studies have confirmed that TRPV4 channels affect the formation and
development of bone and joint diseases by regulating Ca2+ homeostasis. For example, the
study of Muramatsu et al. [192] showed that activation of TRPV4 increased the steady-state
expression of SOX9 mRNA and protein, as well as SOX6 mRNA, suggesting its role in
regulating the SOX9 pathway and promoting the chondrogenesis process. Clark et al. [193]
delved into the changes in osteoarthritis and bone structure by examining knee joints in
TRPV4−/− mice at different age intervals. The loss of TRPV4 resulted in a deficiency in
osmotically induced calcium signaling in articular chondrocytes, accompanied by a progres-
sive, sex-dependent increase in bone mineral density and osteoarthritis joint degeneration.
The presence of TRPV4 in articular chondrocytes and its involvement in the response to
low osmolality are mediated by the release of extracellular Ca2+ and intracellular Ca2+.
Moreover, TRPV4 was implicated in regulating the production or influence of proinflamma-
tory molecules on the osmotic response [194]. Masuyama et al. [195], in experiments with
TRPV4 (R616Q/V620I) transgenic mice, revealed that activation of TRPV4 in osteoclasts
regulates Ca2+/calmodulin signaling, increasing the number of osteoclasts and their re-
sorptive activity, and leading to bone loss. Itoh et al. [167] conducted experimental studies
on synoviocytes from patients with rheumatoid arthritis (RA) and non-rheumatoid arthritis
(CTR), revealing TRPV4 as a novel regulator of intracellular Ca2+ in human synoviocytes. In
addition, the mutations in TRPV4 cation channels can cause various osteoarticular diseases,
including skeletal dysplasia with severe dwarfism and bone mineral density and structural
abnormalities [168].

Biomechanical factors play a key role in the pathogenesis of OA, especially mechanical
stress. Chondrocytes transform mechanical stimulation signals into cellular metabolic and
biosynthetic activities through mechanoreceptor-mediated mechanotransduction, thereby
affecting cartilage growth and development and the degenerative process of OA [196,197].
Mechanical loading in the form of cyclic stretch could activate TRPV4 channels in articular
chondrocytes, thereby inhibiting IL-1β-induced nitric oxide (NO) and prostaglandin E2
(PGE2) release [198]. The production of inflammatory mediators, such as NO and PGE2,
can lead to cartilage degeneration in OA. Thus, TRPV4 plays an important regulatory role
in chondrocyte inflammatory signal transduction. Khatib et al. [199] demonstrated that
TRPV4 plays a crucial role in prenatal osteojoint development, influencing cartilage growth
and joint formation by responding to mechanical stimuli. TRPV4 protein expression in
both osteoblasts and osteoclasts, as well as TRPV4 deficiency suppressed reduced levels of
mineral deposition and bone formation due to unloading, indicating TRPV4 plays a key role
in unloading-induced bone loss [200]. O’Conor et al. [201] verified the high expression of
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TRPV4 in articular chondrocytes, and emphasized its central role in transducing mechanical
signals, supporting the maintenance of the cartilage extracellular matrix, and joint health.
In 2022, Zhang et al. [202] further explained that TRPV4 was involved in the sensing of
mechanical and inflammatory signals in chondrocytes, and introduced the important role
of TRPV4 in regulating the mechanical conduction of various functions of chondrocytes
in the biomechanical microenvironment. In summary, advances in understanding the
complex role of TRPV4-mediated mechanical signaling mechanisms hold promise for
reproducing the physio-biomechanical microenvironment and designing biomaterials
with cell-inducing effects for cartilage tissue engineering, and targeting TRPV4-mediated
mechanotransduction was proposed as a potential strategy for treating diseases such
as osteoarthritis.

Furthermore, studies have shown that M1 macrophages are considered to be the main
cause of pathological changes in OA tissues, which include osteophyte formation and
synovitis [203]. Activation of TRPV4 channels in synoviocytes leads to the generation of
reactive oxygen species (ROS), which oxidize protein and lipid components and cause
synoviocyte apoptosis in OA, and excessive ROS production promotes the production of in-
terleukins and MMPs, thereby accelerating the degradation of the extracellular matrix [204].
Sun et al. [204] showed that inhibition of TRPV4 in a rat OA model could effectively allevi-
ate cartilage damage, synovitis, and osteophyte formation, and also reduces the number
of M1 macrophages in the synovium. In vitro studies also found that blocking TRPV4
channels in RAW264.7 cells could inhibit the ROS/NLRP3 signaling pathway, thereby
reducing the polarization of M1 macrophages to inhibit the progression of OA.

These studies collectively contribute to our comprehensive understanding of the mul-
tifaceted role of TRPV4 in joint health, cartilage development, and bone homeostasis. The
findings also suggest potential therapeutic implications for targeting TRPV4 in conditions
such as osteoarthritis, and for enhancing matrix formation in tissue-engineered cartilage
(Figure 2).

5.5. TRPV5

TRPV5 is highly selective for Ca2+, and plays an important role in maintaining Ca2+

homeostasis [87,88]. TRPV5 is mainly expressed in the kidney, where it regulates Ca2+

reabsorption [148,149]. Previous studies [152] have shown that TRPV5 knockout mice
exhibit reduced bone mineral density and significant abnormalities in bone structure.
Zhou et al. [205] conducted a comprehensive examination of TRPV5 expression in articular
chondrocytes under normal and exercise loading conditions. Their results revealed ubiqui-
tous expression of TRPV5 in all osteochondral tissues, with its expression level dependent
on bone and joint loading. This suggests a potential role for TRPV5 in the formation and
development of cartilage tissue. In a related study, Chen et al. [206] investigated the protec-
tive effects of magnesium sulfate on cartilage in rabbits, implicating autophagy initiation
mechanisms potentially linked to TRPV5. This suggests that reducing TRPV5 activity could
be beneficial for cartilage health and regeneration, offering insights into therapeutic ap-
proaches for conditions like post-traumatic osteoarthritis (PTOA). Examining the influence
of culture and passage times on TRPV4, TRPV5, and TRPV6 expressions in articular chon-
drocytes, Hdud et al. [207] found that these channels were consistently expressed across all
passages, with TRPV5 and TRPV6 showing upregulation over time and passages. These
findings suggest the potential involvement of these TRPV channels in calcium signaling
and homeostasis in chondrocytes. More recently, Wei et al. [208,209] observed upregulation
of TRPV5 expression in chondrocytes of osteoarthritic rats, implicating TRPV5 as a crucial
initiator of exogenous chondrocyte apoptosis. The mechanism involves upregulated TRPV5
activating CaMKII phosphorylation by regulating Ca2+ influx, subsequently impacting
chondrocyte apoptosis through MAPK and Akt/mTOR pathways.
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Figure 2. Mechanisms of TRPV4 channels in osteoarthritis. Inflammatory factors such as IL-1β
and TNF-α can promote TRPV4 channel opening; this causes a large influx of Ca2+ into the cell.
Activation of TRPV4 channels promotes the expressions of Sox9, ACAN, and COL-II through the
Ca2+/calmodulin (CaM) signaling pathway; this promotes chondrocyte formation and differentiation.
However, the activation of TRPV4 channels leads to the release of inflammatory mediators (MMPs, IL-
1β, IL-6, and TNF-α), contributing to the development and persistence of joint pain and inflammation.
Created by Figdraw.com (https://www.figdraw.com).

These studies collectively shed light on the intricate role of TRPV5 in cartilage bi-
ology and pathology, suggesting its potential as a therapeutic target for conditions like
osteoarthritis. The findings contribute to our understanding of the molecular mechanisms
underlying cartilage homeostasis and disease progression, opening avenues for further
research into innovative treatment strategies.

5.6. TRPV6

Like TRPV5, TRPV6 is highly selective for Ca2+ and plays an important role in main-
taining Ca2+ homeostasis by regulating intestinal Ca2+ absorption [87,88,155]. Further-
more, TRPV6 knockout mice were found to have reduced bone mineral density [156].
Song et al. [210] conducted an analysis of the expression level of TRPV6 in both an os-

https://www.figdraw.com
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teoarthritis (OA) rat model and knee cartilage obtained from OA patients. Additionally,
they explored bone structure and observed osteoarthritis changes in the knee joints of
TRPV6 gene knockout mice. The findings revealed a significant downregulation of TRPV6
expression in the OA rat model. Furthermore, TRPV6 knockout mice exhibited pronounced
osteoarthritis changes, characterized by cartilage fibrillation, eburnation, and loss of pro-
teoglycans. Notably, the depletion of TRPV6 had a substantial impact on chondrocyte
functions, influencing extracellular matrix secretion, release of matrix-degrading enzymes,
as well as cell proliferation and apoptosis.

These results collectively underscore the potential role of TRPV6 in the pathogenesis
of osteoarthritis, shedding light on its involvement in maintaining cartilage integrity and
regulating key cellular processes within chondrocytes. The research by Song et al. [210]
contributes valuable insights into the molecular mechanisms underlying osteoarthritis,
presenting TRPV6 as a potential target for further exploration in the development of
therapeutic interventions for this debilitating condition.

In summary, with the deepening of research, significant progress has been made in the
research of the TRPV pathway in osteoarthritis. For example, researchers have developed
animal models for osteoarthritis to simulate the disease’s progression [211]. These models
are used to validate the precise role of the TRPV pathway in pain perception, inflammation,
and joint destruction. These studies provide crucial information on how the TRPV pathway
affects the entire disease process. Together, these results highlight the potential role of TRPV
channels in the pathogenesis of osteoarthritis, revealing their involvement in maintaining
cartilage integrity and regulating key cellular processes within chondrocytes. Therefore,
TRPV is expected to become a new therapeutic target for the treatment of OA, and the
continued search for TRPV-related drugs to inhibit OA pain, inflammation, and structural
destruction is of great significance for the treatment of OA (Table 2).

Table 2. The expressions of TRPV channels in osteoarthritis.

Channels Distribution Species Results/Conclusions References

TRPV1

Synovium; Cartilage;
Nerve fibers associated

with joints
Mouse TRPV1 positive fibers regulate knee and ankle pain

sensation in mice [172]

Synovium
Synoviocytes; Patients

with inflammatory
arthropathies

TRP1 channels are functionally expressed
in human synoviocytes [175]

Synovium Rats and patients with OA
TRPV1 expression and M1 macrophage infiltration
were simultaneously increased in both human and

rat OA synovia
[181]

Synovial fibroblasts Patients with symptomatic
OA and RA

TRPV1 is expressed in SF from symptomatic OA
and RA patients [182]

TRPV2
Articular cartilage

Ectopic ossification lesions Mouse; Human
Regulation of articular cartilage by TRPV2 through

Prg4 induction and suppression of
ectopic ossification

[186]

Fibroblast-Like
Synoviocyte (FLS) Patients with RA Stimulation of TRPV2 in FLS is capable of

suppressing the activation of RhoA and Rac1 [187]

TRPV3 Cartilage Chicken and mouse
embryos The mRNA level of TRPV3 was increased [188]

TRPV4

Cartilage
Murine induced

pluripotent stem cells
(iPSCs)

TRPV4 serves both as a marker and a regulator of
iPSC chondrogenesis [191]

Cartilage TRPV4(−/−) mice
Deletion of TRPV4 leads to osteoarthritic

joint degeneration [193]

Cartilage Murine chondrogenic cell
line (ATDC5)

TRPV4 regulates the SOX9 pathway and
contributes to the process of chondrogenesis [192]

Cartilage Porcines TRPV4 is expressed in articular chondrocytes and
mediates the hypoosmotic response [194]

Cartilage Embryonic mouse TRPV4 promotes joint cartilage growth
and morphogenesis [199]
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Table 2. Cont.

Channels Distribution Species Results/Conclusions References

Synovium Patients with RA TRPV4 is a functional regulator of Ca2+ in
human synoviocytes

[167]

Synovium

Tumor-derived SW982
synoviocytes; Patients

with inflammatory
arthropathies

TRPV4 may play a critical role in adaptive or
pathological changes in articular surfaces during

arthritic inflammation
[175]

Bone Trpv4(R616Q/V620I)
transgenic mice

Activation of TRPV4 can promote sufficient of
osteoclast function [195]

Bone Wild-type mice TRPV4 protein is expressed in both osteoblasts
and osteoclasts [200]

TRPV5
Cartilage Normal and OA SD rats TRPV5 is expressed in all cartilage tissues [205]

Cartilage Rabbit Reducing TRPV5 activity could be beneficial for
cartilage health and regeneration [206]

Cartilage Rats with osteoarthritis Upregulated TRPV5 expression was observed in
chondrocytes from rats with osteoarthritis [209]

TRPV6 Cartilage OA rat and OA patients;
TRPV6 knockout mice

TRPV6 as a cartilage protective factor was involved
in the pathogenesis of OA [210]

6. Potential Treatment Strategies of TRPV Channels in Osteoarthritis

Taken together, TRPV channels play important roles in the formation and progression
of OA. Recent advancements in pharmacology have shown promise in selectively targeting
TRPV channels to manage pain, inflammation, and other conditions [212]. Therefore, the
use of TRPV as a drug target for OA has therapeutic potential. It is noteworthy that TRPV1
and TRPV4 have attracted more attention from scholars in the field due to their special
distributions and roles in OA.

The identification of TRPV channels as potential therapeutic targets for OA has spurred
the development of specific modulators and drugs [213]. Recently, Logashina et al. [214]
investigated the anti-inflammatory properties of APHC3, a peptide modulator of TRPV1,
in a model of OA induced by sodium iodoacetate (MIA), and in a model of RA induced
by complete Fredrin adjuvant (CFA). Comparisons were also made with commonly used
non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac, ibuprofen, and meloxi-
cam. The results showed that the analgesic and anti-inflammatory effects of APHC3
were equal to or better than those of NSAIDs. APHC3 also significantly reversed joint
swelling, disability, grip strength impairment, and thermal and mechanical hypersensitivity
reactions. Long-term treatment can reduce the concentration of IL-1b in synovial fluid,
alleviate the inflammatory changes in joints, and prevent cartilage degeneration. Therefore,
peptide APHC3 has the potential to be an analgesic and anti-inflammatory substance for
relieving arthritis symptoms. In addition, the dual-acting compound OMDM198 (FAAH
inhibitor/TRPV1 antagonist) reversed the effects of MIA-induced OA on spinal cords in
rats, restoring Alox12, Mapk14, and Prkcg to normal levels [215]. Meanwhile, a study
by Atobe et al. [216] in 2019 reported that intra-articular injection of TRPV4 quinazolin-4
(3H)-one derivative 36·HCl (36·HCl) enhanced the expressions of ACAN and SOX9 mRNA
in the articular cartilage of OA rats to inhibit cartilage degradation, indicating that 36·HCl
promoted chondrocyte anabolism, and thus inhibited the progression of OA. In addition,
studies have found that the TRPV4 activator 4α-phorbol 12,13-didecanoate (4α-PDD) acts
on arthritic synovial cells to inhibit the production of inflammatory cytokines, helping to
prevent the occurrence or further deterioration of OA [167]. Oxoglaucine protects against
cartilage damage by blocking the TRPV5/CAMK-II/calmodulin pathway to inhibit Ca2+

influx and activate autophagy [169,170]. The TRPV4 inhibitor GSK2193874 inhibited the
upregulation of calmodulin and caspase-8 and the apoptosis of chondrocytes in the rat OA
anterior cruciate ligament transection model [217]. Intra-articular administration of the
selective TRPV4 antagonist HC067047 reduces cartilage extracellular matrix loss, cartilage
wear, and osteophyte formation [204]. The discovery of TRPV channel modulators lays the
foundation for the targeted therapy of TRPV in OA.
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In recent years, several TRPV modulators from chemical, biological, and natural
sources have entered clinical trials, but most of the previous TRPV antagonist projects
were shelved due to the high incidence of adverse reactions such as hyperthermia and
paresthesia. In 2017, Brown et al. [218] found that the most commonly reported adverse
reactions after treatment with NEO6860 were fever, headache, numbness, nausea, and
dizziness in a clinical phase I double-blind, placebo-controlled, dose-escalation study
involving 64 subjects. In this study, both a single oral dose of 800 mg and two oral doses
of 500 mg (12 h apart) of NEO6860 were well tolerated. Unlike other TRPV1 antagonists,
despite comprehensive and specific monitoring of body temperature and thermal pain
threshold/tolerance, no significant clinical elevations in these parameters were found.
Pharmacodynamic parameters (induced pain and secondary hypoalgesia) were improved at
3 and 8 h after administration of NEO6860. These findings indicate that NEO6860 is a TRPV1
antagonist that only blocks capsaicin activation. In addition, in 2019, Stevens et al. [219]
evaluated the efficacy and safety of high-purity synthetic trans-capsaicin (CNTX-4975)
in a phase II multicenter double-blind study in patients with chronic moderate to severe
osteoarthritis (OA)-related knee pain. In this study, a total of 172 patients with KOA were
randomized in a 2:1:2 ratio to receive a single intra-articular injection of placebo, CNTX-
4975 0.5 mg, or CNTX-4975 1.0 mg. The results showed a greater decrease in pain score
AUC in the CNTX-4975 0.5 mg and 1.0 mg groups than in the placebo group at week 12,
and the significant improvement in the 1.0 mg group was maintained at week 24. No safety
concerns were identified during the study, which indicates that the incidence of adverse
events was similar in all treatment groups. The results of this study support the efficacy and
safety of intra-articular injection of trans-capsaicin for the treatment of moderate to severe
pain associated with KOA. Subsequently, Stevens [220] conducted an 8-week, open-label,
phase III clinical study (NCT03661996) on the efficacy of CNTX-4975 in OA in 2020, in
which 848 KOA patients with pain symptoms underwent intra-knee injections with 1mg of
CNTX-4975. The results showed that the magnitude of pain reduction was similar to the
results of a double-blind randomized controlled trial reported previously. These targeted
modulators of TRPV1 can relieve the symptoms of OA while avoiding the disadvantages
of previous TRPV antagonists that produce obvious side effects, providing new ideas and
directions for the targeted therapy of TRPV channels in OA.

The clinical development of TRPV channel modulators provides a scientific basis and
new insights for further utilization of TRVP channels as biomarkers for OA treatment.
Despite the attractiveness of TRPV channels in the clinical treatment of pain and inflam-
mation, several challenges remain. In clinical studies, some common adverse reactions
of TRPV channels in the treatment of OA, such as high fever, heat burn, cold, hyperten-
sion, headache, nausea, abnormal taste, and paresthesia, are difficulties for researchers in
this field. For example, common adverse effects in subjects who received oral NEO6860,
a TRPV1 antagonist, included fever, headache, paresthesia, nausea, and dizziness [218].
Patients treated with ABT-102, a TRPV1 channel antagonist, experienced adverse effects
such as blunted sensation and altered taste [221,222]. In addition, patients treated with the
TRPV1 channel antagonist JNJ-39439335 were found to have reduced thermal sensation,
paresthesia, and mild burns to the skin that felt cold [223,224].

In conclusion, TRPV channels are involved in the physiological and pathophysiolog-
ical processes of OA, making them promising targets for pharmacological intervention.
However, the molecular gating mechanism of TRPV channels in response to different
stimuli in the joint environment is still unclear, and the widely distributed characteristics of
TRPV channels often cause cross-interactions in vivo and lead to adverse reactions, which
limits the application of TRPV-channel-targeted drugs in OA treatment. Therefore, further
studies on highly selective TRPV agonists and antagonists for in vivo applications are
needed to reduce cross-interactions caused by TRPV channels and reduce damage to other
tissues (Table 3).
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Table 3. Clinical trials of TRPV channel-targeted therapy for osteoarthritis.

Channels Drug Clinical Progress Function Adverse Events Organization/
NCT Number References

TRPV1

CNTX-4975 Phase II/III Reduce pain / NCT02558439;
NCT03661996 [219,220,225]

Resiniferatoxin
(RTX) Phase I/II/III Reduce pain and

improve mobility

Destroys nerve endings
produces

reversible analgesia

NCT02566564
2018-000818-37(EU);

NCT04044742
[225–227]

AZD1386 Phase II / No significant
pain decrease NCT00878501 [225,227,228]

JNJ-39439335 Phase I/II Analgesic
Thermal hypoesthesia;

Paresthesia; feeling cold;
minor thermal burns

NCT01006340
NCT00933582
NCT01343303

[223–225,227]

ABT-102 Phase I Analgesic Dysesthesias; altered
taste sensation NCT00854659 [221,225,227]

NEO6860 Phase I Analgesic
Feeling of hotness;

headache; paresthesia;
nausea; dizziness

NCT02337543 [218,225,227]

7. Future Research Directions for TRPV Channels in Osteoarthritis

Future osteoarthritis research will continue to focus on the role of the TRPV pathway.
Areas of focus may include more in-depth mechanistic studies, larger clinical trials, and the
search for new TRPV pathway inhibitors. These studies will help improve the treatment
and management of osteoarthritis.

Future research should aim to develop more precise modulators and regulators that
target specific TRPV channel subtypes. Understanding the unique roles of each subtype
and their effects on different conditions; investigating the detailed mechanisms of TRPV
channel activation, desensitization, and regulation; and understanding how these channels
function at a molecular level are essential for developing targeted therapies. Structural
biology studies can be continued to gain insights into the three-dimensional structures of
TRPV channels. This knowledge will aid in designing more effective drugs and modulators.

In addition, these areas hold promise for novel therapeutic interventions for TRPV
channels in the treatment of osteoarthritis. For example, expanding the clinical applications
of TRPV modulation includes conducting further clinical trials to assess the safety and
efficacy of TRPV-based therapies for various conditions such as pain management, neu-
roinflammatory disorders, and musculoskeletal diseases. The potential synergistic effects
of combining TRPV-based therapies with existing treatments may also be investigated.
Exploring combination therapies may enhance treatment outcomes for a range of condi-
tions. Expanding research into the role of TRPV channels in neuroinflammatory conditions,
neurodegenerative diseases, and neuropathic pain, as well as advancing personalized
medicine approaches to tailor TRPV-based treatments to individual patients, are further
potential research paths. This involves identifying patient-specific factors that influence
treatment responses. Exploring the impact of diet and nutrition on TRPV channel activity
and understanding how dietary components affect TRPV channels can lead to dietary
interventions for managing related conditions. Investigating how environmental factors,
such as temperature and humidity, influence TRPV-mediated conditions may enable en-
vironmental modifications for symptom management. Gene therapies that target TRPV
channels can be developed, potentially offering long-term and highly targeted treatment
options. Conducting comprehensive studies on the safety and potential side effects of
TRPV channel modulators is also a possibility. Understanding their long-term effects is
crucial for clinical implementation. Cross-disciplinary collaboration between researchers
should be encouraged in fields like molecular biology, pharmacology, physiology, and
clinical medicine to foster a holistic understanding of TRPV channels.

In summary, understanding the role of TRPV channels in osteoarthritis and their
potential as therapeutic targets is a promising avenue for future research. Such studies
may lead to innovative treatments and a better grasp of the mechanisms underlying this
prevalent joint disorder.
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